Polarized nuclei and neutrons: toward new tools for fundamental physics

Skyler Degenkolb, Institut Laue-Langevin

TRIUMF, 8 June 2020

JNR 20(4), 117-122 (2018)

Outline

- 0) Motivations: testing the Standard Model, and Beyond
- 1) Some remarks on contemporary EDM efforts (experiments and theory)
- 2) An "in-progress" experiment: SuperSUN-PanEDM [as of today]
- 3) A future experiment: *in-situ* multichamber nEDM [as of tomorrow]

Along the way: today's limitations, and the tools we will need to do better

- Precision physics with "new" atomic species: quantum spin dynamics at the crossover of nuclear and atomic physics, optical spectroscopy
- *In-situ* UCN source/experiment: production, detection, spin dynamics
- Going beyond the old techniques: co-magnetometry, alkalis, pulsed NMR, SEOP

Symmetries and the Standard Model

- Standard Model gauge group SU(3)×SU(2)×U(1) and degrees of freedom
- Conservation laws and continuous symmetries
 - "A" vs. "p/d" and parity in even-dimensional spaces
 - Be careful: Baryon or lepton number, etc.
- Discrete symmetries C, P, T
 - Time-reversal in quantum mechanics: formal symmetry of the equations
 - "Arrow of Time" in statistical mechanics is unrelated
- Sources of CP-violation in the Standard Model (and connections within)
 - QCD θ term ...[also BSM: axions]
 - CKM mixing phase ... *B* and *K* physics
 - Neutrinos ...Majorana or Dirac?
- Framework for precision tests: effective field theory / global analysis

Electromagnetic Moments

Classical source distributions:

$$Q = \int \rho(\mathbf{r}) d\mathbf{r}$$
$$\mathbf{d} = \int \mathbf{r} \rho(\mathbf{r}) d\mathbf{r}$$
$$\boldsymbol{\mu} = \frac{1}{2} \int \mathbf{r} \times \mathbf{J}(\mathbf{r}) d\mathbf{r}$$

...etc. for MQM and higher (see standard E&M texts)

"Fundamental" fermion fields:

$$Q = F_1(0) \qquad \mu = \frac{F_1(0) + F_2(0)}{2m}$$
$$d = -\frac{F_3(0)}{2m} \qquad a = F_4(0)$$

$$\langle p_f | j^{\mu} | p_i \rangle = \bar{u}(p_f) \bigg[F_1(q^2) \gamma^{\mu} \\ + \frac{i\sigma^{\mu\nu}}{2m} q_{\nu} F_2(q^2) \\ + i\epsilon^{\mu\nu\rho\sigma} \sigma_{\rho\sigma} q_{\nu} F_3(q^2) \\ + \frac{1}{2m} \left(q^{\mu} - \frac{q^2}{2m} \gamma^{\mu} \right) \gamma_5 F_4(q^2) \bigg] u(p_i)$$

...see arXiv:physics/0402058v2

Generalities on EDM Searches

- Broad motivations:
 - Searches for new physics, potential for discovery of BSM phenomena
 - "Diagnose" the origins of CP violation and B violation (multiple systems)
 - Connection to mechanisms of symmetry-breaking required for baryogenesis
 - "Clean" signature of time-reversal violation

see also:

FRIB TA Topical Program – August 2019 V. Cirigliano, PPNS-2018 M. Ramsey-Musolf, APS April meeting 2018

Recent review:

Rev. Mod. Phys. 91, 015001 (2019)

Latest experimental results:

neutron: Phys. Rev. Lett. 124, 081803 (2020) ¹²⁹Xe: Phys. Rev. Lett. 123, 143003 (2019)

Generalities on EDM Searches

- Broad motivations:
 - Searches for new physics, potential for discovery of BSM phenomena
 - "Diagnose" the origins of CP violation and B violation (multiple systems)
 - Connection to mechanisms of symmetry-breaking required for baryogenesis
 - "Clean" signature of time-reversal violation

see also:

FRIB TA Topical Program – August 2019 V. Cirigliano, PPNS-2018 M. Ramsey-Musolf, APS April meeting 2018

Recent review:

Rev. Mod. Phys. 91, 015001 (2019)

Latest experimental results:

neutron: Phys. Rev. Lett. 124, 081803 (2020) ¹²⁹Xe: Phys. Rev. Lett. 123, 143003 (2019)

EDM Searches and Effective Field Theory

Effective Lagrangian

$$\begin{split} \mathscr{L}_{\rm eff}^{(6)} &= -\frac{i}{2} \sum_{l,q} d_q \bar{q} \sigma_{\mu\nu} \gamma^5 F^{\mu\nu} q \\ &\quad -\frac{i}{2} \sum_q \tilde{d}_q g_s \bar{q} \sigma_{\mu\nu} \gamma^5 G^{\mu\nu} q \\ &\quad + d_W \frac{g_s}{6} G \tilde{G} G + \sum_i C_i^{(4f)} O_i^{(4f)} \end{split} \\ \\ \mathscr{L}_{\rm fermion} &= -\frac{\mu}{2} \bar{\psi} \sigma^{\mu\nu} F_{\mu\nu} \psi \qquad \text{MDM} \\ &\quad - i \frac{d}{2} \bar{\psi} \sigma^{\mu\nu} \gamma^5 F_{\mu\nu} \psi \quad \text{EDM} \end{split}$$

