motivation

[֎]TRIUMF</sup> Time-reversal violation *X* in radiative β decay: experimental progress

- T Motivation
- Our geometry and simulation for $\beta \nu \gamma$ correlation

ĀМ

intro

 \bullet Test run with $^{92}\text{Rb}~0^- \rightarrow 0^+$

TRlumf Neutral Atom Trap:

A. Gorelov J.A. Behr

D. Melconian

TEXAS A&M

T. Valencic (UG Caltech SURF)

J. McNeil Caltech SURF) D. Ashery Support: NSERC, NRC through TRIUMF, US DOE, Israel Science Foundation

We are looking for a grad student for this project

motivation

geometry

RIUMF Parity broken, why not \mathcal{T} ime?

Immediately after $\not P$ arity was seen to be totally broken in β decay (' ν left-handed') Wu, Ambler, Hayward, Hopper, Hobson, PR 105 (1957) 1413

Many T-odd observables were proposed:

PHYSICAL REVIEW

VOLUME 106, NUMBER 3

Possible Tests of Time Reversal Invariance in Beta Decay

J. D. JACKSON,* S. B. TREIMAN, AND H. W. WYLD, JR. Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received January 28, 1957)

Need scalar triple products of 3 vectors: observables involving spin

 $D\hat{J} \cdot \frac{\vec{p_{\beta}}}{E_{\beta}} \times \frac{\vec{p_{\nu}}}{E_{\beta}} \qquad R\vec{\sigma}_{\beta} \cdot \hat{J} \times \frac{\vec{p}_{\beta}}{E_{\beta}}$ are consistent with $\mathcal{T} < 0.001$ So we're looking for something that could still be big: \rightarrow

Plastic

мср

 We can test symmetry of apparatus with coincident pairs ☺
 Not exact. Outgoing particles interact → 'final-state' fake X ≤ 10⁻³ for ³⁷K ☺(Gardner,He 2013)

ß

WTRIUMF The nucleon: a special place for γ 's

S.M. interactions combined in the nucleon: Harvey Hill Hill PRL 2007 Gardner He PRD 2013 QCD Weak decay E&M $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ $\mathcal{L} = \frac{-4c_5}{m_{nucleon}^2} \frac{eG_F V_{ud}}{\sqrt{2}} \epsilon^{\sigma\mu\nu\rho} \bar{p} \gamma_\sigma n \bar{\psi}_{eL} \gamma_\mu \psi_{\nu L} F_{\nu\rho}$ Interference with S.M. β decay 'vector current' gives $\beta \nu \gamma$ decay contribution with the scalar triple product we want: $|\mathcal{M}_{c5}|^2 \propto \frac{Im(c_5g_V)}{M^2} \frac{E_e}{p_ck} (\vec{p_e} \times \vec{k_\gamma}) \cdot \vec{p_\nu}$

 ${\cal T}$ needs new physics with scale $M \sim {\rm MeV}$

• This source of $\cal T$ scales with $p_{\rm lepton}^2$, so is $\sim 10^2$ larger in 37 K decay than neutron

• Direct constraint from $n \rightarrow p \ \beta \nu \gamma$ branch $\propto |c_5|^2$ Bales PRL 2016: $3.4 \pm 0.2 \times 10^{-3}$ (theory 3.1×10^{-3}) $\Rightarrow \frac{\text{Im}(c_5)}{M^2} \leq 8 MeV^{-2} \Rightarrow {}^{37}\text{K} \ \vec{\lambda}$ asym can still be $\sim 1 \ \textcircled{s}$

$\mathfrak{B}^{\mathsf{TRIUMF}}$ Constraint from neutron EDM on $\mathcal{T} \beta \nu \gamma$

Some $\chi \gamma \beta \nu$ interactions, e.g. :

make neutron EDM at "1-loop" order (D. McKeen, private comm):

р

w

n

ρ

n

Analysis" $c_5 \frac{e^2 G_F M_W^3}{16 \pi^2 m_{\rho'}^2}$ suggests nEDM larger than experiment by $\sim 10^8$.

"Naive Dimensional

[Gardner and He, PRD 2013]

- So $\mathcal{T} \beta \nu \gamma$ from such interactions would likely be too tiny to measure B
- Other interactions (e.g. leptoquarks) need "2 loops" so generate comparatively tiny nEDM so are unconstrained and can generate $\mathcal{T} \beta \nu \gamma$ large enough to measure \mathfrak{C}

 Any time-reversal violating interaction involves β , ν and $\gamma \Rightarrow$ 4-body phase space $\propto E_{\gamma}(Q - E_{\gamma})^3$ Bernard PLB 593 (2004)

counts

We are concentrating on:

- $E_{\gamma} > 511 \text{ keV}$
- the β^+ in the opposite detector

xtras

92Rb test

CRIUMF TRIumf Neutral Atom Trap at ISAC main TRIUMF cyclotron 'world's largest' 500 MeV H⁻ (0.5 Tesla)

not radioactive like LYSO

geometry

TRIUMF Summary $\mathcal{T} \beta u \gamma$

- Few direct constraints from other observables
- Unique to 1st generation of particles, complementary to $K^- \rightarrow \pi^0 e^- \bar{\nu}_e \gamma$ INR Moscow 2007, $A_{TRV} = -0.015 \pm 0.021$

