xkcd com/2755/

xkcd.com/2783/

SO FAR OUR ASTRONOMY GROUP HAS PUBLISHED STUDIES RULING OUT THE EXISTENCE OF EARTHLIKE STARS. EXOPLANETS IN OUR SOLAR SYSTEM. HABITABLE-ZONE QUASARS, STARS WITH SUBSURFACE OCEANS, AND TECTONICALLY ACTIVE BLACK HOLES.

SCIENCE GOT WAY EASIER WHEN WE REALIZED YOU WERE ALLOWED TO DO STUDIES JUST TO RULE STUFF OUT.

EFFECT SIZE RANDOM NEXT > META-ANALYSIS INCLUSION CRITERIA: ALL STUDIES PAGE 53,589 0.17 (-0.14, 0.52) BAD NEWS: THEY FINALLY DID A META-

Fun Sym

BAD NEWS: THEY FINALLY DID A META-ANALYSIS OF ALL OF SCIENCE, AND IT TURNS OUT IT'S NOT SIGNIFICANT. parity and u's trinat

ν 's, Fun Sym, and Atom Traps

Parity P symmetry

How to test *P* symmetry experimentally

Only left-handed ν so far: how do we know?

- $\not P$ with TRIUMF Neutral Atom trap for β decay
- P in Francium atoms
- How atom traps work
- X experiments so much time, so little to do

A. Gorelov J.A. Behr

J. McNeil

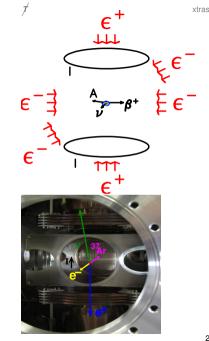
TEXAS A&M

M.

Vargas-Calderon

D. Melconian

A. Sharma


T. Morshed

I. Halilovic

G.

Arrowsmith-Kron

G. Gwinner

parity and ν 's trinat f xtras

Symmetries: Continuous vs Discrete

 Noether's theorem (1915): Continuous symmetry

Time-translational invariance

Space-translational invariance
Rotational invariance
(Laplace-Runge-Lenz vector)

THE LATE EMMY NOETHER.

Professor Einstein Writes in Appreciation of a Fellow-Mathematician.

To the Editor of The New York Times

In Ted Chiang's "Story of Your Life" aliens think in terms of the action, not position and momentum [Movie "Arrival"] $\,\,
ightarrow\,\,$ Conserved quantity

→ Energy

→ Momentum

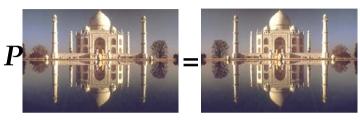
→ Angular momentum
→ name?

gan. In the realm of algebra, in which the most gifted mathematicians have been busy for centuries, she discovered methods which have proved of enormous importance in the development of the present-day younger generation of mathematicians. Pure mathematics is, in its way, the poetry of logical ideas. One socks the most general ideas of operation which will bring together in simple, logical and unified form the largest possible circle of formal relationships. In this effort toward logical beauty spiritual formulae are discovered necessary for the deeper penetration into the laws

Emmy Noether's WONDERFUL THEOREM If under the infinitesimal transformatio $a'^{\mu} = a^{\mu} + \varepsilon \zeta^{\mu} + \varepsilon$ the functional $\Gamma = \int_{a}^{b} L(t, q^{\mu}, \dot{q}^{\mu}) dt$ is both invariant and extremal, then the following conservation law holds: $p_{\mu}\zeta^{\mu} - H\tau = const.$ Revised and Undated Edition DWIGHT E. NEUENSCHWANDER

ullet Discrete symmetries in quantum mechanics: Parity, Time reversal o

of nature.


- Wigner considered implications of P, T symmetry conservation in atomic spectra 1926-28. Showed $\langle T\psi_i, T\psi_f \rangle = \langle \psi_f, \psi_i \rangle^*$
- "In quantum theory, invariance principles permit even further reaching conclusions than in classical mechanics." (D. Gross, Physics Today 48 46 (1995))
- Weyl 1931 considered C, P, T and CPT in "Maxwell-Dirac theory": $C \Rightarrow$ Dirac eq. negative energy states had to have same mass as the e^- plato.stanford.edu
- From "CP Violation Without Strangeness" Khriplovich and Lamoreaux: 1949 Dirac "I do not believe there is any need for physical laws to be invariant under reflections in space and time although the exact laws of nature so far known do have this invariance."

