Electric Dipole Moment searches using atoms, neutrons and molecules:

State of the art and new directions using rare isotopes

Florian Kuchler – TRIUMF, June 2020

- Fundamental symmetries and the Standard Model (SM)
- Electric dipole moments (EDMs) in the SM and new physics reach
- ➤ EDM experiments:
 - History, overview and measurement technique
 - State-of-the-art: xenon, neutron
- Fundamental symmetry tests with rare isotopes
 - State-of-the-art: radium, ThO (electron EDM)
 - New directions

Feynman (following Weyl)

"A thing is symmetrical if one can subject it to a certain operation and it appears exactly the same after the operation."

R. P. Feynman, R. B. Leighton, M. Sands, The Feynman lectures on physics, Addison-Wesley, 1965

Energy conservation Momentum conservation Angular momentum conservation

We do like symmetries, but it turned out to be more complicated...

A history of testing fundamental symmetries

1956/57

ONSERVED 1956

Parity violation in weak interaction \rightarrow Lee & Yang Nobel Prize in 1957

1964

2001

2020

C and P violation in meson decay

 \rightarrow Cronin & Fitch Nobel Prize 1980

CP violation in kaon decay

Lee, Phys. Rev. 104, 254 (1956) Wu, Phys. Rev. 105, 1413 (1957)

Garwin, Phys. Rev. 105, 1415 (1957)

Mirror plane

Mirror-reversed

Origina

CP violation in B meson decay

Aubert, Phys. Rev. Lett. 86, 2515 (2001) Abe, Phys. Rev. Lett. 87, 091802 (2001)

Christenson, Phys. Rev. Lett. 13, 138 (1964)

Direct **T** violation observed in B⁰ meson system Lee, Phys. Rev. Lett. **109**, 211801 (2012)

CP violation in strange B meson decays

Neutrino/anitneutrino discrepancies

Aaij, Phys. Rev. Lett. 110, 221601 (2014)

CP violation in D meson decays

Aaij, Phys. Rev. Lett. 122, 211803 (2019)

Abe (T2K), Nature 580, 7803 (2020) Indication of **CP violation in lepton sector**

F. Kuchler – TRIUMF, June 2020

Weak interaction maximally breaks parity and violates CP symmetry: **CKM matrix** accounts for CP violation through phase δ :

$$V_{\rm CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Experiments: $\theta_{12} = 13.04 \pm 0.05^{\circ}$ $\theta_{13} = 0.201 \pm 0.011^{\circ}$ $c_{ij} = \cos \theta_{ij}$ $\theta_{23} = 2.38 \pm 0.06^{\circ}$ $\delta = 1.20 \pm 0.08$ rad $s_{ij} = \sin \theta_{ij}$ **CPT** theorem

- CPT symmetry is conserved (required for local Lorentz invariance of quantum field theories)
 → T violation = CP violation
- Experimental tests compare matter vs antimatter and so far confirm CPT conservation (e.g. ATRAP, BASE, ALPHA, ASACUSA, GBAR)

Θ-term in QCD

$$\mathcal{L}_{\theta}^{\text{CPV}} = \theta \frac{g_s^2}{32\pi^2} \epsilon^{\mu\alpha\beta} G^a_{\mu\nu} G^a_{\alpha\beta}$$

F. Kuchler – TRIUMF, June 2020

Physics beyond the SM required to solve remaining puzzles, e.g. the nature of dark matter and dark energy

 \rightarrow Search for new particles and interactions

The mystery of the missing antimatter

Baryon-to-photon ratio:

 $\frac{n_B - n_{\bar{B}}}{n_{\gamma}}$

Dine, Rev. Mod. Phys. **76**, 1 (2003) locco et al, Phys. Rep. **472**, 1 (2009)

CMB/BBN SM expectation $= 6.15 \times 10^{-10} \approx 10^{-18}$

Sakharov criteria:

Sakharov, Pisma Zh.Eksp.Teor.Fiz. 5, 32 (1967)