"Global analysis"

- Quick outline:
 - Hierachy of energy scales
 - SMEFT = Standard Model Effective Field Theory
 - χPT = chiral Perturbation Theory
- Similar idea:

$$V_{\text{CKM}} = \begin{bmatrix} V^{ud} & V^{us} & V^{ub} \\ V^{cd} & V^{cs} & V^{cb} \\ V^{td} & V^{ts} & V^{tb} \end{bmatrix}$$

"Global analysis"

• CP violation from three sources (ignoring neutrinos):

$$\mathcal{L}_{\text{CPV}} = \mathcal{L}_{\text{CKM}} + \mathcal{L}_{\bar{ heta}} + \mathcal{L}_{\text{BSM}}$$

• CKM CP-violation:

$$\mathcal{L}_{\text{CKM}} = -\frac{ig_2}{\sqrt{2}} \sum_{p,q} V^{pq} \bar{U}_L^p \mathcal{W}^+ D_L^q + \text{H.c.}$$

• Strong CP-violation:

$$\mathcal{L}_{\bar{\theta}} = -\frac{\alpha_S}{16\pi^2} \bar{\theta} \mathrm{Tr}(G^{\mu\nu} \tilde{G}_{\mu\nu})$$

details:

Rev. Mod. Phys. **91**, 015001 (2019) Phys. Rev. C **91**, 035502 (2015) Prog. Part. Nucl. Phys. **71**, 21 (2013)

"Global analysis"

- Scale of CKM CP-violation given by $Im (V_{us}V_{cs}^*V_{cb}V_{ub}^*) \approx 3 \times 10^{-5}$
- Predictions for EDMs are far below current experimental sensitivities:

System	current	projected	SM (CKM)
e	$\sim 10^{-28}$	10^{-29}	$\sim 10^{-38}$
μ	$\sim 10^{-19}$		$\sim 10^{-35}$
au	$\sim 10^{-16}$		$\sim 10^{-34}$
n	$\sim 10^{-26}$	10^{-28}	$\sim 10^{-31}$
p	$\sim 10^{-23}$	$10^{-29} **$	$\sim 10^{-31}$
¹⁹⁹ Hg	$\sim 10^{-29}$	10^{-30}	$\sim 10^{-33}$
¹²⁹ Xe	$\sim 10^{-27}$	10^{-29}	$\sim 10^{-33}$
²²⁵ Ra	$\sim 10^{-23}$	10^{-26}	$\sim 10^{-33}$
•••	• • •		• • •

V. Cirigliano, PPNS-2018

EDM Techniques and Systems

Sensitivity: System:	Paramagnetic	Diamagnetic	"Particle"
Тгар	Tl, Cs, PbO, HfF⁺, Fr, BaF,	¹⁹⁹ Hg, ¹²⁹ Xe, ²²⁵ Ra, Rn, Pa, RaO,	n (UCN)
Beam	YbF, ThO, WC	TIF	n
Storage ring	TaO⁺	?	p, d, ³ He ⁺⁺ , μ,

Other: solid state (Gd₃Ga₅O₁₂, Eu_{0.5}Ba_{0.5}TiO₃), colliders (τ , Λ , ν , ...), crystal (n scattering on quartz), ...

EDM Techniques and Systems

Sensitivity: System:	Paramagnetic	Diamagnetic	"Particle"
Тгар	Tl, Cs, PbO, HfF⁺, Fr, BaF,	¹⁹⁹ Hg, ¹²⁹ Xe, ²²⁵ Ra, Rn, Pa, RaO,	n (UCN)
Beam	YbF, ThO, WC	TIF	n
Storage ring	TaO⁺	?	p, d, ³ He ⁺⁺ , μ,

Other: solid state (Gd₃Ga₅O₁₂, Eu_{0.5}Ba_{0.5}TiO₃), colliders (τ , Λ , ν , ...), crystal (n scattering on quartz), ...

An Experimentalist's View of the Situation

Set joint constraints via complementary experiments in different systems: $d_i = a_i^2 a_{ij} C_j$