Apr 1956 Asimov "The Dead Past" ν travels backwards in time

- Oct 1956 Lee and Yang proposed P in weak decays to fix the θ - τ puzzle
- Feynman gives Ramsey 50:1 odds ₱ would not be observable Ramsey experiment starting at ORNL gets derailed by fission experiments... it's OK, Ramsey won 1989 Nobel for his fringes
- 1957 3 simultaneous experimental measurements of $P \rightarrow$

Parity (From A. Zee "Fearful Symmetry")

As of 1956, we thought all interactions respected parity Parity operator $\mathbf{P} \ \psi(\vec{r}) \rightarrow \pm \ \psi(-\vec{r})$

1957:

 $\tau - \theta$ Puzzle

+ μ decay

+ μ decay + 60 Co decay \Rightarrow

Preview: Weak interaction breaks parity: Consequences?

Fuller PRD 2003 Forced $m{p} + m{e}^-
ightarrow m{n} +
u$ $m{W}(m{ heta}) = m{1} + rac{\langle m{m}_l \rangle}{l} m{A}_{
u} \cos(m{ heta_{\hat{\mathbf{1}}}})$

B field polarizes p's Need ν_e to include 10^{-8} admixture of $m_{\nu} \sim \text{keV}$ Earthling's amino acids are all left-handed R-(-)-1

Letokhov PLA'75
Darquie CHIRALITY 2010 $\Delta E \sim 10^{14-16} {\rm eV}$ Not Enough for left-handed

bugs to win, so \rightarrow

Spin-polarized SN ν 's could preferentially zap wrong-handed amino acids Finding the right environment for spin-polarized amino acids? e.g.: Astrobiology 18 (2018) Selection of Amino Acid Chirality via ν Interactions with ¹⁴N in $\vec{E} \times \vec{B}$ Fields M.A. Famiano, R.N. Boyd

(TRIUMF EEC 90's)...

Decays: Parity Operation can be simulated by Spin Flip

Under Parity operation P:

⇒ A spin flip corresponds exactly to P reversal Most Decays don't exactly test T-reversal symmetry

u was invented to solve an experimental puzzle

144Sm

144Sm

E_C = 3.183 MeV, always

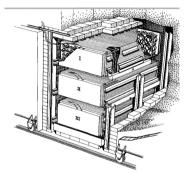
Metther and Hamil 1911, Da

Figure 3.12: The beta spectrum of radium B, obtained by Chadwick and Ellis when they repeated Chadwick's experiment of 1914. Source: Chadwick and Ellis,

1000

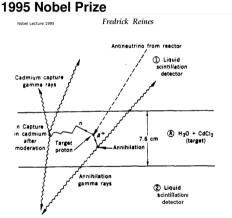
- "Controversy and Consensus: Nuclear β decay 1911-1934" Springer 2000, eds. Hiebert, Knobloch, Scholz (C. Jensen)
 - β decay: A continuous E_e spectrum, not a discrete peak! Meitner and Hahn 1911, Danysz 1913, experimentally resolved:
 - 1915 Noether's theorem
 - 1923 Ellis+Wooster: statistical
 - energy conservation1929 Niels Bohr:
 - sought to power stars...?1930 Pauli postulated a new particle (??!!)

non-conservation of energy (?!)


How to test?

Probability to interact in a detector follows from the neutron decay rate (Bethe and Peierls, Nature **133** 532 (1934); Robson Phys Rev **83** 349 (1951))

1800


Pauli: "I have done a terrible thing... postulated a particle that cannot be detected."

Reactor ν 's: first direct confirmation by "Inverse β decay"

sketch of the equipment used at Savannah River. The

200 liters 4x10⁻⁶ SuperK's

compared to the expected $\sigma_{exp}=(123) imes 10^{-44}~cm^2$ $\sigma_{th}=(5\pm1) imes 10^{-44}~cm^2$

1st plan: put a detector next to a nuclear bomb Pulsed source, get above natural backgrounds © Must calibrate detector well before experiment © Reactor worked better: 1956 Science 124 103 C. Cowan, F. Reines. Harrison, Kruse, McGuire (Los Alamos) They thought they could predict the number to \sim 30%

One experimental discovery of parity violation

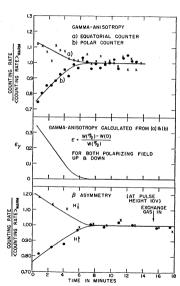
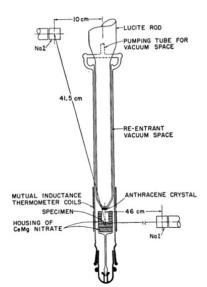



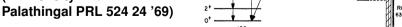
Fig. 2. Gamma anisotropy and beta asymmetry for polarizing field pointing up and pointing down.