Baryon number violation
 → Sphaleron processes at
 extreme temperatures

 2) Out of thermal equilibrium
 → first order phase transition in Early Universe

3) C and CP violation \rightarrow not sufficient in SM

P-, CP violation and Electric Dipole Moments

Electric dipole moment	
$\vec{d} = \int \vec{r} \rho_{\rm q} d^3 r = d \frac{\langle \vec{J} \rangle}{J}$	

Note: EDM points along total angular momentum vector (or spin) \rightarrow use systems with J \neq 0

Hamiltonian

EDMs are a sensitive direct probe of new physics ("flavour-diagonal")

Invariant under P only if d=0

Many new physics models require larger EDMs \rightarrow Even zero results strongly constrains new physics models

Khriplovich, "CP violation without strangeness", Springer (1997) Chupp, Rev. Mod. Phys. **91**, 015001 (2019) PTMagnetic fieldB+-Electric fieldE-+Angular momentumJ+-B.J+++E.J--

F. Kuchler – TRIUMF, June 2020

Scale of EDM sensitivity: Neutron EDM limit

F. Kuchler – TRIUMF, June 2020

CKM matrix

EDMs generated only at higher loop levels \rightarrow Contribution to nEDM from CKM:

 $d_n^{CKM} \sim 10^{-32} \ e \mathrm{cm}$

Θ-term in QCD

Neutron EDM result constrains CP violation in strong interactions

$$d_n^{\text{QCD}} \sim \bar{\theta} \cdot (6 \times 10^{-17}) \ e \text{cm} \Longrightarrow |\bar{\theta}| < 10^{-10}$$

unnaturally small - "Strong CP problem"

 \rightarrow introducing a new particle to restore naturalness: axions

Khriplovich, Phys. Lett. B **109**, 490 (1982) Pospelov, Annals Phys. **318**, 119 (2005)

Peccei, Phys. Rev. Lett. 38, 1440 (1977)

Impact of EDM results and energy reach

Typical EDM sensitivities Typical energy shifts $10^{-26} \text{ ecm} - 10^{-29} \text{ ecm}$ $10^{-18} \text{ eV} - 10^{-25} \text{ eV}$

High energy frontier

10¹²-10¹³ eV

 \rightarrow no signs of new physics at highest energies (yet)

Probing physics at the intensity/precision frontier:

Energy reach of EDM searches

DeMille, Science 357, 990-994 (2017)

F. Kuchler – TRIUMF, June 2020

Electron EDM probes new particles of mass M

 \rightarrow limit of $|d_e| < 10^{-28}$ ecm implies M \geq 1-2 TeV

nature

NEWS · 19 JUNE 2020

CERN makes bold push to build €21-billion super-collider $16 \text{ TeV} \rightarrow 100 \text{ TeV}$

European particle-physics lab will pursue a 100-kilometre machine to uncover the Higgs boson's secrets – but it doesn't yet have the funds.

Subscribe

History of EDM searches and Standar Model predictions

CP violation sources in different systems

Each system is sensitive to other underlying sources of CP violation:

Measured EDM limit yields constraints on CP odd sources:

- 1) **Sole source** under assumption of each contribution being the limiting one
- 2) Global analysis combination of experimental EDM limits

Chupp, Phys. Rev. C 91, 035502 (2015)

"Fundamental" level

- EDMs of electrons, quarks
- CP odd interactions
 - electron-quark
 - quark-quark
 - gluon-gluon(-gluon)
- Chromo EDM (quark-gluon)

Nuclear level

CP odd nuclear moments:

- magnetic quadrupole moment (MQM)
- Schiff moment

Schiff's theorem:EDM of a nucleus is perfectly
shielded by atomic electron cloud
 \rightarrow no nuclear EDM observable!

