

New frontiers in optical spectroscopy of radioactive nuclei

Ruben de Groote, University of Jyväskylä, Finland TRIUMF seminar 11/06/2020

Outline

- Collinear resonance ionization spectroscopy of copper
- First spectroscopy of RaF molecules
- High-precision measurements: magnetic octupole moments
- Looking ahead

Many collaborators involved from all over the world!

Nuclear theory:

J. Dobacewski (York), J. Holt (TRIUMF), W. Nazarewicz (MSU), P.-G. Reinhard (Erlangen), C. Yuan (Beijing)

Atomic theory: B. K. Sahoo (PRL), J. Li (Beijing)

Quantum Chemistry: R. Berger (U. Marburg)

Experimentalists: Too many to name... (Leuven, JYU, Mainz , Manchester, ...)

Studying the atomic nucleus

Nuclear theory:

Many different types of experiments

• Config. interaction

QCD

• ab-initio

DFT

Collective models

Optical spectroscopy for nuclear structure

Hyperfine interaction: interaction between nuclear moments and bound electrons

 $h\nu \sim \nu_0 + A \frac{C}{2} + B \frac{1}{4} \frac{(3/2)C(C+1) - 2I(I+1)J(J+1)}{I(2I-1)J(2J-1)}$

• Model-independent extraction of:

$$\delta < r^2 > \qquad A = \frac{\mu_I B_J}{IJ} \qquad B = e Q V_{zz}$$

provided the atomic parameters are known (e.g. knowing mass and field shift is required)

- Electromagnetic moments teach us about nuclear configurations, sizes and shapes
- Good tests of nuclear theory

Collinear resonance ionization spectroscopy of copper

Collinear resonance ionization spectroscopy

- lons are produced in a hot environment and are typically only 'cooled' to room temperature using gasfilled RFQ
- High resolution is achieved not by reducing ΔE , but by reducing Δv through acceleration

CRIS of copper isotopes

- Neutron-rich isotopes ⁷⁶⁻⁷⁸Cu studied for the first time in high-resolution
 - / Three additional isotopes in reach due to superior efficiency and S/B ratio
 - / Background-free measurements achieved for ^{75,76,77}Cu

CRIS of copper isotopes

- Neutron-rich isotopes ⁷⁶⁻⁷⁸Cu studied for the first time in high-resolution
 - / Three additional isotopes in reach due to superior efficiency and S/B ratio
 - / Background-free measurements achieved for ^{75,76,77}Cu
- ⁷⁸Cu could be studied (half life 330 ms)
 - / Production: 20 nuclei per second, among >10⁷ other unwanted atoms total 'sample' used: 200 000 ions
 - / Shell-model calculations using interactions derived from chiral effective field theory reproduce results very well!
 - / With 29 protons and 49 neutrons, this is a major computational challenge

nature physics

Letter | Open Access | Published: 13 April 2020

Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes

R. P. de Groote, et al. Nat. Phys. 16, 620–624 - 2020

Copper charge radii as sensitive tests of state-of-the-art nuclear theory

Staggering* of binding energies

- good agreement with Fayans DFT and VS-IMSRG calculations
- Not unexpected, especially for DFT

Staggering nuclear charge radii:

- good agreement for with Fayans DFT
 - / Due to introducing radii into the fitting procedure and adding terms proportional to density gradients
 - / Slight overestimation of radius OES, as observed also in e.g. Sn, Cd

DFT:

VS-IMSRG:

- very good agreement with VS-IMSRG
 - / Origins of OES are well-captured by fitting interactions to A<4 data!</p>

Small-scale variations well-captured by VS-IMSRG, bulk properties better reproduced with Fayans DFT

* Defined as three-point difference $\frac{1}{2}(x_{A+1}+x_{A-1}-2x_A)$ R. P. de Groote, et al. Nat. Phys. 16, 620–624 - 2020

... and much, much more...

