
1000 atoms trapped for 1 day, isospin breaking ⁴⁷K Preliminary without weak mag

MOT then OP

 Nonzero ⁴⁷Ca asymmetry wrt spin ⇒ a nonzero MEarmi $M_F/M_{GT} =$

$$0.21 \pm 0.06$$
 stat \pm ? syst \Rightarrow

$$\langle \bar{A} | V_{\text{Coulomb}} | A \rangle$$
 = 160 \pm 50 stat \pm ? syst keV

 A_{recoil} is damped at extreme Z by a \sim 6% bkg from untrapped ⁴⁷K. measured by dedicated 'poof' tests

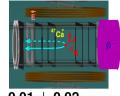
- Apparatus is symmetric: X projection flat at 1σ to 0.05: Unpolarized data has X, Z projections flat \sim 0.01
- ullet eta's fire the eMCP with \sim 20% quantum efficiency- these we measure to be \sim 0.002 correction

weak magnetism 2s_{1/2} nucleon

$$A_{\beta} \propto 1 + 0.005 E_{\beta}/E_0;$$

If $\langle \bar{A}|V_C|A\rangle$ = 160 \pm 50 keV holds in ⁴⁷Ca, that's a

large fraction of ${}^{\langle\bar{A}|V_C|A\rangle}=0.35\frac{\sqrt{n_1n_2}}{2T}\frac{Z}{A^2/3}{}^{\rm MeV}=190~{\rm keV}$ Auerbach Loc NPA2022 (unlike ${}^{56}{\rm Co}$ 3 keV Markey, Boehm 1977 and ${}^{71}{\rm At}$ 28 keV severijns 2005) \Rightarrow that single $1/2^+$ final state is the antianalog 9, so the schematic ψ might be accurate Auerbach Loc NPA2022:


$$\begin{split} |A\rangle &= \frac{1}{\sqrt{2T}} \left[\sqrt{n_1} \left| j_1^{n_1 - 1}(n) j_1(p) j_2^{n_2}(n) \right\rangle + \sqrt{n_2} \left| j_1^{n_1}(n) j_2^{n_2 - 1}(n) j_2(p) \right\rangle \right] \\ |\bar{A}\rangle &= \frac{1}{\sqrt{2T}} \left[\sqrt{n_2} \left| j_1^{n_1 - 1}(n) j_1(p) j_2^{n_2}(n) \right\rangle - \sqrt{n_1} \left| j_1^{n_1}(n) j_2^{n_2 - 1}(n) j_2(p) \right\rangle \right] \end{split}$$

By inspection, the isovector piece of Herzceg 1965 P-even T-odd N-N interaction will flip the 'orthogonalizing' minus sign, enabling large matrix elements Barroso Blin-Stoyle 1973 $V_{\text{t.v.}} = G_{\text{t.v.}} \frac{1}{2} [f(r) \hat{r} \cdot p + \text{h.c.}] \times [1 + a \sigma^{(1)} \cdot \sigma^{(2)}) (\tau_3^{(1)} + \tau_3^{(2)}) + (b + c \sigma^{(1)} \cdot \sigma^{(2)}) \tau_3^{(1)} \tau_3^{(2)}]$

One still needs accurate $\psi(r)$ because $\hat{r} \cdot p$ needs good tails! (Is this why Calaprice, Freedman never extracted microscopic TRV physics a,b,c from 56 Co?)

So our 47 K goal: measuring isospin-enhanced TRV in a system that can be understood theoretically well enough to extract useful microscopic physics

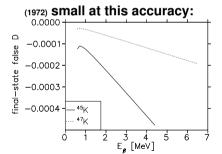
For future TRV D:

In 56 Co, E_1 = -0.01 \pm 0.02. $\langle A|V_C|A\rangle = 2.9 \pm 0.5$ $\langle \bar{A} | V_{TBV} | A \rangle = 54 \pm 110 \text{ eV}.$ $M_{GT}=0.0034$. $\langle \bar{A} | V_C | A \rangle$ cancels in D or E: sensitivity scales with 1/M_{GT} $(=1/0.3 \text{ in}^{-47}\text{K}).$ Measuring D to 0.001 in 47 K (\sim 3 weeks) leaves us 3x short in sensitivity to $\langle \bar{A} | V_{TRV} | A \rangle$ compared to ⁵⁶Co. but the simpler TRV N-N matrix elements are likely larger and calculable

⁴⁷K recoil order estimates still in progress

 $^{47}_{19}$ K 28 μ = 1.9 $\mu_{
m nucleon}$ \Rightarrow thought to be 71% $2s_{1/2}$ Choudhary, Kumar, Srivasta, Suzuki PRC 103 064325 (2021)

Assuming $1/2^+ \rightarrow 1/2^+$ transition is $2s_{1/2} \rightarrow 2s_{1/2}$ (no orbital *I* contributions):


- Weak magnetism $b_W \sim$ the nucleon value
- ullet 1st-class induced tensor $d_I \sim 0$

For our M_F/M_{GT} measurement,

 A_{β} changed by ≤ 0.01

Recoil-order effects small at present level of accuracy → statistics-limited measurement

Future D final-state effects Holstein PRC 5 1529

Note: ⁵⁶Co final-state E₁=0.0002 Calaprice 1977