Discrete symmetries in β decay

- Parity P symmetry How to test P symmetry experimentally Only left-handed ν so far
- There is time-reversal symmetry violation \boldsymbol{J}^{\prime} in nature

There should? be more: 'baryogenesis’
$\boldsymbol{P}, \boldsymbol{X}$ experiments at/with TRIUMF

- TRIUMF Neutral Atom trap (me \odot) $\boldsymbol{\beta}$ decay
- Laser-polarized beamline at TRIUMF
[Non-decays: • ν mixing,
- \boldsymbol{P} in Fr atoms; Searches for electric dipole moments (Kalita);
- Using ultra-cold neutrons;
- hopefully atomic fountain of francium atoms]

Symmetries: Continuous, Discrete

- Noether's theorem (1915):

Continuous symmetry Time-translational invariance

Space-translational invariance Rotational invariance (Laplace-Runqe-Lenz vector) THE LATE EMMY NOETHER.

Profesaor Einatein Writes in Appreola* tion of a Fellow-Mathematician. To the Bditer of Tae New York Time

In Ted Chiang's "Story of Your Life" [Movie "Arrival"]: aliens think in terms of the action, not position and momentum
\rightarrow Conserved quantity Energy

Momentum
Angular momentum name?
gan. In the realm of algebrs, in which
the most gifted mathematicisns bsve been busy for eenturies, she siliscovered methods which have proved of enormous importance in the development of the present-day younger generation of mathamaticians. Pure mathematica is, in its way, the poetry of logical lifeas. One seeks the mogt general ldeas of operation which will bring together in almpla. logical and unifled form the largest posstble circle of formal ralationshipe. In this effort foward logical bearity opirItual formulae are discovered necesasary for the deeper penetration into the lawn of nature.

Historical Ideas about P, T breaking

- Wigner considered implications of \mathbf{P}, \mathbf{T} symmetry conservation in atomic spectra 1926-28. Showed $\left\langle\boldsymbol{T} \psi_{\boldsymbol{i}}, \boldsymbol{T} \psi_{\boldsymbol{f}}\right\rangle=\left\langle\psi_{\boldsymbol{f}}, \psi_{\boldsymbol{i}}\right\rangle^{*}$
"In quantum theory, invariance principles permit even further reaching conclusions than in classical mechanics." (D. Gross, Physics Today 4846 (1995))
- Weyl 1931 considered C, P, T and CPT in "Maxwell-Dirac theory": C \Rightarrow Dirac eq. negative energy states had to have same mass as the \boldsymbol{e}^{-}plato.stanford.edu - From "CP Violation Without Strangeness" Khriplovich and Lamoreaux: 1949 Dirac "I do not believe there is any need for physical laws to be invariant under reflections in space and time although the exact laws of nature so far known do have this invariance."
- 1956 Lee and Yang proposed P in weak decays to fix the $\theta-\tau$ puzzle
- Feynman gives Ramsey 50:1 odds P would not be observable Ramsey experiment starting at ORNL gets derailed by fission experiments... it's OK, Ramsey won 1989 Nobel for his fringes
$\bullet 19573$ simultaneous experimental measurements of $P \rightarrow$

Parity (From A. Zee "Fearful Symmetry")

As of 1956, we thought all interactions respected parity
Parity operator
$\boldsymbol{P} \psi(\vec{r}) \rightarrow \pm \psi(-\vec{r})$

1957:

$\tau-\theta$ Puzzle
$+\mu$ decay
$+{ }^{60} \mathrm{Co}$ decay \Rightarrow

Decays: Parity Operation can be simulated by Spin Flip

 Under Parity operation P :$$
\overrightarrow{\mathbf{r}} \rightarrow-\overrightarrow{\mathbf{r}} \quad \overrightarrow{\mathbf{p}} \sim \frac{\mathrm{d} \mathbf{r}}{\mathrm{dt}} \rightarrow-\overrightarrow{\mathbf{p}} \quad \overrightarrow{\mathbf{J}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \rightarrow+\overrightarrow{\mathbf{J}}
$$

\Rightarrow A spin flip corresponds exactly to P reversal Decays don't exactly test \boldsymbol{T}-reversal symmetry

䨤 One experimental discovery of parity violation

Wu, Ambler, Hayward, Hopper, Hobson, PR 1051413 Feb '57
Dilution Refrigerator to spin-polarize
${ }^{60} \mathrm{Co} \rightarrow{ }^{60} \mathrm{Ni}+\beta^{-}+\bar{\nu}$
$W[\theta]=1+P A \hat{\mathbf{I}} \cdot \frac{\overrightarrow{\boldsymbol{p}_{\beta}}}{E_{\beta}}$
$=1+A \frac{v}{c} \cos [\theta]$
$A_{\beta-} \approx-1.0$
Followup:
${ }^{58} \mathrm{Co} \rightarrow{ }^{58} \mathrm{Fe}+\beta^{+}+\nu$
$\boldsymbol{A}_{\beta+}>0$
CP conserved?