$$\begin{aligned} & \mathcal{A}_{\mathrm{Hg}} & \mathcal{A}_{\mathrm{Xe}} & \mathcal{A}_{\mathrm{TIF}} & \mathcal{A}_{\mathrm{n}} \\ & & \hat{\mathbf{e}} & \mathcal{A}_{\mathrm{TIF}} & \mathcal{A}_{\mathrm{n}} \\ & & \hat{\mathbf{e}} & -2.0 \stackrel{\prime}{} 10^{-20} & -3.8 \stackrel{\prime}{} 10^{-18} & 0 & 0 \stackrel{\dot{\mathsf{U}}}{_{\mathrm{U}}} & \mathcal{C}_{T} \\ & & \hat{\mathbf{e}} & 4.0 \stackrel{\prime}{} 10^{-21} & -2.9 \stackrel{\prime}{} 10^{-19} & -2.2 \stackrel{\prime}{} 10^{-19} & 0 \stackrel{\dot{\mathsf{U}}}{_{\mathrm{U}}} & \tilde{g}_{\pi}^{0} \\ & & \hat{\mathbf{e}} & 1.1 \stackrel{\prime}{} 10^{-16} & 1.2 \stackrel{\prime}{} 10^{-14} & -1.6 \stackrel{\prime}{} 10^{-13} & 0 \stackrel{\dot{\mathsf{U}}}{_{\mathrm{U}}} & \tilde{g}_{\pi}^{1} \\ & & \hat{\mathfrak{e}} & 0 & 1.5 \stackrel{\prime}{} 10^{-14} & 1.4 \stackrel{\prime}{} 10^{-16} & 1 \stackrel{\dot{\mathsf{U}}}{_{\mathrm{U}}} & \mathcal{G}_{n}^{sr} \end{aligned}$$

So what is today's phenomenological situation?

Combined Limits

The Global Interpretation of EDM Searches

figure: Michael Ramsey-Musolf

A case where EDMs set strong bounds

Li, Profumo, and Ramsey-Musolf Phys. Lett. B **673**, 95 (2009)

For adjacent levels we have a shift linear in *E*, and inversely proportional to the total angular momentum:

$$|\delta\omega| = \frac{|dE|}{\hbar F} \qquad (\Delta m_F = 1)$$

External field strength

Cornell and Wieman Rev. Mod. Phys. 74, 875 (2002)

vious initial step toward understanding dynamical behavior. Second, in experimental physics a precision measurement is almost always a frequency measurement, and the easiest way to study an effect with precision is to find an observable frequency that is sensitive to that effect. In the case of dilute-gas BEC, the observed fre-

Listen to the Nobel Laureates, and actually measure frequencies:

vious initial step toward understanding dynamical behavior. Second, in experimental physics a precision measurement is almost always a frequency measurement, and the easiest way to study an effect with precision is to find an observable frequency that is sensitive to that effect. In the case of dilute-gas BEC, the observed fre-

Listen to the Nobel Laureates, and actually measure frequencies:

Listen to the Nobel Laureates, and actually measure frequencies:

If spin-precession is continuously observed:

Cornell and Wieman Rev. Mod. Phys. 74, 875 (2002)

vious initial step toward understanding dynamical behavior. Second, in experimental physics a precision measurement is almost always a frequency measurement, and the easiest way to study an effect with precision is to find an observable frequency that is sensitive to that effect. In the case of dilute-gas BEC, the observed fre-

 Schiff's theorem: the field due to an EDM induces a displacement of the bound charges, which exactly cancels it*

$$H_0 = \sum \frac{p^2}{2m} + U(\mathbf{r})$$

Hamiltonian of the charge-system (no EDM)

*Schiff: Phys. Rev. **132**, 2194 (1963) J. Engel: elegant formulation used here

 Schiff's theorem: the field due to an EDM induces a displacement of the bound charges, which exactly cancels it

$$H_0 = \sum \frac{p^2}{2m} + U(\mathbf{r})$$

Add constituent EDMs As a perturbation...

$$\mathbf{d}_{ ext{tot}} = \sum_i \mathbf{d}_i$$

(sum over constituents)

 Schiff's theorem: the field due to an EDM induces a displacement of the bound charges, which exactly cancels it

$$H_0 = \sum \frac{p^2}{2m} + U(\mathbf{r})$$

Add constituent EDMs As a perturbation...

$$\mathbf{d}_{ ext{tot}} = \sum_i \mathbf{d}_i$$

(sum over constituents)

$$egin{aligned} H &= H_0 - \sum \mathbf{d} \cdot \mathbf{E} \ &= H_0 + \sum \mathbf{d} \cdot rac{
abla U(\mathbf{r})}{q} \ &= H_0 + \sum rac{i}{q} \left[\mathbf{d} \cdot \mathbf{p}, H_0
ight] \end{aligned}$$

Now see what effect this has...

 Schiff's theorem: the field due to an EDM induces a displacement of the bound charges, which exactly cancels it

$$H_0 = \sum \frac{p^2}{2m} + U(\mathbf{r})$$
$$H = H_0 - \sum \mathbf{d} \cdot \mathbf{E}$$
$$= H_0 + \sum \mathbf{d} \cdot \frac{\nabla U(\mathbf{r})}{q}$$
$$= H_0 + \sum \frac{i}{q} [\mathbf{d} \cdot \mathbf{p}, H_0]$$

Eigenstates receive an energy shift due to the perturbation:

$$|0\rangle \rightarrow \left|\tilde{0}\right\rangle = |0\rangle + \sum_{n} \frac{\left|n\right\rangle \left\langle n\right| \sum \frac{i}{q} \left[\mathbf{d} \cdot \mathbf{p}, H_{0}\right] \left|0\right\rangle}{E_{0} - E_{n}}$$
$$= \left(1 + \sum \frac{i}{q} \mathbf{d} \cdot \mathbf{p}\right) \left|0\right\rangle$$

