$^{\textcircled{2}}$ Analog-Antianalog isospin mixing in 47 K β^- decay + time-reversal symmetry

 \bullet Isobaric analog states and isospin-suppressed β decay

• In ⁴⁷K isospin-suppressed decay, we measure:

a large Fermi contribution and Coulomb matrix element a large fraction of predicted analog-antianalog mixing

 \bullet Sensitivity to time-reversal breaking ${\cal T}$ enhanced in isospin-forbidden β decay $^{47}{\rm K}$

- Spin-polarize by direct optical pumping
- Measure asymmetry of decay products wrt initial nuclear spin

Supported by NSERC, NRC through TRIUMF, DOE, RBC Foundation

*co-spokesperson

⁴⁷K β^- decay and Analog- "Anti-analog" isospin mixing

 $T=7/2 \bar{A}$?

⁴⁷Ca

2.599

2.578

2.013

⁴⁷K decay to its isobaric analog is energetically forbidden. so is purely G-T, unless isospin mixing of analog and "antianalog" configurations lets Fermi contribute \rightarrow nonzero ⁴⁷Ca asymmetry wrt ⁴⁷K nuclear spin

```
Barroso and Blin-Stovle PL45B 178 (1973)
        sensitivity of
\mathcal{T} correlations to \mathcal{T} P even
N-N isovector interactions
   is enhanced by \sim 10^2.
because \mathcal{T} is referenced to
   Coulomb (not strong)
         interactions
```

Optical pumping of I=1/2 ⁴⁷K

We measure by atomic techniques the polarization of the β -decaying nuclei

We alternate trap/optical pumping Apply circularly polarized light along z quantization axis.

Once we start OP cycle, atoms increase spin to maximum, then stop absorbing If light is linearly polarized, atoms keep absorbing.

When excited, a pulsed laser has enough energy/photon to photoionize (a small fraction) of them.

11 photoions while linearly polarized, 1 photon circularly polarized \rightarrow nuclear polarization 96±4%

Source	A _{recoil}	pseudoA _{/3}
A _{recoil} bkg 6±4%	0.014	< 0.002
Polarization 0.96±0.04	0.004	0.023
β^{-} Branching ratio	0.002	0.022
Weak magnetism	0.0006	0.0003
Fit range in Z \pm 20 to 34 mm	0.012	NA
⁴⁷ Ca ⁺¹ percent bkg	0.001	NA
⁴⁷ Ca ^{+N} distribution from TOF	< 0.0005	NA
E field	negligible	0.025
Backscatter correction -0.012 \pm 20%	NA	0.0024
Fit statistics	0.037	0.082
Total	0.041	0.091

• Nonzero ⁴⁷Ca asymmetry wrt spin \Rightarrow a nonzero M_{Fermi} $y = g_V M_F / g_A M_{GT} = 0.098 \pm 0.037$

 $\langle ar{\mathcal{A}} | \textit{V}_{ ext{Coulomb}} | \mathcal{A}
angle$ = 101 \pm 37 keV

Schematic model for \mathcal{A} and $\bar{\mathcal{A}} \Rightarrow$ $H_{\rm C} = \langle \bar{\mathcal{A}} | V_{\rm C} | \mathcal{A} \rangle$ $= \frac{\sqrt{n_1 n_2}}{2\tau} (\langle j_1 | V_C | j_1 \rangle - \langle j_2 | V_C | j_2 \rangle)$ $\rightarrow 0.35 \frac{\sqrt{n_1 n_2}}{2 \tau} \frac{Z}{A^{2/3}} \text{MeV}$, for HO wf's and excess n's occupy 2 major shells H_{C} for many β decays is a small fraction of the prediction: attributed to fragmentation of $\bar{\mathcal{A}}$ configuration among several eigenstates

Auerbach, Loc NPA 1027 122521 (2022)

- $^{\rm 47}{\rm K}~\beta^-$ decay has:
- Large $H_{C} = \langle \bar{\mathcal{A}} | V_{\text{Coul}} | \mathcal{A} \rangle$ = 101 ± 37 keV
- Large fraction of $\mathcal{A} \bar{\mathcal{A}}$ mixing prediction Auerbach Loc NPA 1027 122521 (2022)
- $\Leftarrow \frac{47}{20} Ca^{27}$ has only one 1/2+ state, $\bar{\mathcal{A}}$ configuration not fragmented