Measure ν helicity: transfer to γ circular polarization

Goldhaber, Grodzins, Sunyar Phys Rev 1091015 (Dec 1957)

- Upward-going ν populates

$$
\left\langle I_{z}\right\rangle=0,+1 \text { not }-1
$$

- So γ is circularly polarizedtransmission through magnet depends on iron polarization: $\frac{N_{+}-N_{-}}{N_{+}+N_{-}}=0.017 \pm 0.003$
- Upward ν boosts γ momentum so it can be absorbed on-resonance $\Rightarrow \nu$ helicity $-1 \pm 10 \%$
($\bullet \bar{\nu}$ helicity $\sim+1$
Palathingal PRL 52424 '69)

退tRIUMF Physics and time reversal

 When $t \rightarrow-t$, does anything change?- Wave Equ. is 2nd-order in $t: \nabla^{2} u=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}$ symmetric in t - Heat Equ. is 1 st-order in $t: \nabla^{2} u=-\frac{\partial u}{\partial t} \quad t \rightarrow-t$, boom? 'Dissipation', like friction... The arrow of time remains a research problem in stat mech, but it's not from (known) particle physics
- Schroedinger Equation is 1st order: $i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}$ 'Take the complex conjugate'
(but see Dressel et al. PRL 119220507 (2017)
"Arrow of Time for Continuous Quantum Measurements")
Microscopic phvsics was thouaht to be symmetric in t

Simulating \bar{X} in decays?

We've constructed an angular correlation, a scalar observable, by a dot product of two vectors
$1+\hat{p} \cdot \hat{\jmath}$
which is odd under P as we need
(\vec{p} is even, $\vec{J}=\vec{r} \times \vec{p}$ is odd)
But \vec{J} is odd under T, not even
So we need at least 3 vectors to have a T-odd scalar observable, the scalar triple product $\overrightarrow{v 1} \cdot(\overrightarrow{v 2} \times \overrightarrow{v 3})$
An example \rightarrow

良triumf \boldsymbol{X} correlation of 3 of 4 momenta
$\mathbf{t} \rightarrow \mathbf{t} \Rightarrow \overrightarrow{\mathbf{p}} \propto \stackrel{\mathrm{dr}}{\mathrm{dt}} \rightarrow-\overrightarrow{\mathbf{p}}$
but $\vec{p}_{\text {recoil }} \cdot \overrightarrow{p_{\beta}} \times \overrightarrow{p_{\nu}} \equiv 0$:

$\overrightarrow{\boldsymbol{p}_{\nu}} \cdot \overrightarrow{\boldsymbol{p}_{\beta}} \times \overrightarrow{\boldsymbol{p}_{\gamma}}=-\overrightarrow{\boldsymbol{p}_{\text {recoil }}} \cdot \overrightarrow{\boldsymbol{p}_{\beta}} \times \overrightarrow{\boldsymbol{p}_{\gamma}}$
$\xrightarrow{t \rightarrow-t} \overrightarrow{\boldsymbol{p}}_{\text {recoil }} \cdot \overrightarrow{\boldsymbol{p}_{\beta}} \times \overrightarrow{\boldsymbol{p}_{\gamma}}$

We can test symmetry of apparatus with coincident pairs (3)

- Not exact. Outgoing particles interact \rightarrow fake \boldsymbol{X}

EDM in a fundamental particle breaks T : this is exact

Landau, Nucl. Phys. 3 (1957) p. 127
Electric Dipole moment $\vec{d}=\sum \boldsymbol{q}_{i} \vec{r}_{i}$
Since the angular momentum is the only vector in the problem, $\vec{d}=a \vec{J}$ Under $T, \vec{J} \xrightarrow{t \rightarrow-t}-\vec{J} \quad \vec{d} \xrightarrow{t \rightarrow-t}+\vec{d}$ If the physics is invariant under T, this is a contradiction, $\Rightarrow a=0$

[• The other logical possibility: there are 2 states, with opposite sign of the EDM, and T just formally changes one state to the other. For most fundamental particles, we know there aren't 2 states Why do we know the electron doesn't have 2 states?
E.g. some polar molecules have a dipole moment listed in tables, which produces degenerate states and does not break T...]

