Experimental Measurement of Isospin Symmetry Breaking in ⁴⁷K Beta Decay

Brian Kootte¹, John Behr^{1,2}, Hannah Gallop³, Alexandre Gorelov¹, Jozef Klimo⁴, Chaitanya Luktuke^{1,3}, James McNeil^{1,2}, Dan Melconian⁴, Brayden Vargas-Calderon⁴

TRIUMF, Vancouver Canada
 University of British Columbia
 University of Waterloo

4) Texas A&M University

Funding provided through: NSERC, NRC through TRIUMF, Israel Science Foundation, U.S. DOE

Outline

- Testing time reversal symmetry (why and how)
- Isospin-Suppressed decay in ⁴⁷K
- Beta decay with trapped atoms in TRINAT
- Preliminary results for the decay asymmetry and isospin mixing

Testing Time Reversal Symmetry

- Symmetry of flipping the sign of time
- Violated in weak interaction, but so far doesn't account for matter/antimatter asymmetry in the universe
- Enhanced in Isospin-Suppressed Decay...

When $t \rightarrow -t$: $\vec{r} \rightarrow \vec{r} \quad \vec{p} \sim \frac{d\vec{r}}{dt} \rightarrow -\vec{p}$ i.e. any scalar triple product of momenta

(i) An "oriented nucleus-electron-neutrino" correlation, $W_{e\nu}$, of the form

$$W_{e\nu} \propto 1 + A J \cdot p_e \times p_{\nu}$$
 Aka "D" (1)
and

(ii) An "oriented nucleus-electron- γ " correlation, $W_{e\gamma}$, of the form (e.g. Calaprice et al. PRC 1977)

$$W_{e\gamma} \propto 1 + BJ \cdot p_e \times k \left[\sum_{n=1,3} c_n (J \cdot k)^n + ... \right]$$
 (2)

A. Barroso and R.J.Blin-Stoyle (1973)

Testing Time Reversal Symmetry

- Symmetry of flipping the sign of time
- Violated in weak interaction, but so far doesn't account for matter/antimatter asymmetry in the universe
- Enhanced in Isospin-Suppressed Decay...

When $t \rightarrow -t$: $\vec{r} \rightarrow \vec{r} \qquad \vec{p} \sim \frac{d\vec{r}}{dt} \rightarrow -\vec{p}$ i.e. any scalar triple product of momenta

Approach we utilize:

(i) An "oriented nucleus-electron-neutrino" correlation, $W_{e\nu}$, of the form $W_{e\nu} \propto 1 + A J \cdot p_e \times p_{\nu}$ Aka "D" (1) and

(ii) An "oriented nucleus-electron- γ " correlation, $W_{e\gamma}$, of the form (e.g. Calaprice et al. PRC 1977)

$$W_{\rm e\gamma} \propto 1 + BJ \cdot p_{\rm e} \times k \left[\sum_{n=1,3} c_n (J \cdot k)^n + \dots \right]$$
 (2)

A. Barroso and R.J.Blin-Stoyle (1973)

Isospin-Suppressed Decay (anti-analog)

- Total isospin conserving decay $(\Delta T = 0)$ not energetically possible
- Pure Gamow-Teller without mixing
- Coulomb potential mixing of |A> and |F> contributes Fermi component, which impacts angular correlations
- Barroso and Blin-Stoyle suggest this simple system can enhance Isospin Symmetry Breaking Time Reversal Violation effects by a factor of ~100 (because TRV is referenced to the small isospin symmetry breaking)