Reasuring isospin 47 K β^- decay and TMeasuring isospin in $^{47}_{19}$ K²⁸ decay determines sensitivity to parity-even isospin T N-N interactions via future $D\vec{l} \cdot \vec{v_{\beta}} \times \vec{v_{\nu}}$

 $v = q_V M_F / q_A M_{GT} = 0.098 \pm 0.037$ large enough to be favorable for D, enhanced by $\sim 10^2$ in isospin-suppressed β decay Barroso and Blin-Stoyle PL45B 178 (1973) calculate reasonably large ¹³⁴Cs \mathcal{T} matrix elements: ⁴⁷Ca's 1/2⁺ simple structure should make calculating \mathcal{T} nuclear matrix elements of $\hat{r} \cdot \vec{p}$ practical

WTRIUMF D $\vec{l} \cdot \vec{v_{\beta}} \times \vec{v_{\nu}}$ in atom trap: Features, Systematics

- \bullet Collect recoils going into 4 pi with electric field of 1 kV/cm
- Full reconstruction of recoil and beta momenta

• Point source: we know where it is (by sampling photoionization) and it doesn't move when we flip the polarization

D Uncertainties / 100 scaling from Melconian PLB 649 270 (2007)

Cloud position σ^{\pm} Cloud size/Temp MCP Position cal \hat{x} -OP alignment E field

	$oldsymbol{B}_{ u}$	Improvements	Projected
-	1.3	$\pm 500 \mu$ m $ ightarrow \pm 20 \mu$ m	0.05
	0.3	""	0.03
	1.0	DLA+ mask	\leq 0.1
	0.25	Geometry is \perp	\leq 0.02
	0.2		\leq 0.1

• Any stray polarization along wrong axis is deadly, a lowest-order fake D: Measure with singles asymmetry for recoils and β 's

⁵⁶Co *T* experiment

Asymmetry of the 45° γ detectors with nuclear alignment

"Test of time-reversal invariance in the beta decay of ⁵⁶Co" Calaprice, Freedman, (Princeton); Osgood, Thomlinson (BNL) PRC 15 381 (1977) $\textit{E}_{1} = -0.01 \pm 0.02$

log(ft) = 8.7, yet known allowed:

 E_{eta} spectrum, no eta- γ correlation)

y = -0.13±0.02 PRC 26 287R (1982) Markey, Boehm (RIP Felix 2021)

 V_{Coul} = 2.9 keV, $V_{\mathcal{T}}$ = 54 ± 110eV (J.L. Mortara Ph.D. thesis 1999 UCB $E_1 = -0.001 \pm 0.006$

 \Rightarrow V_{\mathcal{X}} = 5 \pm 33 eV)

We believe we can measure D in 47,45 K much more accurately than E in 56 Co, but we must find a case with $|M_{GT}|$, V_{Coul} , and \mathcal{T} N-N matrix elements to allow complementary or better sensitivity to $V_{\mathcal{T}}$

®TRIUMF TRINAT plan view

- Isotope/Isomer selective Avoid untrapped atom background with 2nd trap
- 75% transfer

• 0.7 mm cloud for β -Ar⁺ $\rightarrow \nu$ momentum

 \bullet Spin-polarized 99.1 $\pm0.1\%$

Neutralizer and Collection trap

 $\pmb{\mathcal{T}}$ in isospin-hindered eta^- decay Barroso and Blin-Stoyle, PL 45B 178 (1973

Have null EDM's ruled you out?

(Not if we reach $D < 10^{-2}$)

 $D \hat{J} \cdot \frac{\vec{p}_{\vec{\beta}}}{F_{\alpha}} \times \frac{\vec{p}_{\nu}}{F_{\alpha}} \stackrel{t \to -t}{\to} -D \hat{J} \cdot \frac{\vec{p}_{\vec{\beta}}}{F_{\alpha}} \times \frac{\vec{p}_{\nu}}{F_{\alpha}}$ $m{D}=\sqrt{rac{J}{J+1}}m{y}/(1+m{y}^2)\sin(lpha_m{v}-lpha_m{A})$ with $y = \frac{|M_F|}{|M_{OT}|}$ In this system, sin $\alpha_{\rm V} = -i \frac{\langle F | V_{f} | A \rangle}{\langle F | V_{\rm Coul} | A \rangle}$ So for \mathcal{T} physics mixing antianalog $|F\rangle$ with analog $|A\rangle$, then V_{γ} is only competing with V_{Coul}, not V_{strong}, enhancing α_V by $\sim 10^2$ or 10^3 \bigcirc