• What is the total, observable, dipole moment after this shift?

$$\begin{split} \tilde{\mathbf{d}} &= \sum \mathbf{d} + \langle \tilde{0} | \sum q \mathbf{r} | \tilde{0} \rangle \\ &= \sum \mathbf{d} + \langle \tilde{0} | \left(1 - \sum \frac{i}{q} \mathbf{d} \cdot \mathbf{p} \right) \sum q \mathbf{r} \left(1 + \sum \frac{i}{q} \mathbf{d} \cdot \mathbf{p} \right) | \tilde{0} \rangle \\ &= \sum \mathbf{d} + i \langle 0 | \left[\sum q \mathbf{r}, \sum \frac{1}{q} \mathbf{d} \cdot \mathbf{p} \right] | 0 \rangle \\ &= \sum \mathbf{d} - \sum \mathbf{d} \\ &= 0 \end{split}$$

But some details can save us!

- Schiff's theorem assumes:
 - pointlike particles \rightarrow *incorrect for nuclei*

$$oldsymbol{S} = rac{1}{10} \left\langle r^2 oldsymbol{d}
ight
angle - rac{1}{6Z} \left\langle r^2
ight
angle \left\langle oldsymbol{d}
ight
angle$$

...see Prog. Part. Nucl. Phys. **71**, 21 (2013)

• non-relativistic treatment → *incorrect for atomic electrons*

$$U_{ ext{lab}} = -d_{ ext{lab}} \cdot E = -d_{ ext{rest}} \cdot E + rac{\gamma}{1+\gamma} (oldsymbol{eta} \cdot d) (oldsymbol{eta} \cdot E)$$

...see American Journal of Physics 75, 532 (2007)

...and we can even get lucky enhancements.

Octupole deformations:

FIG. 3. Intrinsic Schiff moments S_0 in e fm³ (a) and octupole moments Q_0^3 in units of 1000 *e* fm³ (b) of ²²¹Rn, ²²³Rn, ²²³Fr, ²²⁵Ra, and ²²⁹Pa, determined from the experimental octupole moments of ²²⁴Ra, ²²⁶Ra, and ²²⁰Rn.

So which system should you measure?

So which system should you measure?

The one where you can discover an EDM, of course!

A "complete" experiment: HeXe as of Last October 🚽

- History of the experiment perhaps unusual... outer magnetic shield commissioned, but no UCN @FRM2 in 2013
- Complementarity of experimental techniques (as well as impact)

<u>May 16, 2013</u>

Attending:

Chupp, Nießen, Trahms, Degenkolb, Singh, Babcock, Fierlinger,

Elements previously discussed:

- SQUIDS (only practical option due to sensitivity and small
- He-Xe combined cell
- Electric field (limited to ~ 10 kV/cm, plastic box and gas to prevent discharge) \ldots

 $\frac{\text{October 4, 2019:}}{\text{New Limit on the Permanent Electric Dipole Moment of }^{129}\text{Xe Using}} |d_A(^{129}\text{Xe})| < 1.4 \times 10^{-27} \ e \ \text{cm} \ (95\% \ \text{C.L.})$

³He Comagnetometry and SQUID Detection

N. Sachdeva, I. Fan, E. Babcock, M. Burghoff, T. E. Chupp, S. Degenkolb, P. Fierlinger, S. Haude, E. Kraegeloh, W. Kilian, S. Knappe-Grüneberg, F. Kuchler, T. Liu, M. Marino, J. Meinel, K. Rolfs, Z. Salhi, A. Schnabel, J. T. Singh, S. Stuiber, W. A. Terrano, L. Trahms, and J. Voigt Phys. Rev. Lett. **123**, 143003 – Published 4 October 2019

HeXe EDM Sensitivity + Shielding

$$E \sim 4 \text{ kV/cm}$$

 $\tau \sim 4000 \text{ s}$
 $S \sim 20 \text{ pT}$
 $\epsilon \sim 8 \text{ fT/}\sqrt{\text{Hz}}$

$$\delta\omega = \frac{1}{\tau(S/n)\sqrt{N}} = \frac{\epsilon\sqrt{f_{\rm BW}}}{\tau S\sqrt{N}}$$

 \longrightarrow require nHz per run

$$\sigma_{\rm d} = \frac{\hbar}{2E} \frac{\epsilon}{\tau^{3/2} S \sqrt{N}} = \frac{\hbar}{2E} \frac{\epsilon}{\tau S \sqrt{T}}$$

$$\longrightarrow \text{few} \times 10^{-27} \ e \ \text{cm}/\sqrt{N}$$

Analysis methods

A Note on Systematic Effects

The Generic Storage Cell EDM Recipe:

- 1) Fill polarized particles into cell
- 2) Initiate spin precession (pulse/field)
- 3) Wait...
- 4) Measure (continuously/Ramsey pulse)
- 5) Repeat

. . .