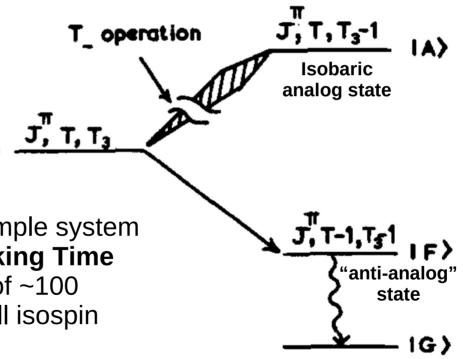
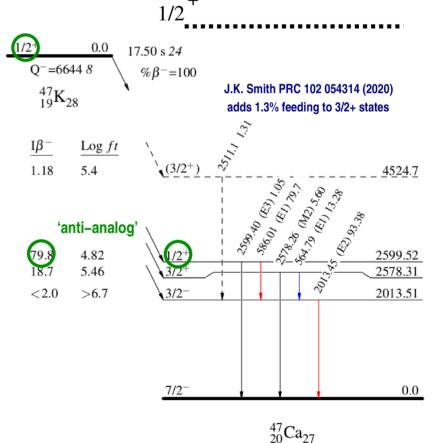
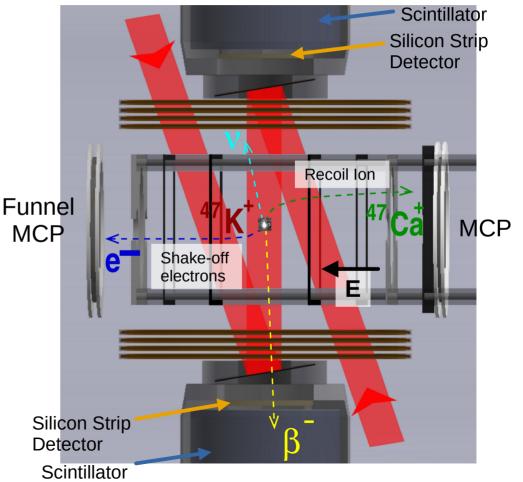
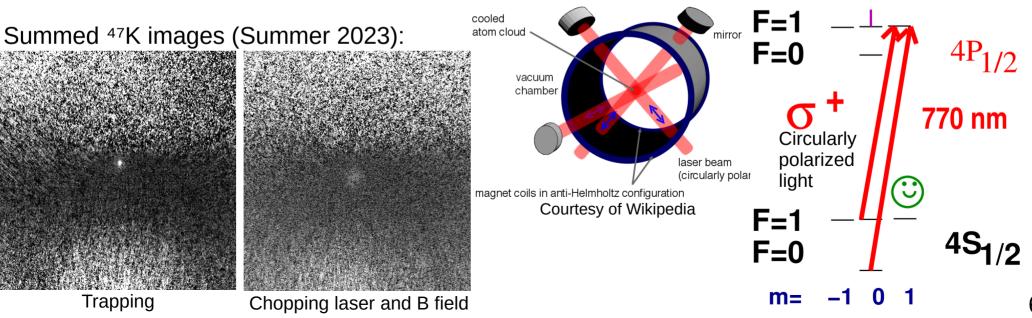



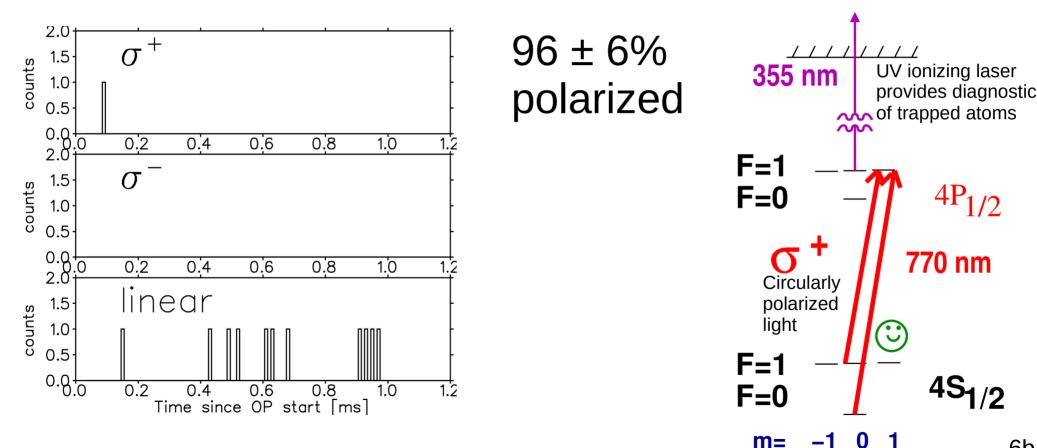
Fig. 1. Level diagram for isospin-hindered β-decayA. Barroso and R.J.Blin-Stoyle (1973)3


Isospin and Time Reversal Symmetry Breaking in ⁴⁷K

- Mixing of analog and "anti-analog" states is an intrinsically interesting test of isospin symmetry breaking
- Large branching ratio into anti-analog state
- N=28 to Z=20 decay simplifies structure
- ⁴⁷K Can be laser trapped and polarized
- We hope to achieve sensitivity that will complement NOPTREX (A Neutron OPtics Time Reversal Experiment) and Calaprice et al. (1977 ⁵⁶Co β-γ) for isospin symmetry breaking, Paritysymmetric, Time-asymmetric effects
- Complementary to neutron EDM; not constrained by bound set by Ng, Tulin Phys. Rev. D 85, 033001 (2012) providing D < 10⁻²