Finite size and relativistic effects

 \rightarrow nuclear Schiff moment (P, T odd) induces observable atomic EDM

e.g. for unpaired nucleon (I=1/2; L=0):
$$S\propto \left(r_{
m ext}^2-r_{
m q}^2
ight)\propto A^{2/3}$$

Schiff, Phys. Rev. **132**, 2194 (1963) Sandars, Phys. Lett. **14**, 194 (1965) Spin precession perpendicular to ultra-low magnetic (1 μ T) and high electric fields (~ 10 kV/cm)

e.g. polarized sample of F = S = ½ $\Delta \omega = \omega^{\uparrow\uparrow} - \omega^{\uparrow\downarrow} = \frac{4d|E|}{\hbar} + \gamma \delta B$

e.g. for ¹²⁹Xe: $d \approx 10^{-27} \,\mathrm{ecm} \Longleftrightarrow \sigma_{\nu} \approx 10 \,\mathrm{nHz} \Longleftrightarrow \delta B \approx 0.1 \,\mathrm{fT}$

- \rightarrow 10 nHz = one turn every three years
- → Systematics arise from magnetic field variations correlated with electric field reversal

Fundamental sensitivity of EDM searches

	Atoms (e.g. ¹²⁹ Xe)	Ultracold neutrons	Molecules (eEDM)			
	$\sigma_{\rm EDM} = \frac{\hbar}{2E} \frac{\epsilon}{\tau^{3/2} S}$	$\sigma_{\rm EDM} = \frac{\hbar}{2\alpha E \tau \sqrt{N}}$	$\sigma_{\rm EDM} = \frac{\hbar}{2E\tau\sqrt{N}}$			
Fundamental	ϵ Noise density	α Visibility	E E-field amplitude			
Sensitivity	S Signal amplitude	E E-field amplitude	au Coherence time			
	E E-field amplitude	au Coherence time	N Number of molecules detected			
	au Coherence time	N Number of neutrons detected				
Source	gas cylinder	turbine/ superfluid He/solid D2	cold (beam) ultracold (trap)			
Temperature	RT	3.5 mK	~K <mk< th=""></mk<>			
Electric field	~10 kV/cm	~10 kV/cm	~10- 100 GV/cm			
Coherence time	~5000 s	~100 s	~1 ms ~1 s			
Number	>10 ^{16*}	~104	~10 ⁵ ~10 ³ -10 ⁴			

* external detection of precessing magnetization

F. Kuchler – TRIUMF, June 2020

HeXeEDM

New Limit on the Permanent Electric Dipole Moment of 129 Xe Using 3 He Comagnetometry and SQUID Detection

FK, Hyperfine Interact **237**, 95 (2016) Sachdeva, Phys. Rev. Lett. **123**, 143003 (2019) Terrano, Phys. Rev. A **100**, 012502 (2019)

HeXeEDM setup at PTB Berlin

HeXeEDM: Experimental setup

• ³He comagnetometer cancels deviations in magnetic field in corrected frequency ω_{d}

$$\omega_{\mathrm{d}} = \omega_{\mathrm{Xe}} - rac{\gamma_{\mathrm{Xe}}}{\gamma_{\mathrm{He}}} \omega_{\mathrm{He}}$$

- High performance magnetical shield
- SQUID detection with noise < 10 fT/sqrt(Hz)•
- HV up to ± -6 kV ٠ (2.7-3.2 kV/cm)
- $T_2^* \sim 3700-8000 \text{ s}$ for both species

HeXeEDM at TU Munich/FRM-2

Altarev et al, Rev. Sci. Instr. 85, 075106 (2014)

First precession signals!

- Polarized xenon from liquid xenon EDM lab across campus (~1 km drive)
- Polarized ³He supply via elevator

Test runs and systematics studies:

- Electric field breakdown
- Simultaneous spin-exchange optical pumping of ¹²⁹Xe and ³He (directly pumping Rb)
- Transport of polarized gas
- Interaction of highly polarized species

Students: Eva Kraegeloh, Jonas Meindl Jakob Egge, Lorenz Emberger

HeXeEDM at PTB Berlin: Result and systematics

Munich MSR moved to ILL for PanEDM \rightarrow EDM runs at PTB Berlin:

7 layer BMSR-II:

$$\begin{split} |B| &< 0.8 \text{ nT } (8 \ \mu\text{G}) \\ |\delta B| &< 0.4 \text{ nT/m} (4 \ \mu\text{G/m}) \\ \text{SF:} \quad 75000 \text{ below } 0.1 \text{ Hz} \\ & 10^8 \text{ above } 6 \text{ Hz} \end{split}$$

TABLE I. Summary of EDM results and systematic effects discussed in the text.