良TRIUMF Parity broken, why not Time?

Immediately after Parity was seen to be totally broken in β decay (' ν left-handed')
Wu, Ambler, Hayward, Hopper, Hobson, PR 105 (1957) 1413
Many T-odd observables were proposed:
PHYSICAL REVIEW VOLUME 106, NUMBER
Possible Tests of Time Reversal Invariance in Beta Decay
J. D. Jackson,* S. B. Treiman, and H. W. Wyld, Jr.

Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received January 28, 1957)

Need scalar triple products of 3 vectors: observables involving spin
D $\hat{\boldsymbol{J}} \cdot \frac{\overrightarrow{p_{\beta}}}{E_{\beta}} \times \frac{\overrightarrow{p_{\nu}}}{E_{\beta}} \quad \boldsymbol{R} \vec{\sigma}_{\beta} \cdot \hat{\mathbf{J}} \times \frac{\overrightarrow{\mathrm{p}}_{\beta}}{E_{\beta}} \quad$ TRINAT has D ideas are consistent with $\bar{X}<\mathbf{0 . 0 0 1}$
(We're looking for \bar{X} that could still be big:) but some has been found \rightarrow

Possible Tests of Time Reversal Invariance in Beta Decay

J. D. Jackson,* S. B. Treiman, and H. W. Wyld, Jr. Palmer Physical Laboratory, Princeton University, Princeton, New Jersey
(Received January 28, 1957)

CP discovered in $K \bar{K}$ meson decays in 1963, though not much (Cronin and Fitch Nobel prize 1980)
Quark eigenstates in the weak interaction:
To explain some weak decays,

$$
|\boldsymbol{u}\rangle \rightarrow|d\rangle+\epsilon|\boldsymbol{s}\rangle \quad \text { i.e. } \quad|\boldsymbol{u}\rangle \rightarrow \cos \left(\theta_{c}\right)|d\rangle+\sin \left(\theta_{c}\right)|\boldsymbol{s}\rangle
$$

For 3 families of particles,
$\rightarrow 3 \times 3$ unitary "CKM" matrix between $|d\rangle,|s\rangle,|b\rangle$
There is one complex phase, which leads to this type of CP
A reason for 3 generations of particles?

That one phase is consistent with $C P$ in $K \bar{K}$ and $B \bar{B}$ systems There have been hints in $K \bar{K}$ and $B \bar{B}$ of more $C P$ than in the standard model,

$p \bar{p} \rightarrow \mu^{+} \mu^{+}$or $\mu^{-} \mu^{-} C P$ at 3.6σ Abazov PRD 2014 Fermilab; so this 2001 cartoon was a little premature \rightarrow
J. Faberge. (ER.V Courter 6, No 10. 193 (October 1966). [Courtesy of Madame Faberge.]
T2K ν_{μ} oscillations different from $\overline{\nu_{\mu}}$ at 2 to 3σ Nature 580 339 (2020)
CP could have some utility for cosmoloav \rightarrow

The excess of matter over antimatter can come from CP
Sakharov JETP Lett 524 (1967) used CP to generate the universe's excess of matter over antimatter:

- CP,
- baryon nonconservation, and
- nonequilibrium.

But known CP is too small by 10^{10}, so 'we' need more to exist. Caveats:

- You could use CPT [Dolgov Phys Rep 222 (1992) 309]
- We need CP in the early universe, not necessarily now So we look for more CP. How is this related to \bar{T} ?
this seems a little abstract concrete demonstrative example from Ramsey-Musolf at INT this week CP explaining T2K's ν vs. $\bar{\nu}$ result lets heavy N decay this way in some models

Neutrinos and the Origin of Matter

- Heavy neutrinos decay out of equilibrium in early universe
- Majorana neutrinos can decay to particles and antiparticles
- Rates can be slightly different (CP violation)

$$
\Gamma(N \rightarrow \ell H) \neq \Gamma\left(N \rightarrow \bar{\ell} H^{*}\right)
$$

- Resulting excess of leptons over anti-leptons partially converted into excess of quarks over anti-quarks bv Standard Model sphalerons

$\overline{\text { is }}$ is related to CP by the "CPT Theorem"

"All local Lorentz invariant QFT's are invariant under CPT" Schwinger Phys Rev 82914 (1951)

Lüders, Pauli, Bell 1954

- Gravity \rightarrow not flat: K meson experiments Adler PhysLettB 364 (1995) 239 test CPT to within 1000 x expected from quantum gravity - Strings not 'local' Proofs still pursued \rightarrow