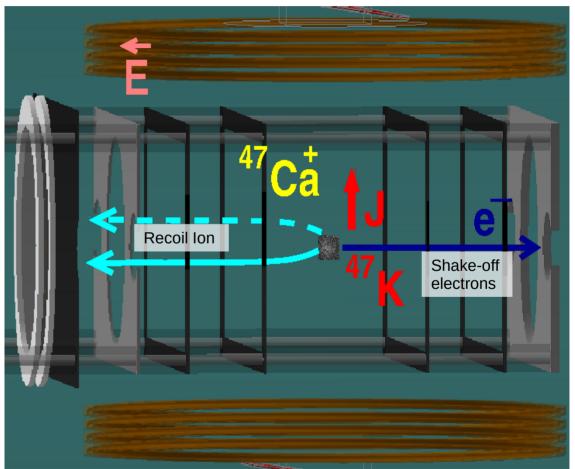
β Decays in TRINAT


- Beta, decay product, and "shake-off" electron(s) are detected
- Energy and timing used to make cuts
- Atoms are polarized up or down


5

Trapping and Pumping

- Magneto-optical trap: de-tuned lasers and quadrupole B-field make a damped harmonic oscillator
- Optical pumping defines the initial polarization ("stretched" state)
- Trapping laser momentarily interrupted for decay measurement
- We alternate polarizations during measurement
- 1000 atoms trapped for 1 day

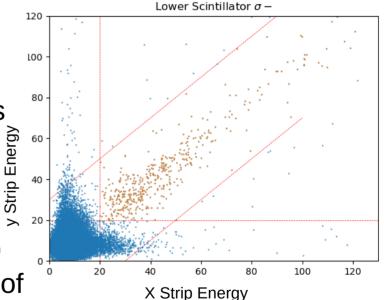

Trapping and Pumping

6b

⁴⁷Ca⁺ Recoil Asymmetry Result

Charge State >1+ in coincidence with shakeoff electrons

⁴⁷Ca⁺ Recoil Asymmetry Result 200 • σ^+ **Polarization dependence** • σ^{-} 150 ⁴⁷Ca Counts of recoils visible on MCP 100 $A_{\text{recoil}} = 2\sqrt{\frac{J}{J+1}}G_V M_F / G_A M_{\text{GT}} \cdot f(p_r)$ 50 **.**.. 0.3 F/GT=0.206±0.059 F/GT=0(preliminary) 0.2 $\chi^{2}/Ndea = 0.72$ CL= 75.5% ⁴⁷Ca 0.1 M_F -0.0Asym $= 0.21 \pm 0.06(stat) \pm 0.02(syst)$ M_{GT} -0.1-0.2-0.3-40-20204C \bigcirc Vertical position on MCP (mm)


Beta Energy/Electron Tagging for Beta Asymmetry

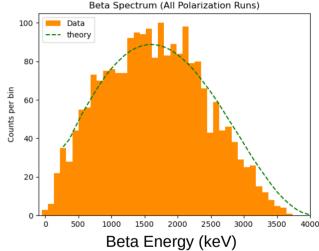
- DSSSD tests revealed several failed strips
- Wires sensitive to vibration and air currents
- Refurbishment of silicon strip detector (ATLAS wire-bonding)

Thanks to Nicolas Massacret and Sebastian Manson

- Enabled energy tagging of betas
- Suppressed background events from scintillator-shakeoff electron coincidences

Beta Energy/Electron Tagging for Beta Asymmetry

Double-Sided Silicon Strip Detector

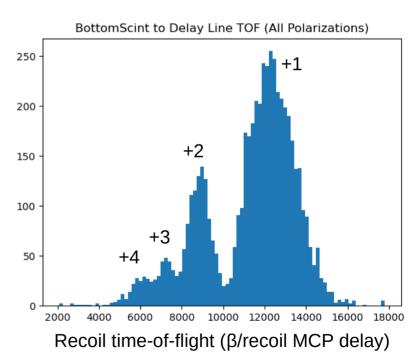

Preliminary Result:

 $A_{\beta} = -0.489 \pm 0.121 \pm systematics$

(C.S. Wu's observable to show parity violation)