	2017 (e cm)	2018 (e cm)
EDM	7.2×10^{-28}	0.9×10^{-28}
Statistical error	23.5×10^{-28}	6.8×10^{-28}
Systematic Source		
Leakage current	1.2×10^{-28}	4.5×10^{-31}
Charging currents	1.7×10^{-29}	1.2×10^{-29}
Cell motion (rotation)	4.2×10^{-29}	4.0×10^{-29}
Cell motion (translation)	2.6×10^{-28}	1.9×10^{-28}
Comagnetometer drift	$2.6 imes 10^{-28}$	4.0×10^{-29}
$ \vec{E} ^2$ effects	1.2×10^{-29}	2.2×10^{-30}
$ \vec{E} $ uncertainty	2.6×10^{-29}	9.4×10^{-30}
Geometric phase	$\leq 2 \times 10^{-31}$	$\leq 2 \times 10^{-31}$
Total Systematic Error	3.9×10^{-28}	2.0×10^{-28}

Sachdeva, Phys. Rev. Lett. 123, 143003 (2019)

Future improvements:

- Measurement time
- Cell motion
- Comagnetometer drift

 \rightarrow improves constrains on CPV parameters $\overline{g}^{0,1}_{\pi}$ and C_{T}

 $|d_{\rm Xe}| \le 1.4 \times 10^{-27} \ ecm \quad (95\% \ {\rm C.L.})$

SQUID dewar

Protective ground wafer

HV cable

EDM cell

Ground

electrode

Chupp, Phys. Rev. C 91, 035502 (2015)

F. Kuchler – TRIUMF, June 2020

DM cell installed below SQUID dewar BMSR-II

Result from combined 2017/2018 data:

Improves previous limit by factor 5

HeXeEDM: Comagnetometer systematics

³He comagnetometer largely cancels systematics, but needs corrections: Sachdeva, Phys. Rev. Lett. 123, 143003 (2019) $\omega_{\rm co} \approx \omega_{\rm d} - \gamma_{\rm He}' \Delta RB + (1-R)\vec{\Omega}.\hat{B} + \gamma_{\rm Xe}' (\Delta B_{\rm Xe}^{\rm dif} - \Delta B_{\rm He}^{\rm dif}) + (\omega_{\rm Xe}^{\rm sd} - R\omega_{\rm He}^{\rm sd})$ pressure dependent Earth's rotation difference in volume avg Comagnetometer drifts due to EDM contribution chemical shifts magnetic field due to diffusion residual longitudinal magnetization $d_A(^{129}{
m Xe})~[10^{-27}~e~{
m cm}]$ 40 0.50 corrected He shift [mHz] 200.25 --20 0.002017 -40 2018 -0.25-Xe inversion Runs He inversion -0.50Comagnetometer drift reduced by tuning: -0.50.00.51.0 1.5 absolute He shift [mHz] Magnetization ratio M^{Xe}/M^{He} — = change in longitudinal magnetization Spin flip accuracy $< 1^{\circ}$ Cell geometry Limes, Phys. Rev. A 100, 010501 (2019) Terrano, Phys. Rev. A 100, 012502 (2019)

F. Kuchler – TRIUMF, June 2020

TUCAN EDM

→ TRIUMF Ultra Cold Advanced Neutron Source

UCN project and TUCAN's goals

- Search for an electric dipole moment (EDM) of the neutron with a sensitivity below 10⁻²⁷ ecm
- Build world-leading UCN source
- Establish UCN user facility