Crossing N=32 with potassium ${}^{52}K$ ۲

Pushing towards *N*=50,82 with ¹⁰¹⁻ ¹³¹In

Shell structure near N=Z=50 with ¹⁰⁴⁻ • ¹²⁰Sn

)0

Many ongoing developments (field • ionization, ion ionization, ...)

13450

13500

13550

13600

wavenumber (cm^-1)

13650

13700

13750

Results

• First spectroscopy of RaF molecules

Molecular probes for BSM physics

Molecules are very good probes for physics beyond the standard model

- eEDM: current limits set by molecular systems
 - / Ion trap work: HfF^{+,} molecular beams (YbF, ThO)

Molecular probes for BSM physics

Molecules are very good probes for physics beyond the standard model

- eEDM: current limits set by molecular systems
- P-odd and P,T-odd effects are enhanced strongly in well-chosen molecules

Example for RaF:

 $RaF \rightarrow$ Superior sensitivity for both P- and P,T- odd effects

Molecular probes for BSM physics

Molecules are very good probes for physics beyond the standard model

- eEDM: current limits set by molecular systems
- P-odd and P,T-odd effects are enhanced strongly in well-chosen molecules
- Fluoride molecules: **can be laser cooled**!
 - / SrF \rightarrow Nature 467, 820-823 (2010), Nature Physics 13, 1173(2017)
 - / YbF → Nature 473, 493 (2011), Phys. Rev. Lett. 120, 123201 (2018)
 - / CaF → Nature Physics 14, 890 (2018), Phys. Rev. Lett. 120, 163201 (2018)
 - / RaF

Radioactive molecule: *zero* spectroscopic info known...

- Can we do spectroscopy on radioactive molecules?
- Can we find out if RaF can be lasercooled?

Measuring the first spectra of RaF

nature

Article | Open Access | Published: 27 May 2020

Spectroscopy of short-lived radioactive molecules

R. F. Garcia Ruiz 🖾, R. Berger 🖾, [...] X. F. Yang

Breakup in charge exchange?

Production rate? Target had been dismounted for a while...

Spread of population after charge exchange?

Fluorination efficiency?

Breakup in cooler?

- Ionization potential too high to ionize?
- Non-resonant laser ionization by accident?
- Molecular breakup rather than ionization?
- Predictions ~1000 cm⁻¹ precision: required scanning time too large?

.

Measuring the first spectra of RaF

Many results!

- Excitation energy of first few states
- Vibronic structure constants established
- Established structure is suitable for laser cooling
- Ionization potential measured
- Two- and three-step laser ionization schemes found
- High-resolution measurements of molecular hyperfine structure obtained

Future directions?

- Further spectroscopic studies of RaF to fully characterise the rotational and hyperfine structure
 - / Demonstrated even short-lived, weakly produced isotopologues are in reach
 - / Tests Quantum Chemistry calculations which are required to extract eEDM from measurements
 - / ISOLDE proposal INTC-P-555
- Technical developments towards characterization of molecules and measurements of BSM effects
 - / TRIUMF LOI: S2068-LOI
- Molecules may provide a more sensitive probe for nuclear structure as well
 - E.g. KF⁺ could be used to measure extremely precise Qmoments of potassium, RbCl for Chlorine (both not possible with current laser spectroscopy methods)

Nuclear moment ratio

Q(⁴¹K)/Q(³⁹K) 1.217699 (0.000055) Paquette, G., et al. "The hyperfine spectrum of KF." *Journal of Molecular Structure* 190 (1988): 143-148.

Future directions?