Studies in History and Philosophy of Modern Physics 45 (2014) 46-65

ARTICLEINFO
ABSTRACT
Article history:
Received 21 December 2012
Received in revised form
25 september 2013
Accepted 7 October 2013
Available online 21 January 2014
Keyword:
Quanturn field theory
CPT theorem
Discrete symme
Discrete symmetries
Spacetime symmetries

When citing this paper, please use the full journal title Studies in History and Philosoply of Modem Physics Assuming CPT, CP \Leftrightarrow T' in most physics theories The matter excess then motivates \boldsymbol{X} searches

郞TRIUMF

- $\boldsymbol{\beta}$, recoil nucleus
- shakeoff \boldsymbol{e}^{-}for TOF trigger

The decay pattern shown on the right is helicity-forbidden if the ν goes straight up

ion MCP assembly

14 inch CF flange
Electrostatic field delay-line anode for position info
no stray wires
Low-Z (glassy carbon, titanium) to minimize β^{+} scattering

Fenker et al. Phys Rev Lett 120, 062502 (2018)
$\boldsymbol{A}_{\boldsymbol{\beta}}[$ experiment] $=$ - 0.5707 ± 0.0019
$\boldsymbol{A}_{\beta}[$ theory] $=$ -0.5706 ± 0.0007

The best fractional accuracy achieved in nuclear or neutron β decay

Whexsim Still no wrong-handed ν 's 发triump

Extra W^{\prime} with heavier mass, couples to wrong-handed ν_{R}

LHC $M_{W}^{\prime}>3.7 \mathrm{TeV}$ 90\%

悹tRIUMF The nucleon: a special place for γ 's

S.M. interactions combined in the nucleon:

Harvey Hill Hill PRL 2007 Gardner He PRD 2013

Interference with S.M. β decay 'vector current' gives $\beta \nu \gamma$ decay contribution with the scalar triple product we want:
$\left|\mathcal{M}_{c 5}\right|^{2} \propto \frac{\operatorname{Im}\left(c_{5} g_{v}\right)}{M^{2}} \frac{E_{e}}{p_{e} k}\left(\overrightarrow{p_{e}} \times \overrightarrow{k_{\gamma}}\right) \cdot \overrightarrow{\boldsymbol{p}_{\nu}}$

\bar{T} needs new physics with scale $M \sim \mathrm{MeV}$

- This source of \bar{X} scales with $p_{\text {lepton }}^{2}$, so is $\sim 10^{\mathbf{2}}$ larger in ${ }^{37} \mathrm{~K}$ decay than neutron
- Direct constraint from $\mathrm{n} \rightarrow \mathrm{p} \beta \nu \gamma$ branch $\propto\left|c_{5}\right|^{2}$ Bales PRL 2016: $3.4 \pm 0.2 \times 10^{-3}$ (theory 3.1×10^{-3})

$$
\Rightarrow \frac{\operatorname{Im}\left(c_{5}\right)}{M^{2}} \leq 8 \mathrm{MeV}^{-2} \Rightarrow{ }^{37} \mathrm{~K} \bar{X}^{\prime} \text { asym can still be } \sim 1 \text {;) }
$$

息TRIUMF \quad X test with ${ }^{92} \mathrm{Rb} 0^{-} \rightarrow{ }^{92} \mathrm{Sr} \mathrm{O}^{+}+\beta^{-} \nu \gamma$

BGO \rightarrow GAGG (Ce: $\mathrm{Gd}_{3} \mathrm{Al}_{2} \mathrm{Ga}_{3} \mathrm{O}_{12}$)

ج⿱丷天心trium Laser－Polarized beam at TRIUMF／ISAC

C．D．P．Levy et al．／Nuclear Physics A 746 （2004）206c－209c

－50－70\％polarization， 20－50\％efficient Re－stripped＋1 beam deliverable to several beamlines
－Used for aligned ${ }^{20} \mathrm{Na} \beta$ correlation（2nd－class current comparison with ${ }^{20}$ F）K．Minamisono PRC 84055501 （2011）
${ }^{8}$ Li R，Jiro Murata，Rikkyo U．
TRV possibilities include ${ }^{36} \mathrm{~K} E$ and ${ }^{20} \mathrm{Na} \beta$－delayed α energy shift（Clifford PRL 50 （1983）23）

Mott scattering Time reversal Violation progress

$R \vec{\sigma}_{\beta} \cdot \hat{\mathbf{J}} \times \overrightarrow{\mathbf{v}}_{\beta} \xrightarrow{t \rightarrow-t}$ $-\boldsymbol{R} \vec{\sigma}_{\beta} \cdot \hat{\mathbf{J}} \times \overrightarrow{\mathbf{v}}_{\beta}$
Totsuka et al Phys Part Nuclei 45244 (2014)
Small false asymmetry in rectangular geometry
\rightarrow a more symmetric cylindrical geometry, finished data-taking Dec 2017