Wu. Ambler. Havward. Hopper, Hobson, PR 105 1413 Feb '57 **Dilution Refrigerator to** spin-polarize $^{60}\text{Co} \rightarrow ^{60}\text{Ni} + \beta^- + \bar{\nu}$ $extbf{ extit{W}}[heta] = extbf{1} + extit{ extit{PA}} \hat{ extbf{I}} \cdot rac{ec{oldsymbol{p}_eta}}{oldsymbol{E}_a}$ $= 1 + A \frac{v}{c} \cos[\theta]$ $A_{\beta-} \approx -1.0$ Followup: $^{58}\text{Co}
ightarrow ^{58}\text{Fe} + eta^+ +
u$ $A_{\beta+}>0$

CP conserved?

You said you were going to talk about the ν helicity 10/29

NON-RESONANT

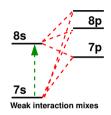

Measure ν helicity $\epsilon = \hat{s}_{\nu} \cdot \hat{k}_{\nu}$ directly: transfer \hat{s}_{ν} to γ circular polarization; boost \vec{k}_{γ} by $\pm \vec{k}_{\nu}$


Phys Rev 109 1015 (Dec 1957)

- \bullet Upward-going ν populates
- $\langle I_z \rangle = 0, +1 \text{ not -1}$
- \bullet So γ is circularly polarized– transmission through magnet depends on iron polarization: $\frac{N_{+}-N_{-}}{N_{-}+N_{-}}$ = 0.017 \pm 0.003

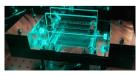
Goldhaber, Grodzins, Sunvar

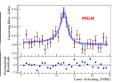
- Upward ν boosts γ momentum so it can be absorbed on-resonance
- $\Rightarrow \nu$ helicity -1 \pm 10%
- (• $\bar{\nu}$ helicity \sim +1

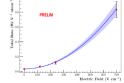


Surprisingly enough, this is the best direct measurement of ν helicity = $\hat{\mathbf{s}}_{\nu} \cdot \hat{\mathbf{k}}_{\nu}$

parity and ν 's trinat f xt




s, p


Claude & Marie-Anne Bouchiat Used in Cs by Wieman. In Fr: $|A_{7s \rightarrow 8s}|^2 = |E1_{Stark} + E1_{PNC} + M1|^2$ $\approx |E1_{stark}|^2 + 2E1_{Stark}E1_{PNC}$ $E1_{PNC} \sim 10^{-9}$ of an allowed E1 transition amplitude By picking an E field one can make the asymmetry $\sim 10^{-3}$ Measurement of $|M1|^2$ with PBC $\sim 10^{-13}$ of an allowed $|E1|^2$

Power buildup cavity UHV $Q \approx 4.000$

T.Hucko, A.Sharma, Kalita, Orozco, Gorelov, Gwinner...

Toh Damitz Tanner Johnson Elliott PRL 2019

74

73.5

72.5

72.7

74.7

75.7

76.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

77.7

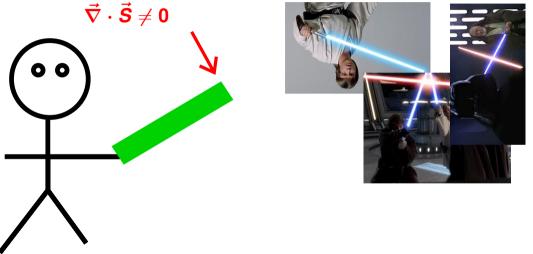
77.7

77.7

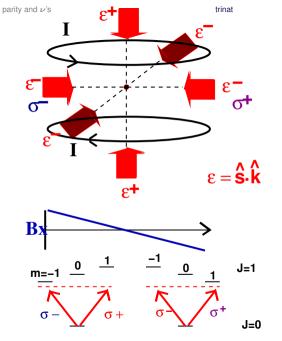
77.7

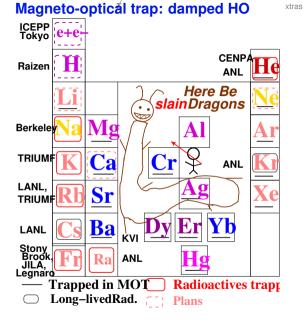
77.7

77.7


Cs: $E1_{PNC} \stackrel{\text{theory}}{\rightarrow} Q_W$ disagrees $\sim 1.5 \ \sigma$ Cs: Asym $\rightarrow E1_{PNC}$ using measured $M1/\beta$ differs from using other observables