F. Kuchler – TRIUMF, June 2020

B

F

200 kV

±

Worldwide: PSI, ILL/TUM, ILL/PNPI/Gatchina, LANL, SNS, TRIUMF

			i/ Gutein		2, 5115, 1110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	"Spin up" neutron	$\sigma_d = \frac{\hbar}{2\alpha ET\sqrt{N}}$	α - Visibility (spin polarizatior E - Electric field T - Spin precession time N - Number of UCN			on, detection efficiency		
	90° spin-flip		-			PSI 2016	ILL 2006	
	pulse applied	2006 ILL result	-	α		0.75	0.58	
		$ d_n \le 3.6 \times 10^{-20} \ e \text{cm}$		Т	(s)	180	130	
				E	(kV/cm)	11	7	
TE or BT.	E			N		15 000	14 000	
	Free	2020 PSI result		$N_{\rm cycles}$	(cycles/day)	288	400	
	proceeden	$ d_n \le 1.8 \times 10^{-20} \ ecm$	-	$\sigma(d_{\rm n}^{\rm meas})$	(<i>e</i> cm per day)	1.110^{-25}	2.610^{-25}	
							,	

 $\begin{array}{c|c} & \bullet & \mathsf{Det} \\ & & \\$

B

B

B

B

3.

2.

1.

- Detailed understanding of magnetic field gradient
 → large correction (~60% of statistical error)
- Limitation for next generation: UCN density

Baker, Phys. Rev. Lett. 97, 131801 (2006) Baker, Nucl. Intr. Meth. A 736, 184 (2014) Abel, EPJ Web Conf. 219, 02001 (2019) Abel, Pys. Rev. Lett. 124, 081803 (2020)

Accomplishments and plans of the TUCAN UCN project

- Nov 2016 Beam on (UCN) target
- Jan-Apr 2017 Installation of prototype UCN source
- Nov 2017 First UCN produced
- Fall 2018/2019 UCN runs testing equipment (UCN guides, polarized UCN, detectors)

Ahmed (TUCAN collaboration), Phys. Rev. C **99**, 025503 (2019) Ahmed (TUCAN collaboration), Nucl. Inst. Meth. A **927**, 101 (2019) Ahmed (TUCAN collaboration), Phys Rev Accel Beams **22**, 102401 (2019)

Unique combination of spallation target/superfluid helium:

Spallation: free neutrons ~ 1 MeV 10⁹ K Moderation, reflection ~eV 300 K Downscattering 300 neV 0.003 K

F. Kuchler – TRIUMF, June 2020

Dual comagnetometer adresses key systematic effect by determining magnetic field and magnetic field gradient (i=Xe,Hg)

TUCAN EDM experiment at TRIUMF

Goal (2 yrs/400 beam days): $|d_n| \leq 10^{-27} \ e \mathrm{cm}$

Features:

- Simulation (incl. EDM cycle optimization):
 ~ 2x10⁶ UCN/cell
- Future dual comagnetometer (¹⁹⁹Hg/¹²⁹Xe):
 - Optical readout (two-photon transition) Altiere, Phys. Rev. A 97, 012507 (2018)
 - Xenon breakdown strength
 - Xenon EDM $|d_{\rm Xe}| \lesssim 10^{-28}~e{
 m cm}$

$$\omega_i^{\uparrow\uparrow}=\gamma_i B_0$$
 -

shift from geometric phase effect

TUCAN EDM: Storage cell and high-voltage development

High-voltage test setup

- Measure electric field breakdown in xenon
- High-voltage tests (up to 100 kV) of electrodes, insulator materials, coatings

Coop/UBC students: D. Byer, B. Hong

Optimization of the EDM cell:

- Coating materials and setup Coop student: S. Morawetz
- Electric field simulations
- Geometry
- UCN simulations and optimization of statistics Grad student: S. Sidhu

Rare isotopes and radioactive molecules

Octupole deformed nuclei

Radium EDM experiment using atomic trap:

- Permanent octupole deformation
- → Enhanced sensitivity (x300) to Schiff moment vs spherical ¹⁹⁹Hg

 $|d_{\rm Ra}| \lesssim 1.4 \times 10^{-23} \ e {\rm cm}$

Parker, Phys. Rev. Lett. **114**, 233002 (2015) Bishof, Phys. Rev. C **94**, 025501 (2016)

Gaffney, Nature, **497**, 199-204 (2013)

Radium fluoride for electron EDM measurements

 Large effective electric field experienced by electrons E_{eff} ~ 52 GV/cm

Isaev, Phys. Rev. A **82**, 052521 (2010) Kudashov, Phys. Rev. A **90**, 052513 (2014) Sasmal, Phys.R ev. A **93**, 062506 (2016)