- Further spectroscopic studies of RaF to fully characterise the rotational and hyperfine structure
 - / Demonstrated even short-lived, weakly produced isotopologues are in reach
 - / Tests Quantum Chemistry calculations which are required to extract eEDM from measurements
 - / ISOLDE proposal INTC-P-555
- Technical developments towards characterization of molecules and measurements of BSM effects
 - / TRIUMF LOI: S2068-LOI
- Molecules may provide a more sensitive probe for nuclear structure as well
 - E.g. KF⁺ could be used to measure extremely precise Qmoments of potassium, RbCl for Chlorine (both not possible with current laser spectroscopy methods)

physicsworld Q Magazine

Magazine | Latest ▼ | People ▼ | Impac

ATOMIC AND MOLECULAR | RESEARCH UPDATE

Exotic radioactive molecules could reveal physics beyond the Standard Model ^{05 Jun 2020}

NEWS

Molecular experiments hope to reveal new physics

Results

High-precision measurements: magnetic octupole moments

The precision frontier for optical spectroscopy

- Magnetic dipole moments
- Electrical quadrupole moments and charge radii
- Hyperfine anomaly [1]
 - / Relates to the distribution of magnetization inside nuclear volume
- Higher-order moments
 - / Magnetic octupole, electric hexadecupole, ...
- Higher-order moments of the charge radii
 - / E.g. <r⁴> relates to surface thickness of nuclear density
- BSM physics from Hz-level isotope shift spectroscopy, molecular probes, ...

Optical spectroscopy for nuclear structure

Hyperfine interaction: interaction between nuclear moments and bound electrons

$$h\nu \sim \nu_0 + A \frac{C}{2} + B \frac{1}{4} \frac{(3/2)C(C+1) - 2I(I+1)J(J+1)}{I(2I-1)J(2J-1)}$$

• Model-independent extraction of:

$$\delta < r^2 > \qquad A = \frac{\mu_I B_J}{IJ} \qquad B = e Q V_{zz}$$

provided the atomic parameters are known (e.g. knowing mass and field shift is required)

- Electromagnetic moments teach us about nuclear configurations, sizes and shapes
- Good tests of nuclear theory

Magnetic octupole moments?

Hyperfine interaction: interaction between nuclear moments and bound electrons

$$h\nu \sim \nu_0 + A \frac{C}{2} + B \frac{1}{4} \frac{(3/2)C(C+1) - 2I(I+1)J(J+1)}{I(2I-1)J(2J-1)} + C_{\text{HFS}} f(I,J,F)$$

• Model-independent extraction of:

$$\delta < \mathbf{r}^{2} > A = \frac{\mu_{I} B_{J}}{IJ} \quad B = e Q V_{zz} \quad C = -\Omega \langle JJ | T_{3}^{(e)} | JJ \rangle$$

provided the atomic parameters are known (e.g. knowing mass and field shift is required)

- Electromagnetic moments teach us about nuclear configurations, sizes and shapes
- Good tests of nuclear theory

Magnetic octupole moments

- Pen-and-paper prediction for magnetic octupole moments: *Schwartz* lines
- Very few experimental numbers exist (~20)
- All experimental data points lie close to these lines assuming the same spin g-factor quenching
 - / However, deviations are larger than for dipole moments
- Can we learn more about the nuclear magnetization distribution (neutron skin)?
 Origins of quenching and MEC?
 Is the simple shell model as good as it is for dipole moments?

$$\Omega/\mu_N \left\langle r^2 \right\rangle = \frac{3}{2} \frac{2I - 1}{(2I + 4)(2I + 2)} \\ \times \begin{cases} (I+2)[(I - \frac{3}{2})g_l + g_s], & I = l + \frac{1}{2} \\ (I-1)[(I + \frac{5}{2})g_l - g_s], & I = l - \frac{1}{2} \end{cases}$$

 Extremely large magnetic octupole moment measured for ¹⁷³Yb (stable)

- Extremely large magnetic octupole moment measured for ¹⁷³Yb (stable)
- Hyperfine octupole constant so large it is measurable even with conventional collinear laser spectroscopy

Alok K. Singh, et al. Phys. Rev. A 87, 012512 – 2013

270000

250000

230000

210000

Line 1

-6000

- Extremely large magnetic octupole moment measured for ¹⁷³Yb (stable)
- Hyperfine octupole constant so large it is measurable even with conventional collinear laser spectroscopy