Problems for polarized spins in fields:

Field uniformity Field stability Field gradients Depolarization

Problems for polarized spins in fields:

Field uniformity Field stability Field gradients Depolarization

•••

Particle motion (volume averaging) Geometric phases Motional fields

<u>Co-magnetometry:</u>

Measure a *difference* of two EDMs,

$$\omega_{\rm co} = \omega_1 - R\omega_2$$

correct automatically for "magnetic" physics

<u>Co-magnetometry:</u>

Measure a *difference* of two EDMs,

$$\omega_{\rm co} = \omega_1 - R\omega_2$$

correct automatically for "magnetic" physics

<u>Co-magnetometry:</u>

Not so simple...

$$\begin{split} \omega_{\rm co} &\approx \omega_d - \gamma_2' \Delta R |\boldsymbol{B}| \\ &+ (1-R) \boldsymbol{\Omega} \cdot \hat{\boldsymbol{B}} \\ &+ \gamma_1' \left\langle \Delta B_1 \right\rangle - \gamma_1' \left\langle \Delta B_2 \right\rangle \\ &+ \left(\omega_1^{\rm sd} - R \omega_2^{\rm sd} \right) \end{split}$$

nEDM searches: Good Co-Magnetometry is Hard

FIG. 5. Change in the absolute (ω_{He}) and corrected ($\widetilde{\omega}_{\text{He}}$)³He frequencies when the longitudinal magnetizations of ¹²⁹Xe and ³He are inverted (blue diamonds and red squares). Measurements taken in the valved cell, some errors are hidden by the symbols. The slope of the lines measures the shifts in the ratios of interest, with 1- σ error (shaded) from the covariance of the fit to a line. If the comagnetometer correction canceled frequency shifts from longitudinal magnetization (Eq. 2b) the lines would be horizontal.

<u>Co-magnetometry:</u>

Not so simple...

$$\omega_{\rm co} \approx \omega_d - \gamma'_2 \Delta R |\boldsymbol{B}| + (1 - R) \boldsymbol{\Omega} \cdot \hat{\boldsymbol{B}} + \gamma'_1 \langle \Delta B_1 \rangle - \gamma'_1 \langle \Delta B_2 \rangle + (\omega_1^{\rm sd} - R \omega_2^{\rm sd})$$

Phys. Rev. A 100, 012502 (2019)

"New" Detection Methods: Laser Spectroscopy

- No strong cycling transition
 - No unwanted chemistry
- Can't use coils at low field

 Optical detection preferred
- Nuclear magnetic moment
 - Well-shielded
- Faraday rotation very weak
 - Fluorescence is background-free
- Nonlinear scattering rate
 - Can be used to get spatial resolution

"New" Detection Methods: Laser Spectroscopy

-1/2 +1/2 +3/2 +5/2 -5/2 -3/2 • So what can we do with it? F"=5/2 ³D₂ (J"=2) F"=3/2 • Use "new" atoms for magnetometry, EDMs Direct excitation to metastable levels $F_{=1/2}^{i=3/2}$ ³P₁ (J'=1) • Study isotope shifts and hyperfine structure Δ • Trapping and cooling (atoms *and* molecules) • Especially with frequency combs, for repump <u>\m=0</u> • Optical pumping of "difficult" atoms (given enough photons) F=1/2 ¹S₀ (J=0)

-1/2

+1/2

• Access to "wrong-parity" states (even N)

Multiphoton Spectroscopy for Nuclear Spins

• Perturbation theory:

$$R_{ba}^{(n)} = \left| \frac{E^n}{\hbar^n} \sum_{i,j,\dots,k} \frac{d_{ai}d_{ij}\cdots d_{kb}}{\Delta_{ia}^{(n-1)}\Delta_{ja}^{(n-2)}\cdots \Delta_{ka}^{(1)}} \right|^2 2\pi\rho(\delta)$$

Two-photon effective operators
 [Bonin, JOSA B 1(1),52-55 (1984)]:

$$R_{ba}^{(2)} \propto \left| \sum_{k} \sum_{J=0}^{2} \left\langle \gamma F_{b} \left\| D^{(J)}(k) \right\| \delta F_{a} \right\rangle (-1)^{F_{b}+J+2F_{a}} \sqrt{2J+1} \right.$$
$$\left. \sum_{\mu,\nu=0,\pm 1} \sum_{M} (-1)^{M_{b}} \begin{pmatrix} F_{b} & J & F_{a} \\ -M_{b} & M & M_{a} \end{pmatrix} \begin{pmatrix} J & 1 & 1 \\ -M & \mu & \nu \end{pmatrix} \right|^{2}$$

• Two-photon "cross-sections":

$$R_{ba}^{(2)} = (2\pi)^3 a_0^4 t_0 \alpha^2 \omega_1 \omega_2 \sigma^{(2)} F_1 F_2$$

A Brief Introduction to Modelocked Lasers

- Optical spectrum determined by two independent RF parameters
- Higher *peak* (power conversion efficiency and scattering rate)
- Technical: better in terms of cavities and optics damage

...already proposed in 1977 to get more 243nm laser power for hydrogen 1S-2S!