Discrete symmetries in β decay

- Parity P symmetry How to test P symmetry experimentally Only left-handed ν so far
- There is time-reversal symmetry violation \boldsymbol{J}^{\prime} in nature

There should? be more: 'baryogenesis’
$\boldsymbol{P}, \boldsymbol{X}$ experiments at/with TRIUMF

- TRIUMF Neutral Atom trap (me \odot) $\boldsymbol{\beta}$ decay
- Laser-polarized beamline at TRIUMF
[Non-decays: • ν mixing,
- \boldsymbol{P} in Fr atoms; Searches for electric dipole moments (Kalita);
- Using ultra-cold neutrons;
- hopefully atomic fountain of francium atoms]

脳 Weak interaction: same strength, all nuclei?

Hayen and Severijns, arXiv:1906.09870 (June 2019)

Deduced $V_{u d}$ from mirror decays
Are people overestimating their uncertainties? We aren't ()

We project to reach 0.0005 accuracy, as good as any $\mathrm{O}^{+} \rightarrow \mathrm{O}^{+}$except ${ }^{26 m} \mathrm{Al}$.

Assumes 5\% isospin breaking calculation.

Simulations: E_{γ} signature and backgrounds

\bullet Classical bremsstrahlung $\propto 1 / E_{\gamma}$

- Any time-reversal violating interaction involves
β, ν and $\gamma \Rightarrow$ 4-body phase space $\propto E_{\gamma}\left(Q-E_{\gamma}\right)^{3}$ Bernard PLB 593 (2004)

We are concentrating on:

- $E_{\gamma}>511 \mathrm{keV}$
- the β^{+}in the opposite detector

Magneto-optical trap: perturb atoms

What elements can be laser cooled?

亣triumf TRlumf Neutral Atom trap at ISAC

main TRIUMF cyclotron
'world's largest'
$500 \mathrm{MeV} \mathrm{H}^{-}$(0.5 Tesla)
$\begin{array}{ccc}{ }^{37} \mathrm{~K} 8 \times 10^{7} / \mathrm{s} & \mathrm{TiC} \text { target } & 70 \mu \mathrm{~A} \\ & 1750^{\circ} \mathrm{C} & \text { protons }\end{array}$

㓪TRIUMF TRINAT plan view

- Isotope/lsomer selective - Avoid untrapped atom background with 2nd trap
- 75\% transfer
$\bullet 0.7 \mathrm{~mm}$ cloud for $\beta-\mathrm{Ar}^{+} \rightarrow \nu$ momentum

\bullet Spin-polarized $99.1 \pm 0.1 \%$

Neutralizer and Collection trap

发TRIUMF TRINAT lab: "tabletop experiment"

发TRIUMF Optical pumping and probing ${ }^{37} \mathrm{~K}$.

Photoionize 1\%
in situ probe
$P_{+}=+0.9913(8)$
$P_{-}=-0.9912(9)$
Fenker NJP 2016

Preview: Weak interaction breaks parity: Consequences?

IGR J11014-6103
$\mathrm{v}=0.01 \mathrm{c}$
Fuller PRD 2003
Forced $\boldsymbol{p}+\boldsymbol{e}^{-} \rightarrow \boldsymbol{n}+\boldsymbol{\nu}$ $W(\theta)=1+\frac{\left\langle m_{I}\right\rangle}{I} A_{\nu} \cos \left(\theta_{\hat{\mathrm{I}}}\right)$ B field polarizes \boldsymbol{p} 's Need ν_{e} to include 10^{-8} admixture of $\boldsymbol{m}_{\nu} \sim \mathrm{keV}$

Earthling's amino acids are all left-handed

Letokhov PLA'75
Darquie CHIRALITY 2010
$\Delta E \sim 10^{14-16} \mathrm{eV}$
Not Enough for left-handed
bugs to win, so \rightarrow

Spin-polarized SN $\boldsymbol{\nu}$'s could preferentially zap wrong-handed amino acids Finding the right environment for spin-polarized amino acids? e.g. :
Astrobiology 18 (2018) Selection of Amino Acid Chirality via ν Interactions with ${ }^{14} \mathrm{~N}$ in $\overrightarrow{\boldsymbol{E}} \times \overrightarrow{\boldsymbol{B}}$ Fields M.A. Famiano, R.N. Boyd (TRIUMF EEC 90's)...