Comparing to the pure GT asymmetry:

$$A_{\beta} = -0.467$$



Gives

 $\frac{M_F}{M_{GT}} = 0.02 \pm 0.10 \pm systematics$

Additional Statistics from Beta-Recoil Coincidences

- +1 recoils partly miss MCP
- Opportunity for greater statistics if not dependent on shakeoff electrons
- Need to model missed ions

Preliminary Isospin Symmetry Breaking Result

Weighted Average of our Recoil and Beta Asymmetries (also preliminary):

$$\frac{M_F}{M_{GT}} = 0.17 \pm 0.05(stat) \pm 0.02(syst)$$

$$\text{Gives } \text{E}_{\text{analog}} = 10 \text{MeV}, \text{M}_{\text{GT}} = 0.3, \text{ and}$$

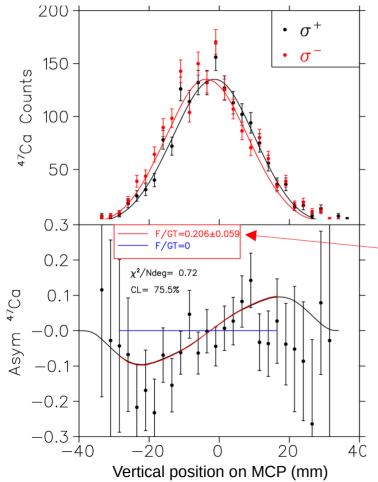
$$\langle \bar{A} | V_{Coulomb} | A \rangle = 160 \pm 50 \pm systematic \text{ (keV)}$$

Harmonic oscillator estimate from N. Auerbach & B.M. Loc. Nuc. Phys. A, 1027 (2022): $\langle \bar{A} | V_{Coulomb} | A \rangle = 0.35 \frac{\sqrt{n_1 n_2}}{2T} \frac{Z}{A^{2/3}} \text{MeV} = 190 \text{ keV} \text{ for } {}^{47}\text{Ca}$

- In contrast to ⁵⁶Co (3 keV) Markey Bohm PRC 1982 and ⁷¹At (28 keV) Severijns PRC 2005), Our result exhausts most of the A/Ā mixing
- Statistics lacking, but we expect 10x the ⁴⁷K data over 2 shifts, pending improvements to the laser
- We would love to see theory calculations for the time reversal violating nuclear matrix elements!

Thank You!

On behalf of the TRINAT collaboration



Thank You!

On behalf of the TRINAT collaboration

⁴⁷Ca⁺ Recoil Asymmetry Result

$$A_{\text{recoil}} = 2\sqrt{\frac{J}{J+1}}G_V M_F / G_A M_{\text{GT}} \cdot f(p_r)$$

- 20% eMCP efficiency (<0.01 correction)
- <0.01 asymmetry from betas on eMCP

(preliminary)

 Asymmetry damped at extreme Z by ~6% background due to untrapped ⁴⁷K

$$\frac{M_F}{M_{GT}} = 0.21 \pm 0.06(stat) \pm 0.02(syst)$$

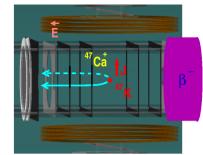
7b

If $\langle \bar{A} | V_C | A \rangle = 160 \pm 50$ keV holds in ⁴⁷Ca, that's a large fraction of $\langle \bar{A} | V_C | A \rangle = 0.35 \frac{\sqrt{n_1 n_2}}{2T} \frac{Z}{A^{2/3}}$ MeV =190 keV Auerbach Loc NPA2022 (unlike ⁵⁶Co 3 keV Markey, Boehm 1977 and ⁷¹At 28 keV Severijns 2005) \Rightarrow that single 1/2⁺ final state is the antianalog O, so the schematic ψ might be accurate Auerbach Loc NPA2022:

$$|A\rangle = \frac{1}{\sqrt{2T}} \left[\sqrt{n_1} \left| j_1^{n_1-1}(n) j_1(p) j_2^{n_2}(n) \right\rangle + \sqrt{n_2} \left| j_1^{n_1}(n) j_2^{n_2-1}(n) j_2(p) \right\rangle \right]$$

$$|\bar{A}\rangle = \frac{1}{\sqrt{2T}} \left[\sqrt{n_2} \left| j_1^{n_1-1}(n) j_1(p) j_2^{n_2}(n) \right\rangle - \sqrt{n_1} \left| j_1^{n_1}(n) j_2^{n_2-1}(n) j_2(p) \right\rangle \right]$$