A Brief Introduction to Modelocked Lasers

Stowe, DOI:10.1016/S1049-250X(07)55001-9

Atomic Excitation by *Two-Photon* Direct Frequency Comb Spectroscopy

Figure: W. Campbell, see also PRX 6, 041004 (2016)

Caveats...

Note: pulse chirp causes problems, and the spectral phase must be well-controlled to use the full comb power!

$$\langle e | M | g \rangle \sim e^{-2i(\omega_0 - \omega_c)t} \sum_k A_k A_{-k} e^{i(\phi_k - \phi_{-k})}$$

...chirp precompensation can avoid this to some extent.

Also watch out for different intermediate-state detunings, and photoionization cross-sections from the excited state!

Proof-of-Principle: Yb Beam (pulsed), Xe Cell (cw)

New Features: Spatial Resolution

R. Boyd, Nonlinear Optics

$$\begin{split} R &\sim \rho V I^2 \sim \rho (\pi w_0^2) (\frac{\pi w_0^2}{\lambda}) \frac{P^2}{(\pi w_0^2)^2} \\ &\sim \rho \frac{P^2}{\lambda} \end{split}$$

- Diffusion time T ~ $4L^2/v\lambda$
- $\lambda \sim 1$ mm for co-magnetometer densities
- T ~ several seconds, for L ~ few cm
- Higher pressure: still OK for external cells
- GP suppressed by short mean free path
- Collisions reset motional fields, but not vertical gradients
- High resolution spatial maps
 - extract spatial frequencies within storage volume...

Long-Term Impact: Beyond Nuclear EDMs

- New atomic species
- Direct nuclear polarization without SEOP/MEOP
- Spatial resolution and systematics
- Schiff/nuclear EDMs

octupoledeformed nuclei

projected error budget for EDM of ²²³Rn

		TRIUMF - γ Anisotropy	Laser	FRIB
	Production (s^{-1})	2×10^7	2×10^7	2×10^9
	N_{γ} (1 minute)	7×10^6	10^{9}	10^{11}
	$\sigma_d (1 \text{ day})$	3×10^{-25}	3×10^{-26}	3×10^{-27}
	σ_d (30 days)	5×10^{-26}	5×10^{-27}	3×10^{-28} (100 days)

EDM sensitivity for 223Rn, assuming E = 10kV/cm and $\tau = 15s$, with a 50% duty cycle.

Long-Term Impact: Beyond Nuclear EDMs

- Interesting wavelengths (non-exhaustive)
 - 257nm: Rn
 - 256nm: Xe
 - 215nm: Kr
 - 215nm: He (4 photons)
 - 207nm: N
 - 205nm: H (1S-3D)

octupoledeformed nuclei

projected error budget for EDM of ²²³Rn

	TRIUMF - γ Anisotropy	Laser	FRIB
Production (s^{-1})	2×10^7	2×10^7	2×10^9
N_{γ} (1 minute)	7×10^6	10^{9}	10^{11}
$\sigma_d (1 \text{ day})$	3×10^{-25}	3×10^{-26}	3×10^{-27}
σ_d (30 days)	5×10^{-26}	5×10^{-27}	3×10^{-28} (100 days)

EDM sensitivity for 223Rn, assuming E = 10kV/cm and $\tau = 15s$, with a 50% duty cycle.

A Generic Introduction to Neutrons

Velocity	"Temperature"	Energy
$10^{0} - 10^{1} \text{ m/s}$	Ultracold	5 neV – 500 neV
$10^1 - 10^2 \text{ m/s}$	Very cold	0.5 μeV – 50 μeV
$10^2 - 10^3 \text{ m/s}$	Cold	50 µeV – 5 meV
2.2 × 10 ³ m/s	Thermal	25 meV
$2 \times 10^3 - 2 \times 10^4$ m/s	Hot	20 meV – 2 eV

mass = 1.0087 amu spin = $\frac{1}{2} (\mu = -1.9 \mu_N)$ $\tau_\beta = 880 \text{ s}$ mgh = 103 neV (h = 1 m) $\mu B = 60 \text{ neV} (B = 1\text{T})$ $U_s = 168 \text{ neV}$ (copper in vacuum)

can also bind two H nuclei and possibly also one H nucleus. In the one case, this entails the possible existence of an atom of mass nearly 2 carrying one charge, which is to be regarded as an isotope of hydrogen. In the other case, it involves the idea of the possible existence of an atom of mass 1 which has zero nucleus charge. Such an atomic structure seems by no means impossible. On present views, the neutral hydrogen atom is regarded as a nucleus of unit charge with an electron attached at a distance, and the spectrum of hydrogen is ascribed to the movements of this distant electron.

-Rutherford, 1920 (Bakerian lecture)

"Ultracold" Translation Table...