- Spectroscopy data indicates possibility of laser cooling:
 - Short lifetime of excited state: 50ns
 - Small branching ratios to vibrational states ("dark")
- TRIUMF/ISAC yields: 223-225Ra ~10⁸-10⁹ 1/s http://isys01.triumf.ca/search/yield/data 223Ra¹⁹F ~10⁶-10⁷ 1/s
- Systematic selection of radium nuclear spin

	²²³ Ra	²²⁴ Ra	²²⁵ Ra
Nuclear spin	3/2	0	1/2
Half life	11.43 d	3.66 d	14.90 d
ISAC avg yield [10 ⁸ /s]	1.7	9.6	1.0

Towards radioactive molecules: Electron EDM state of the art

Polar molecules widely used in electron EDM searches: $E_{
m eff} \propto Z^3$

ACME electron EDM: ThO cold molecular beam

- Spin state prepared in plane perpendicular to E
- Phase ϕ accumulated in $\mathsf{E}_{_{\text{eff}}} \phi \approx \frac{-(\mu \tilde{\mathcal{B}}|\mathcal{B}_z| + \tilde{\mathcal{N}}\tilde{\mathcal{E}}d_e\mathcal{E}_{_{\text{eff}}})\tau}{\hbar}$
- Extensive systematics checks of >40 separate parameters

System	E _{eff} [GV/cm]	eEDM [<i>e</i> cm]	Ref
TI	0.000123	< 1.6e-27	[1]
YbF	24-26	< 10.5e-28	[2]
HfF⁺	22-24	< 1.2e-28	[3]
ThO	78-84	< 1.1e-29	[4]

[1] Regan, Phys. Rev. Lett. 88, 071805 (2002)

[2] Hudson, Nature 473, 493 (2011)

- [3] Cairncross, Phys. Rev. Lett. 119, 153001 (2017)
- [4] ACME Collaboration, Nature 562, 355 (2018)

F. Kuchler – TRIUMF, June 2020

The path towards next generation electron EDM measurements

Enhancements scale with atomic number:

 \rightarrow Molecules with a heavy, deformed nucleus

Fundamental sensitivity:

$$\sigma_{\rm EDM} = \frac{h}{2E\tau\sqrt{N}}$$

- → Significantly higher sensitivity with improved coherence time
 - HfF⁺ in ion trap: coherence time τ ~ 0.7 s
 → compensates small number of detected ions (~10)
 - Laser cooling and trapping: $\tau > 1$ s
 - Several molecules have been cooled and trapped

SrF	3.5 mK	Barry, Nature 512 286 (2014)
	400 uK (MOT)	Norrgard, Phys. Rev. Lett. 116, 063004 (2016)
CaF	340 uK (MOT)	Anderegg, Phys. Rev. Lett. 119, 103201 (2017)
	50 uK	Truppe, Nat. Phys. 13, 1173 (2017)
	5 uK	Caldwell, Phys. Rev. Lett. 123, 033202 (2019)
YO	4 mK (MOT)	Collopy. Phys. Rev. Lett. 121, 213201 (2018)
	4 uK	Ding, Phys. Rev. X 10, 021049 (2020)
YbF	100uK	Lim, Phys. Rev. Lett. 120, 123201 (2018)

EDM searches

- Valuable results hunting for signs of new physics
- Employ atomic, nuclear, particle physics techniques
- Systematics need to be well understood

Science opportunities with rare isotopes and radioactive molecules at ISAC

- Highest sensitivity to P,T odd effects in heavy, deformed nuclei (also as as part of radioactive molecules)
- → High electric fields E_{eff} in heavy polar molecules → sensitivity to electron EDM
- → Prospects of laser cooling and trapping \rightarrow long coherence times
- Projected energy reach into PeV region for next generation of electron EDM measurements Cairncross, Nat. Rev. Phys. 1, 510 (2019)

Summa

Thank you!