- 8% accuracy differentiates between calculations (theory - exp. ~10% in Cs, only other M1 measured)
- Interference (without PBC) will measure $M1/\beta$ better (Goal 2022) M1 Fr/Cs ≈ 3 .


 $extit{M1 Fr/Cs} pprox 3,$ so goal is $extit{M1}/eta$ to deterministic accuracy

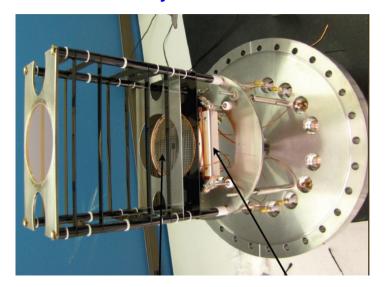

T. Hucko, ACOT 2021

"Light sabers would make atom traps easy" (H. Norton)

But light sabers violate Poynting's theorem

©TRIUMF TRIUMF Neutral Atom trap at ISAC

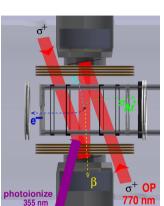
³⁷K 8x10⁷/s

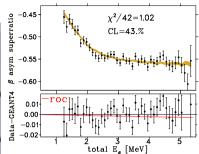

TiC target 1750°C

 $70 \mu A$ protons

main TRIUMF cyclotron 'world's largest' 500 MeV H⁻ (0.5 Tesla)

ion MCP assembly




14 inch CF flange Electrostatic field delay-line anode for position info no stray wires Low-Z (glassy carbon, titanium) to minimize β^+ scattering

Fenker et al. Phys Rev Lett 120, 062502 (2018)

 A_{β} [experiment]= -0.5707 \pm 0.0019

 A_{β} [theory] = -0.5706 \pm 0.0007

Good agreement: only left-handed ν 's and

0.04 - 10 P_P/P_{στ}

0.02 - 10 P_P/P_{στ}

0.00 - 10 P_P/P_{στ}

0.00 - 10 P_P/P_{στ}

π A_p

π α_p+A_p

-0.04

Dependence of the β asymmetry on m_{β}/E_{β} also constrains new physics competing with π decay and LHC p+p \rightarrow e + ν

-0.06-0.04-0.020.00 0.02 0.04 $(C_{G} \equiv C_{G})/C_{H}$

Anholm thesis 2022, arXiv:2509.11502

We want to do 5x better to be competitive

right-handed β^+

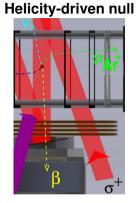
xtras

○ m ,>1.5TeV

m .>2.2TeV

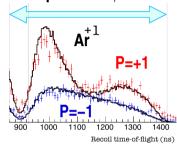
TRIUMF

A spin-polarized angular distribution sensitive to u helicity



leptons can't increase $I_{z \; \rm final}$ If β^+ down, the ν can't go up, unless either β or ν have wrong helicity Any imperfect I_z/I mimics a wrong-handed ν 38 K G.T. $3^+ \rightarrow 2^+$ needs both

If $I_z = I_{\text{initial}}$ and $I_{\text{initial}} = I_{\text{final}}$, the


 ν and β^+ helicities wrong:

would be most direct u helicity measurement

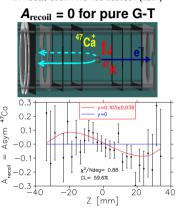
Fenker et al. PRL 2018 A_{β} = -0.5707 \pm 0.001913 in agreement with SM achieved I_z/I = 0.991 \pm 0.001 0.993 to 0.994 in 2024