Number of Particles	104	90×10 ⁴
"Temperature"	10 ⁻⁵ mK	1 mK
Wavelength	1.5 µm	0.1 µm
Velocity	10 ⁻³ m/s	4 m/s
Phase Space Density	2.5	2×10 ⁻¹³

Ultracold Neutrons... How and Why?

Velocity	"Temperature"	Energy
$10^{0} - 10^{1} \text{ m/s}$	Ultracold	5 neV – 500 neV
$10^1 - 10^2 \text{ m/s}$	Very cold	0.5 μeV – 50 μeV
$10^2 - 10^3 \text{ m/s}$	Cold	50 µeV – 5 meV
2.2 × 10 ³ m/s	Thermal	25 meV
2×10 ³ – 2×10 ⁴ m/s	Hot	20 meV – 2 eV

mass = 1.0087 amu spin = $\frac{1}{2}$ (μ = -1.9 μ_N) τ_β = 880 s *mgz* = 103 neV (*z* = 1 m) μB = 60 neV (*B* = 1T) U_s = 168 neV (copper in vacuum)

Moderation vs. "conversion"

phase space compression need for dissipative physics flux vs. density

Superthermal conversion in LHe

Ultracold Neutrons... Superthermal Sources

 au_{\max} [s]

Superthermal conversion in LHe

$$\begin{aligned} & T [K] \\ 1 \\ \dot{\rho} \approx 5 \times 10^{-8} \text{ Åcm}^{-1} \frac{d\Phi}{d\lambda} \Big|_{9\text{\AA}} & 0.8 \\ 0.7 \\ 0.5 \\ 0 \end{aligned}$$

Optical Potential and Losses

Complex potential including loss

$$U = \frac{2\pi\hbar^2}{m}\rho(a_r - ia_i) \pm \mu B$$

• Can also define a refractive index

$$(\nabla^2 + k^2)\psi(\mathbf{r}) = 4\pi[\rho a(\mathbf{r})]\psi(\mathbf{r})$$

$$n(\mathbf{r}) = \sqrt{1 - \frac{4\pi[\rho a(\mathbf{r}')]}{k^2}}$$

Total *external* reflection
 → Neutron guides and storage!

Losses

Complex potential including loss

$$U = \frac{2\pi\hbar^2}{m}\rho(a_r - ia_i) \pm \mu B$$

• Storage loss rates: many contributions

• Loss probability in a specific coating layer has strong energy dependence

What Can LHe UCN Sources Deliver Now?

Characteristic output:

- $\lambda \sim 900 \text{ Å}$ (v ~ 4 m/s)
- $\Phi \sim 500 \text{ n/s/cm}^2$ (~ 3×10⁻¹³ Φ_{pool})
- $\rho \sim 2 \text{ cm}^{-3}$ (~ $1 \times 10^{-10} \rho_{rest-gas}$) • $\rho_{phase-space} < 10^{-13} \sim (900 \text{ Å})^3 (220 \text{ cm}^{-3})$

A neutron's journey to become "ultracold"

In pile:

• $\Phi \sim 1.5 \times 10^{15} \text{ n/s/cm}^2$

Cold source:

• $\Phi \sim 10^{13} \text{ n/s/cm}^2$

End of guide:

• $\Phi \sim 3 \times 10^{10} \text{ n/s/cm}^2$

In converter vessel:

• $R \sim 15 \text{ UCN/s/cm}^3$

Physics Problem

Physics Problem

Technical Limitation

Physics Problem

Technical Limitation

Technical Development

Physics Problem

Technical Limitation

Technical Development

New Physics Problem

Physics Problem

Technical Limitation

y [m]

Technical Development

New Physics Problem

SuperSUN UCN source: Cutaway

UCN out

SuperSUN: Reality so far...

Some open issues

- Supermirror replica guide
- Converter UCN coating
- Phase II extraction system
- "Deuterated" DLC on Ge

End of production vessel

Final limitations

- Cold beam brightness
- Size of converter vessel
SuperSUN: Reality so far...

Size of converter vessel

Phase II extraction system

• "Deuterated" DLC on Ge

Commissioning progress

The PanEDM Experiment

- Double chamber Ramsey experiment at room temperature
- ¹⁹⁹Hg magnetometers with few-fT resolution
- Cs magnetometers (also at HV)
- Magnetic shield with SF 6×10⁶ at 1 mHz
- Simultaneous spin detection
- SuperSUN UCN source at ILL in 2 phases: Phase I: unpolarized UCN with 80 neV peak Phase II: polarized UCN, magnetic storage
- Ongoing installation of parts, start of data taking in 2021

The PanEDM Experiment

Rev. Sci. Inst. 85(7), 075106 (2014) J. Appl. Phys. 117(18), 183903 (2015)

- Double chamber Ramsey experiment at room temperature
- ¹⁹⁹Hg magnetometers with few-fT resolution
- Cs magnetometers (also at HV)
- Magnetic shield with SF 6×10⁶ at 1 mHz
- Simultaneous spin detection
- SuperSUN UCN source at ILL in 2 phases: Phase I: unpolarized UCN with 80 neV peak Phase II: polarized UCN, magnetic storage
- Ongoing installation of parts, start of data taking in 2021