F. Kuchler – TRIUMF, June 2020

(A selection of) EDM searches in various systems

System		Experiments	Status [ecm]	SM pred. [ecm]	Reference
Neutron	Particle	PSI, ILL/TUM, ILL/PNP Gatchina, LANL, SNS, TRIUMF	l/ 1.8x10 ⁻²⁶	10 ⁻³¹ - 10 ⁻³³	[1, 2]
Mercury		UW	7.4x10 ⁻³⁰	10 ⁻³⁴ - 10 ⁻³⁵	[3, 4]
Xenon	Diamagnetic atoms	TUM/PTB Mainz/Heidelberg, Japa	n 1.4x10 ⁻²⁷	10 ⁻³² - 10 ⁻³⁶	[5, 6, 7]
Radium		Argonne	1.4x10 ⁻²³	_	[8]
ThO	Polar molecule	Harvard/Yale	1.1x10 ⁻²⁹	<10 ⁻³⁸	[9, 10]
Experimen [1] Abel, P [3] Graner [5] Sachde [6] Allmen [8] Bishof, [10] ACMI	nts Phys. Rev. Lett. 124 , (7, Phys. Rev. Lett. 11 eva, Phys. Rev. Lett. Indinger, Phys. Rev. A 7, Phys. Rev. C 94 , 02 E Collaboration, Nat	Theor081803 (2020)[2] Ell5, 161601 (2016)[4] Do123, 143003 (2019)[7] Sh100, 022505 (2019)[9] Νξ5501 (2016)ure 562, 355 (2018)	y is, Nucl. Instr. Mo onoghue, Phys. Lo ushkov, Sov. Phy g, Mod. Phys. Let	eth. A 284 , 33 (198 ett. B 196 , 196 (19 s. JETP 60 , 873 (19 t. A 11 , 211 (1996a	89) 87) 984) a)

Spin-Exchange Optical Pumping

Zeeman splitting

spin-orbit

- m, Rb coupling 3/2 5P_{3/2} 1/2-1/2during -3/25P collisional mixing 5P_{1/2} 1/2 -1/2 (a) (b) D2 D1 ¹²⁹Xe¹ ³He 50% 794.78nm Rb Rb 50% σ 780.24nm N_2 5S_{1/2} 1/2**5S** N_2 -1/2 Rb ³He ¹²⁹Xe¹ Rb Rb Κ Spin-exchange rates s^{-1} $5.5\times10^{-20}[{\rm K}]$ 6.8×10^{-20} [Rb] [86] [86] $k_{\text{He-Alk}}$ 1.0×10^{-15} [Rb] [87] $6.3 \times 10^{-17} [K]$ [87] $k_{\rm Xe-Alk}$ Spin-destruction rates $(T = 140 \,^{\circ}\text{C}) \,^{\text{s}-1}$ $1.4 \times 10^{-19} [\text{He}]$ 1.4×10^{-18} [He] [86] [86] Γ_{Alk-He} 3.7×10^{-16} [Xe] [88] Γ_{Alk-Xe}
- Circularly polarized light is selectively de-populating alkali metal ٠ electron state
- Spin polarization transferred to noble gas nuclei • collisions (spin-exchange)
- Two different processes: • (a) van-der-Waals molecules (b) binary collisions

Spin-exchange rate:

$$\gamma^{\rm SE} = \left(\sum_i \frac{\zeta_i}{[G_i]} + \sigma \bar{v}\right) [Rb]$$

Spin-exchange optical pumping of ³He and ¹²⁹Xe

PTB

TUM

Holding field: $B_0 \sim 3 \text{ mT}$

Oven: •

>140 °C for 3 He (~ hrs) ~80 °C for ¹²⁹Xe (~ mins)

width ~0.4 nm (narrowed by VBG)

- GE180 sealed bulbs OP cells: • GE180 with two Pyrex valves (TUM) Pyrex with one valve (PTB)
- back of the MSR (TUM) Location: ٠ one floor below the BMSR-II (PTB)
- Polarization: ٠

9-12% ¹²⁹Xe; 0.1-0.2% ³He (PTB) (EDM cell with 0.5-1.0 bar)

