Descendants of Newton's tree

Fermilab's 1st director, an amateur sculptor, welded 'Broken Symmetry.' Visible from orbit.

One of TRIUMF's 1st directors, Erich Vogt (RIP), took apples each year to his 1st-year physics students.

Also visible from orbit.

Labs in Main 'Office' Building

Electronics development ceramic/plastic specialty machine shop neutron EDM's HV lab

all stuffed in main office building

500 MeV Cyclotron

The main cyclotron came up after maintenance a couple weeks late in April 2020 to make biomedical isotopes like ⁸²Sr

Why so 'big?' Relativistic $\vec{E} = \vec{v} \times \vec{B}$ dissociates the H⁻ prematurely if B \gtrsim 0.5 Tesla, so the orbits must be big.

e-linac

High-brilliance 30 MeV beam designed to inject high-energy accelerators

Will make photofission isotopes for nuclear physics ~ 2024

Main (Accelerators) Control Room

with **T** mobiles:

The T.A.R.D.I.S. is hidden behind the Enterprise. No worries– it's bigger on the inside.

μ spin rotation, ultra-cold neutrons,

$\pi ightarrow e u$ should have final result soon

All that concrete is to shield fast neutrons from the 500 MeV proton beam. The crane is now rated for 53

tons– the blocks absorbed H_2O

The Governor General of Canada (a Canadian astronaut) is there somewhere. My undergrad was thrilled to meet her.

Ultra-cold neutrons

There have been ultracold (3.5 mK) neutrons at TRIUMF since 2017

Laser-cooled atoms are colder $\odot.$

TRIUMF would like to measure all the EDM's

Detector Facility Clean Rooms

The LHC's ATLAS vertex detector is being assembled at TRIUMF, in one of three cleanrooms. Another has 5-ton crane access and was used for large HERMES detectors and the ATLAS endcap.

Experiments on- or off-site use these development facilities

\sim 100 Undergrads/year

Over 100 sharp co-op undergrad terms/year from across Canada do research and engineering at TRIUMF. Here T2K is assembling/testing 'multi-PMTs' to improve position resolution. ALPHA-g assembled gas TPC nearby. T2K published in Nature April 2020 near-evidence of *CP* in the ν mass mixing matrix TRIUMF would like to help measure other manifestations of *CP* along with all the EDM's

(some of) Life Sciences

• TR13 sends PET isotopes to UBC hospital by 2 km underground pneumatic tube for diagnostics and research

• Biochemistry hot cells for alpha- and Auger- emitters laser-separated at ISAC

• Developing ²²⁵Ac production from thorium target near 500 MeV beam dump

• Proton therapy cured over 200 eye tumors with 90% success

• Future center under construction: IAMI

500 MeV p \rightarrow ISAC

Roughly to scale. The real beamline is longer and aligned better ©.

Nuclear Astrophysics

DRAGON recoil separator measures (p,γ) and $(\alpha,gamma)$ at energies relevant to novae, stars... Both radioactive and stable beams are used you might want to do that.

You can find pictures with a 2nd Canadian astronaut and Mythbusters

Recoil separator insides

It took people-months to polish the titanium for these 200kV deflectors by hand. EMMA did its first nuclear astrophysics experiment ⁸³Rb(p, γ) at ISAC II in 2019.

"Omnis Experientiae Miraculum (GRIFFIN2)"

While TRIUMF artist-in-residence, Blaine Campbell put this in the Vancouver Art Museum. There's a similar piece in the lobby. There are regular events joint with Emily Carr University of Art.

GRIFFIN helps measure V_{ud} and nuclear structure

Laser-polarized beamline

Laser-polarized radiaoactive ion beams do near-surface condensed matter experiments (chat with them about 'spin-echo') test \mathcal{T} in β decay

nuclear ground-state moments

Polarized beamline should be extended to GRIFFIN in \sim 2 years

Traps for β decay, atomic PNC, masses..

You know what atom and ion trap labs look like...

When a different Nobel Prize winner visited TRINAT, he kindly noted dust bunnies in the cleanroom.

new ISAC Fun Phys area

This unused lab space is close enough to run an ISAC low-energy beamline to it

You could put 2 or 3 experiments here

ISAC II Superconducting Linac

near the new Fun Phys area on previous page

There's a lot of cryogenics expertise.

That liquid helium pipe over the walkway maintains the 12 foot height clearance of the rest of this area, the main path to the previous slide.