Statistical sensitivity:

SuperSUN	Phase I	
Saturated source		
density [cm ⁻³]	330	
Diluted density [cm ⁻³]	63	
Density in cells [cm ⁻³]	3.9	
PanEDM Sensitivity $[1\sigma, e \text{ cm}]$		
Per run	5.5×10^{-25}	
Per day	3.8×10^{-26}	
Per 100 days	3.8×10^{-27}	

Magnetic shield:

- 1: Towards reactor
- 2: service platform
- 3: outer magnetic shield
- 4: cleanroom
- 5: HV apparatus and UCN optics
- 6: SuperSUN ³He pump system
- 7: SuperSUN

Systematic effects:

"Geometric phase" : well controlled magnetic field No comagnetometer: estimate better performance without in phase I, given magnetic stability

nEDM searches: Next Generation and Beyond

• What is the ultimate limit (using what we know today)

...and how can we get there?

	Full Version	Small Scale
E	10 MV/m	7 MV/m
Т	300s	250s
UCN/cc	1000	55
UCN/cell pair	4.4×10^{6}	6×10^{4}
N(T)/cell pair	1.6×10^{6}	2×10^{4}
М	170 × 144 = 24480	1440
α	0.85	0.85
σ_{d}	1.8 × 10 ⁻²⁹ <i>e</i> cm	7 × 10 ⁻²⁷ <i>e</i> cm

nEDM searches: Next Generation and Beyond

- In-situ production and measurement
 - Eliminate transport/dilution loss
- Modular and scalable components
 Disentangle source/spectrometer
- Use the "entire" cold beam
- Lots of R&D... cryogenics and detector developments on scale of university laboratory

Critical Techniques: Detectors

- UCN can have many chances to be detected
- Meander field creates strong *local* gradient at surface
- Limitations from:
 - Slowest UCN never penetrate
 - Fastest UCN always penetrate
 - Cell dimensions
 - Holding time
 - Readout efficiency
- Remember the theme...
- Central contribution: in-situ
 polarization sensitive UCN detectors

High-Order Multipoles by Lithography

Nb on Si: R. Gernhäuser, S. Winkler

Quantum sensing / in-situ UCN detection

- CB-KID preferred to TES
 - Already used for neutron detection (Nb)
 - Operate well-below T_c (get higher J_c)
- Testable via small user experiments
 - First: using simple cryo environment (dry)
 - Next: ~1K by pumping on LHe
 - Later: T<1K w/ ³He cryostat?
- Need to define materials and obtain samples
 - Nb microstructures on Si already possible @TUM (no cryo or neutron tests yet)
 - HTc requires more research, but MgB₂ promising

$$V = I_{\rm b} \left(\frac{dL_{\rm k}}{dt} + \frac{dL_{\rm m}}{dt} \right) + (L_{\rm k} + L_{\rm m}) \frac{dI_{\rm b}}{dt} \simeq I_{\rm b} \frac{dL_{\rm k}}{dt}$$

Appl. Phys. Lett. **107**, 232601 (2015)

Next Generation: First Developments

Test Cryostat and Cell Fabrication

- Reflectometry for CB-KID detectors
- Test cells and coatings
 - Surface tests at cold neutron and UCN facilities
 - Film electrodes (need SANS input)
- UCN production in a single test cell
 - Detection by vanadium activation (or similar)
- Combine cell prototypes with detector prototypes
 - Can avoid coupling these problems until components are relatively advanced

Thank you!

Modified targets for 2020 & 2021

Reference reactor schedule (dates are tentative)

First Experiments with Mutiphoton Probes

- Significant hardware investment opens the door to longer-term developments with potential high impact
- Same system can do:
 - Basic cw tests with alkali atoms (K, Rb, Cs)
 - Basic pulsed tests with alkali atoms (K, Rb, Cs)
 - Low-efficiency SEOP for ³He and ¹²⁹Xe
 - Two-photon probe of ¹²⁹Xe for magnetometry
 - Nonlinear spectroscopy of alkaline-earths*
 - Two-photon probe of ¹²⁹Xe for EDM*
 - Two-photon probe of ²²³Rn for EDM*
 - Some R&D on ¹⁹⁹Hg magnetometry for nEDM*
 - Two-photon laser trapping of alkalis*
 - Early tests for TPOP/MPOP*

Continuous Spin Readout (SQUID)

$$d_A(^{129}\text{Xe}) = (1.4 \pm 6.6_{\text{stat}} \pm 2.0_{\text{syst}}) \times 10^{-28} \ e \text{ cm}$$

Phys. Rev. Lett. **123**, 143003 (2019)

Spatially Resolved Magnetometry

- Diffusion time T ~ $4L^2/v\lambda$
- $\lambda \sim 1$ mm for co-magnetometer densities
- T ~ several seconds, for L ~ few cm
- Higher pressure: still OK for external cells
- GP suppressed by short mean free path
- Collisions reset motional fields, but not vertical gradients
- High resolution spatial maps
 - extract spatial frequencies within storage volume...