2014 polarized β -recoil

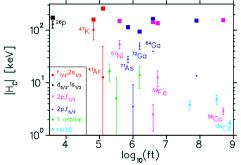
 $u_{
m TOFaxis} = 0$ suppressed. Dip would be deeper with ion MCP position cut or $\cos(heta_{etau})$ determination

$$egin{align} \mathbf{W}(heta, P) &pprox \mathbf{1} + oldsymbol{a}_{
m pol} \cos(heta_{eta
u}) \ oldsymbol{a}_{
m pol} &= rac{oldsymbol{a}_{eta
u} - 2c/3T + PB_
u}{1 + PA_eta + bm/E} \end{split}$$

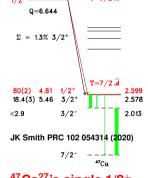
= 1 or 0, independent of $\frac{M_{GI}}{M_{r}}$



Analog-Antianalögisospin mixing in 47 K β^- decay and \mathcal{T}


Measuring *isospin* in $^{47}_{19} K^{28}$ decay determines sensitivity to parity-even *isospin* \mathcal{X} N-N interactions via future $D\vec{l} \cdot \vec{v_{\beta}} \times \vec{v_{\nu}}$.

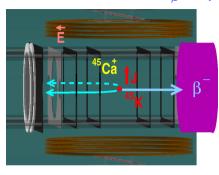
B. Kootte et al. PRC 109 L052501 (2024)



so there's a large M_F

 $I=1/2^{+47} K \beta^{-}$ decay has large:

- ullet $H_{C}=\langlear{\mathcal{A}}|V_{\mathrm{Coul}}|\mathcal{A}
 angle$ = 101 \pm 37 keV
- fraction of $A \bar{A}$ mixing prediction Auerbach, Loc NPA 1027 122521 (2022)



 $^{47}_{20}$ Ca 27 's single 1/2 $^+$ state contains most of the $\bar{\mathcal{A}}$ config

 $y = g_V M_F/g_A M_{GT} = 0.098 \pm 0.037$ large enough to be favorable for D, enhanced by $\sim 10^2$ in isospin-suppressed β decay. Microscopic \mathcal{T} can be deduced from the simple structure.

$\vec{D} \cdot \vec{V}_{\beta} \times \vec{V}_{\nu}$ in atom trap: Features, Systematics

- Collect recoils going into 4 pi with electric field of 1 kV/cm
- Full reconstruction of recoil and beta momenta
- Point source: we know where it is (by sampling photoionization) and it doesn't move when we flip the polarization

D Uncertainties / 100 scaling from Melconian PLB 649 270 (2007)

	$ extbf{\textit{B}}_{ u}$	Improvements	Projected
Cloud position σ^\pm	1.3	$\pm 500 \mu$ m $ ightarrow \pm 20 \mu$ m	0.05
Cloud size/Temp	0.3	""	0.03
MCP Position cal	1.0	DLA+ mask	< 0.1
$\hat{\textbf{\textit{x}}}$ -OP alignment	0.25	Geometry is ot	< 0.02
E field	0.2		< 0.1

ullet Any stray polarization along wrong axis is deadly, a lowest-order fake D: Measure with singles asymmetry for recoils and eta's

Any f decay experiment should answer: Does interaction between outgoing particles mimic time reversal?; Is your experiment better; Have null EDM's

ruled you out?

Entanglement in decays

There exists microscopic true \mathcal{I} in nature! independent of assumptions about QFT, CPT theorem, unitarity...

 BABAR PRL 2012: Entanglement of B meson pairs enables

 $\psi_{ ext{initial}} \leftrightarrow \psi_{ ext{final}}$ also seen in K's KLOE-2 PLB 2023

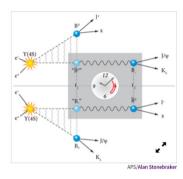
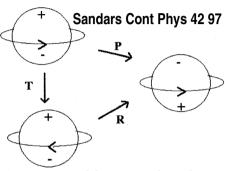


Figure 1: Electron-positron collisions at SLAC produce a $\Upsilon(4s)$ resonance that results in an entangled pair of B mesons. When one meson decays at time t_1 , the identity of the other is "tagged" but not measured specifically. In the top panel, the tagged meson is a " \overline{B}^0 ". This surviving meson decays later at t_2 , encapsulating a time-ordered event, which in this case corresponds to " \overline{B}^0 " $\to B_-$. To study time reversal, the BaBar collaboration compared the rates of decay in one set of events to the rates in the time-reversed pair. In the present case, these would be the " B_- " $\to \overline{B}^0$ events, shown in the bottom panel.

