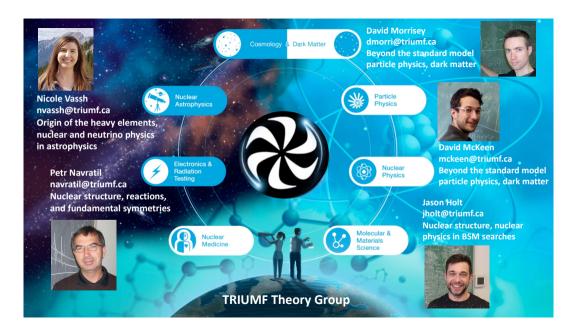
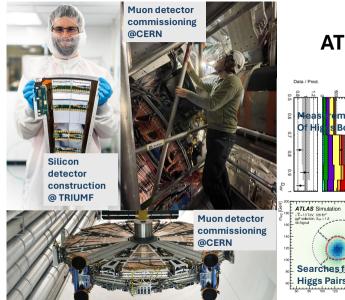
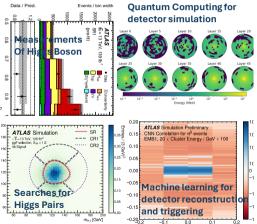

Descendants of Newton's tree

TRIUMF's 2nd director, Erich Vogt (RIP), took apples each year to his 1st-year physics students.

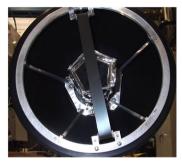



any TRIUMF scientist can be research supervisor. If you see something you like let us know. Call x7333 if you get lost, not 911.

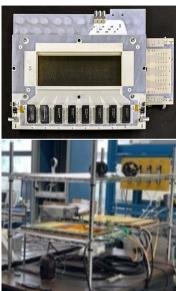
150 UG co-ops/year (you mentor them, they help you...)


TRIUMF scientists teach UG courses at UBC, SFU;

graduate Standard Model Theory, Accel Phys, Nuc Phys available nationwide



ATLAS at the LHC



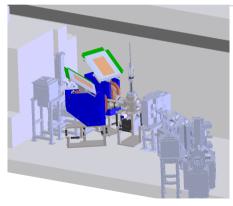
Labs in Main 'Office' Building

2 π β detector \uparrow

 $\begin{array}{l} \text{DarkLight tracking} \\ \text{detector} \rightarrow \end{array}$

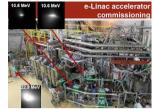
Electronics development ceramic/plastic/specialty machine shop neutron EDM's HV lab liquid Xe detection for PIONEER ($\pi \rightarrow e^- \nu$ PSI) nEXO $\beta\beta 0\nu$ decay \rightarrow SNOLAB

500 MeV Cyclotron


2ndary beams of π , μ , nuclei Biomedical isotopes (⁸²Sr \rightarrow ⁸²Rb for PET)

Why so 'big?' Relativistic $\vec{E} = \vec{v} \times \vec{B}$ dissociates the H⁻ prematurely if B \gtrsim 0.5 Tesla, so the orbits must be big.

e-linac hall (in use today!)


The DarkLight experiment

This new, small experiment is being constructed at the 30 MeV e-linac

DarkLight will use the electron beam to strike a thin metal foil. The produced particles can be used to search for possible new particles beyond the Standard Model!

First data to start late this year

High-brilliance 30 MeV e⁻ beam designed \rightarrow ILC ← Make dark matter particles **Free-Electron Laser** for THz radiation: condensed matter probe Photofission isotopes for nuclear physics

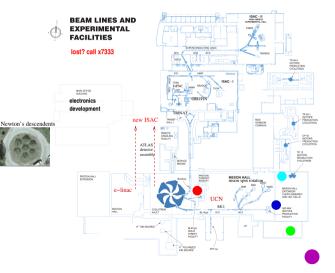
μ spin rotation, ultra-cold neutrons,

$\pi ightarrow e u$ should have final result soon

The concrete shield fasts neutrons from the 500 MeV proton beam.

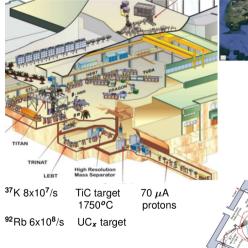
Feynman asked in 1975 'why such a low energy?': To make π and μ in large quantitites μ SR has 1,000 users worldwide, including UBC

Detector Facility Clean Rooms



The LHC's ATLAS tracking detector and muon spectrometer are being built and tested in two cleanrooms. Another has 5-ton crane access and was used for the ATLAS endcap (earlier HERMES e-p collider).

Experiments on- or off-site use these development facilities (reconnected a microwire to TRINAT's silicon detector)

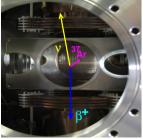

(some of) Life Sciences

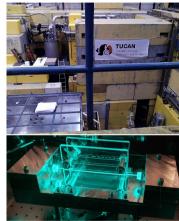
• TR13 sends PET isotopes to UBC hospital by 2 km underground pneumatic tube for diagnostics and research

- Biochemistry hot cells for alpha- and Auger- emitters laser-separated at ISAC
- Developing ²²⁵Ac production from thorium target near 500 MeV beam dump
- Proton therapy cured over 200 eye tumors with 90% success
- Future center under construction: IAMI

500 MeV p \rightarrow ISAC

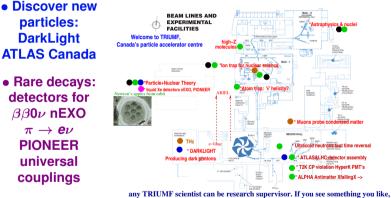
TRIumf Neutral Atom Trap at ISAC main TRIUMF cyclotron 'world's largest' 500 MeV H⁻ (0.5 Tesla)


Nuclear properties, structure, reactions to study strong interaction and for:


Nuclear Astrophysics

Precision Measurement

Precision measurements at TRIUMF



any TRIUMF scientist can be research supervisor. If you see something you like, let <u>us</u> know. Call x7333 if you get lost, not 911.

CKM unitarity (nuclear properties, decays, and reactions) TUCAN neutron EDM *T* Francium trap: \mathcal{P} , new Z''s β decay trap: ν helicity, \mathbf{X} Ion trap for masses High-Z (radioactive) molecules to enhance \mathcal{T} soon T2K $\nu \mathcal{CP}$ develops detectors here

TRIUMF Subatomic, Condensed matter with UBC

 Condensed matter symmetries and probes

let us know. Call x7333 if you get lost, not 911.

 \sim one \bullet per UBC PHAS grad student

• Precision measurement: CKM unitarity (many) $\mathcal{T}, \mathcal{P} \nu$ helicity atom trap Extra Z' Fr atoms **High-Z** radioactive molecules \mathcal{T} soon CP T2K ν osc ATLAS: M_w, curvature of Higgs potential

Nuclear properties, decays, structure and reactions for

- Strong interaction and many-body physics
- Nuclear Astrophysics
- SM corrections to Vud and new interaction searches