Frequency detuning (MHz)

4000

- Extremely large magnetic octupole moment measured for ¹⁷³Yb (stable)
- Hyperfine octupole constant so large it is measurable even with conventional collinear laser spectroscopy
 - / Our value restores agreement with expectations from single-particle estimates
 - / Future work will require higher resolution to further reduce uncertainties

Magnetic octupole moment of scandium: using laser-rf techniques instead

- Direct radiofrequency spectroscopy of hyperfine levels
 - / Linewidth ~ 1 / interaction time ~ 10kHz
- We developed a combination of laser-rf spectroscopy and laser resonance ionization spectroscopy
 - / Using ionization scheme developed at TRIUMF ©

Magnetic octupole moment of scandium: using laser-rf techniques instead

Magnetic octupole moment using laser-rf techniques in

 Resulting precision is orders of magnitude better than conventional spectroscopy

	Theory	Corrected	
	This work	Ref. [17]	This work
A $[MHz]$	108(2)	109.033(1)	109.0329(1)
B [MHz]	-37.7(5)	-37.373(15)	-37.371(1)
C [kHz]		1.5(12)	-0.25(12)
$\Omega \left[\mu_N \mathbf{b} \right]$		-9.4(75)	+1.6(8)

- First steps to interpret this unusual observable made using shell-model and nuclear DFT
 - / Experimental value is larger than theoretical models can account for
 - / Further theoretical and experimental work is definitely needed!

R. P. de Groote et al., submitted to Phys. Rev. Lett.

Looking ahead

Radioactive probes for beyond standard model physics

In summary

- (Optical) spectroscopy techniques keep marching on
 - / Nuclear structure: charge radii of copper isotopes
 - / Molecular structure and future BSM work: RaF molecules
 - / High-precision spectroscopy for novel observables: scandium

The nuclear chart from the point of view of optical spectroscopy

Instrumentation is improving across the board

- Efficiency frontier: the effort to push further and further from the valley of stability towards e.g. ⁷⁸Ni, ¹⁰⁰Sn, ...
 - / Charge radii of neutron-rich copper
- 'Accessibility' frontier: how can we reach isotopes that are hard to produce and/or have atomic structure complications
 - / Key role for facilities like JYFL, NSCL/FRIB, RIKEN... Not featured in this seminar
- Precision frontier
 - / Light elements
 - δ<r⁴>, hyperfine anomalies, magnetic
 octupole, electric hexadecapole moments ...

Copper charge radii as sensitive tests of state-of-the-art nuclear theory

Total binding energies

 good agreement with Fayans DFT and VS-IMSRG calculations

Total nuclear charge radii:

- good agreement for with Fayans DFT
- VS-IMSRG off the mark with both interactions we tested matches prior observations that reproducing radii requires reproducing saturation density

DFT:

VS-IMSRG:

nature physics

Letter | Open Access | Published: 13 April 2020

Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes

R. P. de Groote, et al. Nat. Phys. 16, 620–624 - 2020

Some textbook physics on magnetic dipoles...

- Pen-and-paper prediction for magnetic dipole moments: Schmidt lines
- By now, hundreds of experimental moments have been measured
- All experimental data points lie close to these lines assuming some spin g-factor quenching
 - / Configuration mixing, MEC, ...
- Magnetic moment is a fingerprint of the nuclear configuration
- Comparison to more advanced models: investigate purity of configuration, shell evolution, ...

$$\langle \mu \rangle_{j=l+1/2} = \mu_{\rm N} \left[g_l (j - \frac{1}{2}) + \frac{1}{2} g_s \right] \langle \mu \rangle_{j=l-1/2} = \mu_{\rm N} \left[g_l \frac{j(j + \frac{3}{2})}{(j+1)} - \frac{g_s}{2} \frac{j}{(j+1)} \right]$$