M. Zeller Physics 2012

parity and u's trinat f xtra:

EDM in a fundamental particle breaks T: this is exact


Landau, Nucl. Phys. 3 (1957) p. 127

Electric Dipole moment $\vec{d} = \sum q_i \vec{r_i}$

Since the angular momentum is the only vector in the problem, $\vec{d} = a\vec{J}$

Under
$$T$$
, $\vec{J} \stackrel{t \to -t}{\rightarrow} -\vec{J} \quad \vec{d} \stackrel{t \to -t}{\rightarrow} +\vec{d}$

If the physics is invariant under T, this is a contradiction, $\Rightarrow a = 0$

[• The other logical possibility: there are 2 states, with opposite sign of the EDM, and T just formally changes one state to the other. For most fundamental particles, we know there aren't 2 states Why do we know the electron doesn't have 2 states? E.g. some polar molecules have a dipole moment listed in tables, which produces degenerate states and does not break T ...]

No EDM's have been seen. The \mathcal{T} (and related \mathcal{CP}) seen is in K and B mesons, explained by one standard model parameter

T2K ν oscillations have 3σ evidence for \mathcal{QP} , modelled by a similar complex phase in the ν mass matrix

 $\mathcal{L}P$ discovered in $K\bar{K}$ meson decays in 1963, though not much (Cronin and Fitch Nobel prize 1980)

 $\textit{K}_{\textit{L}}$ decays more often to $\pi^- e^+ \bar{\nu}$ than to $\pi^+ e^- \nu$ by 0.3%.

Quark eigenstates in the weak interaction: Cabibbo explained some weak decays by:

$$|\pmb{u}
angle
ightarrow |\pmb{d}
angle + \epsilon |\pmb{s}
angle \quad \text{i.e.} \quad |\pmb{u}
angle
ightarrow \cos(heta_{\pmb{C}})|\pmb{d}
angle + \sin(heta_{\pmb{C}})|\pmb{s}
angle$$

ightarrow 3x3 unitary "CKM" matrix between $|m{d}
angle, |m{s}
angle, |m{b}
angle$

There is one complex phase, which leads to this type of P
Any 2x2 unitary matrix, one can define away the phase as trivial
Maybe one reason for 3 families of particles?

\mathcal{T} , $\mathcal{C}P$, and everything

CP discovery in $K\bar{K}$ got a paragraph in NY Times

'It's never been tested... a theoretical relationship between time and antimatter' Spock, 1966
Sending the Enterprise back in time 3 days must have needed *CP* well beyond Standard Model ©

Sakharov immediately laid out ways to use *CP* at early times to generate the excess of matter observed in the universe ("everything"), but the known amount makes about a billion times less matter than we see

Evidence for \mathcal{CP} in accelerator ν 's may make more T2K Nature 580 339 (2020)

CPT can also do it (Dolgov Phys Rep 222 309 (1992) also mentions Dine-Affleck topological defects)

7 is related to CP by the "CPT Theorem"

"All local Lorentz invariant QFT's are invariant under CPT" Schwinger Phys Rev 82 914 (1951)

Lüders, Pauli, Bell 1954

Gravity → not flat:
 K meson experiments Adler
 PhysLettB 364 (1995) 239 test
 CPT to within 1000x expected from quantum gravity

Strings not 'local'

Proofs still pursued \rightarrow

Studies in History and Philosophy of Modern Physics 45 (2014) 46-65

Contents lists available at ScienceDirect

Studies in History and Philosophy of Modern Physics

journal homepage: www.elsevier.com/locate/shpsb

On the CPT theorem

Hilary Greaves a.*. Teruji Thomas b.1

a Somerville College, Oxford OX2 6HD, UK b Wolfson College, Oxford OX2 6UD, UK

APTICIE INFO

Article history:
Received 21 December 2012
Received in revised form
25 September 2013
Accepted 7 October 2013
Available online 21 January 2014

Keywords: Quantum field theory CPT theorem Discrete symmetries Spacetime symmetries ARSTRACT

We provide a careful development and rigorous proof of the CPT theorem within the framework of ministream (Lagragaian) quantum filed theory. This is in contrast to the usual rigorous proofs in purely axiomatic frameworks, and non-rigorous proof-sketches in the mainstream approach. We construct the CPT transformation for a general field directly, without appealing to the enumerantee classification of representations, and in a manner that is clearly related to the requirements of our proof. Our approach applies equally in Minkowski spacetimes of any dimension at least three, and is in principle neutral between classification and any control of the control of t

© 2013 Elsevier Ltd. All rights reserved.