• Has your experiment been done better? (Our goal is 3x better than Calaprice et al. ⁵⁶Co, and complementary to NOPTREX neutron scattering resonances for parity-even isospin-breaking interactions)

⁴⁷K recoil order estimates still in progress

 $^{47}_{19}$ K²⁸ μ = 1.9 $\mu_{nucleon}$ \Rightarrow thought to be 71% 2s_{1/2} Choudhary, Kumar, Srivasta, Suzuki PRC 103 064325 (2021)

Assuming $1/2^+ \rightarrow 1/2^+$ transition is $2s_{1/2} \rightarrow 2s_{1/2}$ (no orbital / contributions):

- Weak magnetism $b_W \sim$ the nucleon value
- 1st-class induced tensor $d_I \sim 0$

```
For our M_F/M_{GT} measurement,
```

```
m{A}_{
m recoil}, m{A}_eta changed by \leq 0.01
```

Finite-size correction cancels most of this in A_{recoil}

Recoil-order effects small at present level of accuracy \rightarrow statistics-limited measurement

Future D final-state effects Holstein PRC 5 1529

Note: ⁵⁶Co final-state E₁=0.0002 Calaprice 1977

• *P* even N-N isovector/tensor \mathcal{T} : complementary to \mathcal{T} neutron resonance experiments Barroso and Blin-Stoyle using Herczeg NP 75 655 (1966): $V_{t.v.} = G_{t.v.} \frac{1}{2} [f(r)\hat{r} \cdot p + h.c.]$

$$\times \ [1 + a \sigma^{(1)} \cdot \sigma^{(2)}) (\tau_3^{(1)} + \tau_3^{(2)})$$

+
$$(b + c \sigma^{(1)} \cdot \sigma^{(2)}) \tau_3^{(1)} \tau_3^{(2)}]$$

Samart Schat Schindler Phillips PRC 2016: Isoscalar and isotensor *P* even \mathcal{T} π -N suppressed by $1/N_C$; isovector a_1 contributes, not ρ and h_1

D produced by most \mathcal{T} interactions would make a large neutron EDM \Rightarrow *D* less than 10⁻⁴ (Ng and Tulin PRD 85 033001 (2012).

Isotensor \mathcal{T} interaction would make D but not T=1/2 neutron EDM, but tricky microscopically without making isovector \mathcal{T} .

Barroso and Blin-Stoyle $10^2 \ \mathcal{A} - \bar{\mathcal{A}}$ enhancement \Rightarrow our goal of $D < 10^{-3}$

in ⁴⁷K evades Ng-Tulin bound.

NOPTREX: P-even \mathcal{T} neutron resonance experiments are ongoing (in addition to \mathcal{P} ones), with planned sensitivity to matrix elements \sim eV.

We hope to be complementary on isovector P-even \mathcal{X} by reaching similar sensitivity.

H_{Coul} from isospin-forbidden β -decay

- [17] L. G. Mann, D. C. Camp, J. A. Miskel, and R. J. Nagle, New measurements of β-circularly-polarized γ angularcorrelation asymmetry parameters in allowed β decay, Phys. Rev. 139, AB2 (1965).
- [18] J. Atkinson, L. Mann, K. Tirsell, and S. Bloom, Coulomb matrix elements from β-γ(cp) correlation measurements in 57ni and 65ni, Nuclear Physics A 114, 143 (1968).
- [19] H. Behrens, Messung des asymmetrie-koeffizienten der β – γ-zirkularpolarisationskorrelation an erlaubten βübergängen, Z. Physik 201, 153 (1967).
- [20] J. Markey and F. Boehm, Fermi—gamow-teller interference in ⁵⁶Co decay, Phys. Rev. C 26, 287 (1982).
- [21] S. Bhattacherjee, S. Mitra, and H. Padhi, Fermi matrix elements in allowed beta transitions in 56co, 58co and

134cs, Nuclear Physics A 96, 81 (1967).