F. Kuchler – TRIUMF, June 2020

l pumping

cell

.–

. Chupp

Magnetically shielded rooms

Magnetically shielded room @TUM $|B| < 1 \text{ nT} (10 \ \mu\text{G})$ $|\delta B| < 0.3 \ \text{nT/m} (3 \ \mu\text{G/m})$ SF: 300 below 0.1 Hz 10^5 above 10 Hz

- techniques developed in test runs 2014-2016 - moved to ILL for PanEDM

et al, Proc. Biomag 2000, 970 (2000)

02

3500 4000 BMSR-II @PTB $|B| < 0.8 \text{ nT} (8 \mu G)$ SF: 75000 below 0.1 Hz

 $|\delta B| < 0.4 \text{ nT/m} (4 \ \mu G/m)$ 10⁸ above 6 Hz

- EDM runs in 2017, 2018

F. Kuchler – TRIUMF, June 2020

Leakage current systematic test

Neutron EDM experiment at PSI

Used upgraded setup of RAL-Sussex-ILL experiment

Electric field: 132 kV/12cm (15 kV/cm possible but not with Cs magnetometers running)

Detector efficiency improvement ~18%

Mercury EDM experiment

- Four cells: two E=0, two E=±10 kV
- Transverse optical pumping of ${}^{1}S_{0}(F=1/2)$ to ${}^{3}P_{1}(F=1/2)$ transition (nuclear polarization)
- Optical detection: Faraday rotation of linearly polarized light (b=B.k)
- Determine phase difference accumulated in dark period (typ. 170s)

- <u>Main systematic effects:</u>
 - nm movements of cells in magnetic field gradients
 - leakage current

Result $d_{Hg} < 7.4 \times 10^{-30}$ ecm

Note: Constrains the neutron EDM to 1.6x10⁻²⁶ ecm!

EDM experiment using trapped ²²⁵Ra

Schiff moment: $S \propto \beta_2 \beta_3^2 Z A^{2/3} \frac{1}{\Delta E}$

²²⁵Ra properties:

Z=88 $β_2$ =0.129, $β_3$ =0.099 ΔE=55.2 keV

 225 Ra from oven (~10¹⁰) cooled, slowed, trapped (~10⁴) and transferred by ODT (~10³)

Result: $|d_{\rm Ra}| \lesssim 1.4 \times 10^{-23} \ e {\rm cm}$

F. Kuchler – TRIUMF, June 2020

Note: 225 Ra is ~300 times more sensitive to Schiff moment than (spherical) 199 Hg

Parker, Phys. Rev. Lett. **114**, 233002 (2015) Bishof, Phys. Rev. C **94**, 025501 (2016)

Testing fundamental symmetries with rare isotopes

		²²³ Ra	²²⁵ Ra	²²³ Rn	²²¹ Fr	²²³ Fr	²²⁵ Ac	²²⁹ Pa	¹⁹⁹ Hg	¹²⁹ Xe
Parity doublet	$\rightarrow \Delta E_{\text{expt}}$ (keV)	50.2	55.2		234	160.5	40.1	0.22		
energy difference	$S_{\text{intr}}(e \text{ fm}^3)$	24	24	15	21	20	28	25		
Schiff moment	\longrightarrow $S(10^8 \eta e \text{ fm}^3)$	400	300	1000	43	500	900	1.2×10^{4}	-1.4	1.75
	$d(at) (10^{25} \eta e \text{ cm})$	2700	2100	2000	240	2800			5.6	0.47

Reproduced from: Spevak, Phys. Rev. C 56, 1357 (1997)

²²⁹Pa: predicted to have very small $\Delta E < 1 \text{ keV}$ Singh, arXiv:1903.03206 (2019)

²²⁷Ac (similar to deformed ²²⁶Ra) with $\Delta E \sim 27$ keV I=3/2 ($\rightarrow MQM$) highly available and ~22 yrs halflife Flambaum, Phys. Rev. C **101**, 015502 (2020)

²²³Rn has no permanent octupole and close-lying parity doublets unlikely Butler, Nat. Comm. **10**, 2473 (2019)

 \rightarrow Radium is favorable for EDM experiments

Gaffney, Nature, 497, 199-204 (2013)