When citing this paper, please use the full journal title Studies in History and Philosophy of Modern Physics

Assuming CPT, $CP \Leftrightarrow T$ in most physics theories

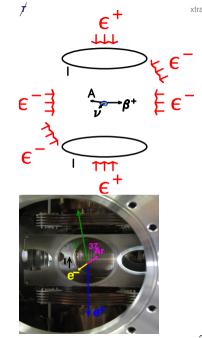
The matter excess then motivates \mathcal{I} searches

parity and u's

ν 's, Fun Sym and Atom Traps

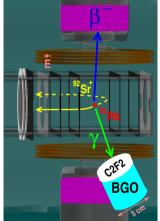
Truth loves its limits, for there it meets the beautiful Rabindranath Tagore, "Fireflies"

Parity P symmetry

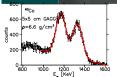

How to test P symmetry experimentally

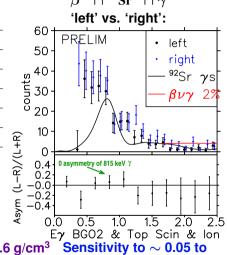
Only left-handed ν so far: how do we know?

- P with TRIUMF Neutral Atom trap for β decay
- P in Francium atoms
- How atom traps work
- 7 experiments


Left out ν mass matrix phase:

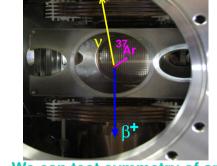
T2K accelerator-produced ν oscillations show nearly 3σ nonzero CP violation

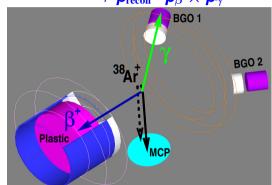

parity and ν 's ytras


'left' vs. 'right': 60000 E_>1 MeV, 900 V/cm 50000 92Sr+1 40000 -- Top *B* Bottom B 30000 20000 Left 10000 Right .60 .62 t ion- t Top β $[\mu s]$ (other γ detector sees

background from upstream)

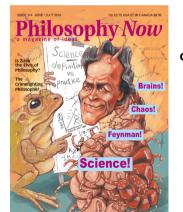
 $BGO \rightarrow GAGG (Ce:Gd_3Al_2Ga_3O_{12})$


- better E_{γ} resolution and timing, ρ = 6.6 g/cm³
- Good photopeak efficiency (55% at 1 MeV)
- not radioactive like LYSO

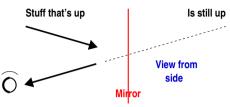

0.10 asymmetries of few percent branches

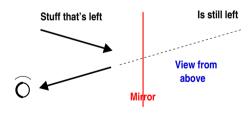
RETRIUMF T correlation of 3 of 4 momenta

$$t
ightarrow -t \Rightarrow \vec{p} \propto rac{d\vec{r}}{dt}
ightarrow -\vec{p}$$
but $\vec{p}_{recoil} \cdot \vec{p}_{eta} imes \vec{p}_{
u} \equiv 0$ \odot


$$ec{m{p}_{
u}}\cdotm{p}_{m{eta}}^{m{\cdot}} imesm{p}_{m{\gamma}}^{m{\cdot}}=-m{ec{p}}_{
m recoil}\cdotm{p}_{m{eta}}^{m{\cdot}} imesm{p}_{m{\gamma}}^{m{\cdot}} \ rac{t
ightarrow-t}{m{p}_{
m recoil}}\cdotm{p}_{m{eta}}^{m{\cdot}} imesm{p}_{m{\gamma}}^{m{\cdot}}$$

- We can test symmetry of apparatus with coincident pairs ©
- Not exact. Outgoing particles interact \rightarrow fake \mathcal{I}


Mirrors are not really reversing x,y,z and are kinda confusing


Plato's
'mirror problem':
"Mirror, Mirror"
T. Wilkinson,
PhilNow 114 (2016)

Plato: Why do mirrors reverse L-R but not U-D? JB: You gotta look at this diagram. See. Up stuff stays Up, and Left stuff stavs Left. Nothing's actually reversing. I'd say your interpretation of 'left' is not quite right 🙂 Plato: 'explains what I'm missing, but still too abstract for JB'

JB thinks Plato and other philosophy is critical to humans, but there's not much deep about mirrors.