- [22] N. Severijns, D. Vénos, P. Schuurmans, T. Phalet, M. Honusek, D. Srnka, B. Vereecke, S. Versyck, D. Zákoucký, U. Kőster, M. Beck, B. Delauré, V. Golovko, and I. Kraev, Isospin mixing in the t = 5/2 ground state of ⁷¹As, Phys. Rev. C 71, 064310 (2005).
- [23] P. Schuurmans, J. Camps, T. Phalet, N. Severijns, B. Vereecke, and S. Versyck, Isospin mixing in the ground state of 52mn, Nuclear Physics A 672, 89 (2000).
- [24] J. J. Liu, X. X. Xu, L. J. Sun, C. X. Yuan, K. Kaneko, Y. Sun, P. F. Liang, H. Y. Wu, G. Z. Shi, C. J. Lin, J. Lee, S. M. Wang, C. Qi, J. G. Li, H. H. Li, L. Xayavong, Z. H. Li, P. J. Li, Y. Y. Yang, H. Jian, Y. F. Gao, R. Fan, S. X. Zha, F. C. Dai, H. F. Zhu, J. H. Li, Z. F. Chang, S. L. Qin, Z. Z. Zhang, B. S. Cai, R. F. Chen, J. S. Wang, D. X. Wang, K. Wang, F. F. Duan, Y. H. Lam, P. Ma, Z. H. Gao, Q. Hu, Z. Bai, J. B. Ma, J. G. Wang, C. G. Wu, D. W. Luo, Y. Jiang, Y. Liu, D. St Hou, R. Li, N. R. Ma, W. H. Ma, G. M. Yu, D. Patel, S. Y. Jin, N. R. Ma, W. H. Ma, G. M. Yu, D. Patel, S. Y. Jin,

Y. F. Wang, Y. C. Yu, L. Y. Hu, X. Wang, H. L. Zang,

K. L. Wang, B. Ding, Q. Q. Zhao, L. Yang, P. W. Wen,

F. Yang, H. M. Jia, G. L. Zhang, M. Pan, X. Y. Wang,

- H. H. Sun, H. S. Xu, X. H. Zhou, Y. H. Zhang, Z. G. Hu, M. Wang, M. L. Liu, H. J. Ong, and W. Q. Yang (RIBLL Collaboration), Observation of a strongly isospin-mixed doublet in ²⁰Si via β -delayed two-proton decay of ²⁰P, Phys. Rev. Lett. **129**, 242502 (2022).
- [25] S. D. Bloom, Isotopic-spin conservation in allowed βtransitions and coulomb matrix elements, Il Nuovo Cimento 32, 1023 (1964).

The analog is:

$$|A\rangle = \frac{1}{\sqrt{2T}} \left[\sqrt{n_1} \left| j_1^{n_1 - 1}(n) j_1(p) j_2^{n_2}(n) \right\rangle \right. \\ \left. + \sqrt{n_2} \left| j_1^{n_1}(n) j_2^{n_2 - 1}(n) j_2(p) \right\rangle \right]$$

The anti-analog $|\bar{A}\rangle$ is then:

$$|\bar{A}\rangle = \frac{1}{\sqrt{2T}} \Big[\sqrt{n_2} \, \Big| j_1^{n_1 - 1}(n) j_1(p) j_2^{n_2}(n) \Big\rangle - \sqrt{n_1} \, \Big| j_1^{n_1}(n) j_2^{n_2 - 1}(n) j_2(p) \Big\rangle \Big].$$

Schematic model for
$$\mathcal{A}$$
 and $\overline{\mathcal{A}} \Rightarrow$
 $H_{\mathcal{C}} = \langle \overline{\mathcal{A}} | V_{C} | \mathcal{A} \rangle$
 $= \frac{\sqrt{n_{1}n_{2}}}{2T} \langle \langle j_{1} | V_{C} | j_{1} \rangle - \langle j_{2} | V_{C} | j_{2} \rangle \rangle$
 $\rightarrow 0.35 \frac{\sqrt{n_{1}n_{2}}}{2T} \frac{Z}{A^{2/3}} \text{MeV},$
for HO wf's and excess n's occupy 2
major shells

 H_{C} for many β decays is a small fraction of the prediction: attributed to fragmentation of \bar{A} configuration among several eigenstates

Auerbach, Loc NPA 1027 122521 (2022)