By inspection, the isovector piece of Herzceg 1965 P-even T-odd N-N interaction will flip the 'orthogonalizing' minus sign, enabling large matrix elements Barroso Blin-Stoyle 1973 $V_{t.v.} = G_{t.v.} \frac{1}{2} [f(r)\hat{r} \cdot p + h.c.] \times [1 + a \sigma^{(1)} \cdot \sigma^{(2)})(\tau_3^{(1)} + \tau_3^{(2)}) + (b + c \sigma^{(1)} \cdot \sigma^{(2)})\tau_3^{(1)}\tau_3^{(2)}]$


One still needs accurate $\psi(r)$ because $\hat{r} \cdot p$ needs good tails! (Is this why Calaprice, Freedman never extracted microscopic TRV physics *a*,*b*, *c* from ⁵⁶Co?)

So our ⁴⁷K goal: measuring isospin-enhanced TRV in a system that can be understood

theoretically well enough to extract useful microscopic physics

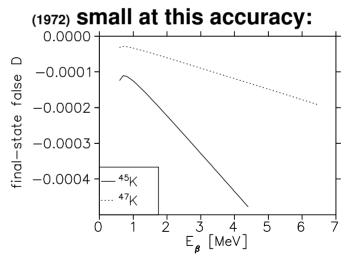
For future TRV D:

In ⁵⁶Co, E_1 = -0.01 \pm 0.02, $\langle \boldsymbol{A} | \boldsymbol{V}_{\boldsymbol{C}} | \boldsymbol{A} \rangle = 2.9 \pm 0.5,$ $\langle \boldsymbol{A} | \boldsymbol{V}_{TBV} | \boldsymbol{A} \rangle = 54 \pm 110 \text{ eV},$ M_{GT} =0.0034. $\langle \overline{A} | V_C | A \rangle$ cancels in D or E: sensitivity scales with $1/M_{GT}$ (=1/0.3 in ⁴⁷K). Measuring D to 0.001 in 47 K (\sim 3 weeks) leaves us 3x short in sensitivity to $\langle \boldsymbol{A} | \boldsymbol{V}_{TRV} | \boldsymbol{A} \rangle$ compared to ⁵⁶Co, but the simpler TRV N-N matrix elements are likely larger and calculable

⁴⁷K recoil order estimates still in progress

 $^{47}_{19}$ K²⁸ μ = 1.9 $\mu_{nucleon}$ \Rightarrow thought to be 71% 2s_{1/2} Choudhary, Kumar, Srivasta, Suzuki PRC 103 064325 (2021)

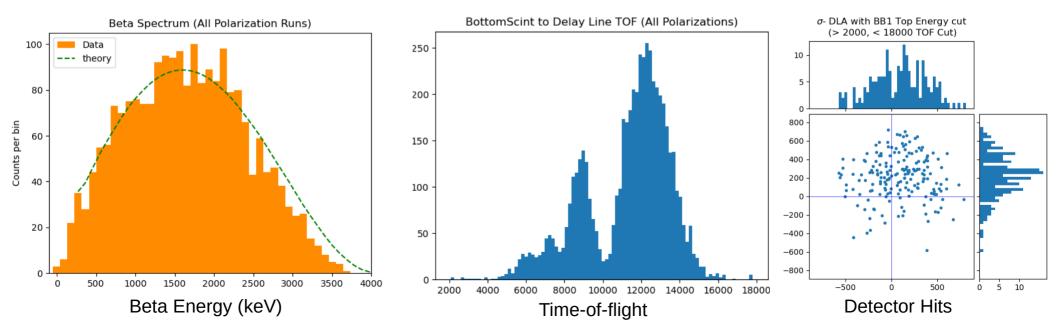
Assuming $1/2^+ \rightarrow 1/2^+$ transition is $2s_{1/2} \rightarrow 2s_{1/2}$ (no orbital / contributions):


- Weak magnetism $b_W \sim$ the nucleon value
- 1st-class induced tensor $d_I \sim 0$

```
For our M_F/M_{GT} measurement,
```

 A_eta changed by \leq 0.01

Recoil-order effects small at present level of accuracy \rightarrow statistics-limited measurement


Future D final-state effects Holstein PRC 5 1529

Note: ⁵⁶Co final-state E₁=0.0002 Calaprice 1977

6)Check Beta Spectrum/Look for Asymmetry

Many +1 recoils left on the table

What is a Funnel MCP?