• We're adding γ 's to TRINAT's $\beta \nu$ detection

 $^{92}\text{Rb}~0^- \rightarrow 0^+$ test: Possible sensitivity to $\ensuremath{\mathcal{T}}$ pseudoscalar A dedicated geometry may be justified

Vector current mechanism of Gardner, He: Projected: sensitivity to \sim 5% of SM bremsstrahlung $\rightarrow \sim$ 5 to 10% on T asym for ³⁷K

	Coorrection		addition to	TOINAT
motivation)⊄ intro	geometry	92Rb test	xtras

7 3-momentum correlations: 2nd, 3rd generation

• $K^- \rightarrow \pi^0 e^- \bar{\nu}_e \gamma$ INR Moscow 2007, $A_{TRV} = -0.015 \pm 0.021$ final-state effects small Khriplovich+Rudenko 1012.0147 Phys Atomic Nuclei 2011

• 3-momentum correlations (no γ) at LHCb and BABAR, 0 \pm 0.003 (Martinelli arXiv 1411.4140)

Proposed \mathcal{X} in $\pi^{\pm} \rightarrow e^{\pm}\nu e^{+}e^{-}$ [Flagg Phys Rev **178** 2387 (1969)] never done:

Ours would be unique measurement in 1st generation of particles

RIUMF T radiative β decay and EDMs amend ** No spin \rightarrow different physics at lowest order, but

Ng, Vos private comm.: 'Im(c₅)' interaction + S.M. β decay \rightarrow n EDM at 2 loops 'Naive Dimensional Analysis': $d_n \sim \frac{Im(c_5)G_Fe}{M^2} \frac{G_F m_n^5}{(16\pi^2)^2}$ $\sim \frac{10^{-22}e - cm}{M^2} [MeV^{-2}]$ (Baker 2006 PRL)

 $d_n[\exp] < 3 \times 10^{-26}$ e-cm (Baker 2006 PRL) null n EDM $\Rightarrow \frac{Im(c_5)}{M^2} < 3 \times 10^{-4} [MeV^{-2}] \rightarrow 10^{-3}$ asym We can still reach this sensitivity

Since n_{edm} usually targets other physics, it would be good to know independently if this is there

** Loop integral momenta must stay below EFT scale M, so using m_{nucleon}^5 likely overestimates by orders of magnitude

 \rightarrow 10,000 atoms ³⁷K demonstrated

Funnel beams

Trapping beams

ISAC Ion beam

Neutralizer

Collection chamber

Push

beam

Detection chamber

- 15 cm —

MCP

BC408 Bdetector hoops

σ±

DSSSD

Past radiative nuclear β^- decay experiments

⁶He Bienlein and Pleasonton NP 1965

³⁵S vector current $\mathcal{O}(10^{-2})$ Boehm and Wu PR 93 518 (1954)

FIG. 3. Internal bremsstrahlung of $S^{3\delta}$.

For axial vector current

5-10% discrepancies allowed

Powar and Singh JPG 2 43 (1976)

${\cal T}$ in radiative β decay and EDMs

Dekens, Vos 1502.04629: dim 6 operators at TeV scale

$$\mathcal{L}_{6}^{\text{eff}} = -\frac{8ic_{w}}{gv^{2}} V_{ud} \operatorname{Re} C_{\varphi \tilde{W} B}(\Lambda) \varepsilon^{\mu\nu\alpha\beta} (\bar{u}_{L}\gamma_{\mu}d_{L}) (\bar{e}_{L}\gamma_{\nu}\nu_{L}) F_{\alpha\beta}$$

 \rightarrow 10⁻¹⁰ asymmetries if constants ~ 1. Also generates EDMs \Rightarrow constants ~ 0.01 So TeV-scale general dim 6 ops can make $\mathcal{T} \gamma \nu \beta$ and EDMs, but don't make measureable nuclear radiative β decay; effects ~ $p_{lepton}^2/scale^2$.

The QCD-like MeV-scale example of Gardner and He is tuned to maximize contribution to neutron β decay and avoid other experiments. E.g. direct searches by colliders are masked by jets.

EDMs constrain the Gardner term anyway ightarrow

Vector current needs β^+ emitter

- β^- decays with vector current:
- n, ³H, (not easy)
- 'isospin-forbidden Fermi' amplitudes with $log(ft) \sim 5-6$ (e.g. ³⁵S)

aeometry

- But isobaric analogs usually lie high in excitation for β^- E.g. ²⁴Na 4⁺ \rightarrow ²⁴Mg 4⁺, *log(ft)* = 6 (famous for the analog transition from ²⁴Al), feeds 2 subsequent γ s so does not help.
- $^{92}\text{Rb}~0^- \rightarrow 0\text{+}$ is 'first-forbidden G-T' which does not have the vector current,
- nor does first-forbidden unique $^{42}\text{K}~2^- \rightarrow 0^+$
- Other first-forbidden can have vector current
- contributions times some other operator ($^{93}{\rm Rb}$) but these have a lot of $\gamma{\rm s}$
- The interference with SM term requires this vector current to produce the Gardner-He term.

$lpha^{ extsf{TRIUMF}}$ Test with $^{92} extsf{Rb}$ 0 $^- o {}^{92} extsf{Sr}$ 0 $^+$ + $eta^u\gamma$

Online analysis β - γ doubles: 511 keV from E&M showers Shoulder of 3-6% 815 keV γ from ⁹²Rb decay

Left and right-going ions lon TOF spectrum similar for top and bottom β