Testing parity and time reversal symmetry violation using francium and radium

Mukut Ranjan Kalita

TRIUMF

Postdoctoral Fellow

Operational funding by NSERC, NSF, NRC/TRIUMF. Infrastructure support by DOE and NRC/TRIUMF. Student support by the U. of Manitoba, travel support by CONACYT and Fulbright.

²²⁵Ra experiment at Argonne National Laboratory

Ð

0

Goal of these experiments:

□ Test the standard model

Credits: CERN

□ SM is very successful, but it is not complete, e.g. does not explain:

- > Matter antimatter asymmetry.
- Does not account for dark matter, dark energy, gravity etc.
- ✓ Need to look for new physics beyond the SM and search for new particles and new forces.
- □ One approach is to look for them directly in high energy collisions in accelerators.
- Complementary approach is to look for effects due to these yet unseen particles and forces in systems such as atoms and molecules.
- □ The experiments that I am going to describe falls in this second category of approach.

The Fr experiment:

□ Fr experiment at TRIUMF.

□ We study electronic transitions of Fr using lasers.

- □ Electronic transitions are dominated by electromagnetic interactions.
- □ Electrons in an atom can also take part in weak interaction.

The Fr experiment: parity

□ Parity symmetry: invariance under spatial inversion (x, y, $z \rightarrow -x, -y, -z$).

The Fr experiment: weak interaction violates parity

- □ Parity symmetry: invariance under spatial inversion (x, y, z \rightarrow -x,-y,-z).
- □ 1950-1956: weak interaction? (Ramsey, Purcell, Weyl, Lee, Yang).
- □ 1957: experimental evidence of parity violation in weak interaction.

The Fr experiment: weak interaction violates parity

- □ Parity symmetry: invariance under spatial inversion (x, y, z \rightarrow -x,-y,-z)
- □ 1950-1956: weak interaction? (Ramsey, Purcell, Weyl, Lee, Yang).
- □ 1957: experimental evidence of parity violation in weak interaction.
- **D** Experiment

$${}^{60}Co \rightarrow {}^{61}Ni + e^- + \overline{\nu_e}$$

http://physics.nist.gov/GenInt/Parity/cover.html]

1957: C.S. Wu et al. Phys. Rev. 105,1413.

The Fr experiment: weak interaction violates parity

- □ Parity symmetry: invariance under spatial inversion (x, y, z \rightarrow -x,-y,-z)
- □ 1950-1956: weak interaction? (Ramsey, Purcell, Weyl, Lee, Yang).
- □ 1957: experimental evidence of parity violation in weak interaction.
- **D** Experiment

$${}^{60}Co \rightarrow {}^{61}Ni + e^- + \overline{\nu_e}$$
$$n \rightarrow p + e^- + \overline{\nu_e}$$

Weak interaction due to charged W bosons

 \rightarrow Particle changes identity

http://physics.nist.gov/GenInt/Parity/cover.html]

1957: C.S. Wu et al. Phys. Rev. 105,1413. 1957: Nobel Prize in Physics, C. N. Yang and T.D. Lee

The Fr experiment: weak interaction, neutral Z boson

- Weak interaction due to neutral Z bosons (presence of Z: central prediction of the theory of electro weak interactions (S. L. Glashow, A. Salam and S. Weinberg).
- \rightarrow Identity of the interacting particles do not change. (Fr remains as Fr), short range.

Parity violation in atomic physics:

- □ 1959: Before SM, estimates in hydrogen (Zel'dovich).
- □ 1960s: experimental search in molecular oxygen and atomic lead (Null results).
- □ Indirect evidence of Z boson in 1973 (Gargamelle bubble chamber, neutrino interaction)

1979: Nobel Prize in Physics, S. L. Glashow, A. Salam and S. Weinberg 1958-59:, Zel'dovich Sov. Phys. JETP 6, 1184 Sov. Phys. JETP 9, 682 1973: F J Hasert et al. Phys. Lett. **46** 121. F J Hasert et al. Phys. Lett. **46** 138.

The Fr experiment: weak interaction, neutral Z boson

- □ Weak interaction due to neutral Z bosons (presence of Z: central prediction of the theory of electro weak interactions (*S. L. Glashow, A. Salam and S. Weinberg*).
- \rightarrow Identity of the interacting particles do not change, (Fr remains as Fr), short range.

Parity violation in atomic physics:

- □ 1959: Before SM, estimates in hydrogen (Zel'dovich).
- □ 1960s: experimental search in molecular oxygen and atomic lead (Null results).
- □ Indirect evidence of Z boson in 1973 (Gargamelle bubble chamber, neutrino interaction)
- □ 1974: APV is enhanced in heavy atoms (Z³ enhancement, Bouchiat & Bouchiat).
- Experimental programs in Cs, Bi, Tl.
- □ 1978: first experimental observation of APV in Bi (Novosibirsk).
- □ Since then parity violation has been observed in multiple atoms.
- □ Direct evidence of Z boson in 1983 (CERN).

1979: Nobel Prize in Physics, S. L. Glashow, A. Salam and S. Weinberg
1958-59: Zel'dovich Sov. Phys. JETP 6, 1184 Sov. Phys. JETP 9, 682
1960s: L.C. Bradley 111 and N.S. Wall, Nuovo Cimento, R. Poppe, Physica (Utrecht) 50, 48
1973: F J Hasert et al. Phys. Lett. 46 121. F J Hasert et al. Phys. Lett. 46 138.
1974: Bouchiat & Bouchiat J. Phys. Conf. Ser. 35, 899
1978: L. M Barkov et al. JETP Lett. 28, 503
1983: Arnison, G., et al., Phys. Lett. B 122, 103, Phys. Lett. B 126, 398.

APV experiments: good experiments and good theory \rightarrow good test

Best measurement so far (Boulder) 0.35%		Experiments measure : A_{APV} For SM tests \rightarrow $A_{APV} = k_{APV} Q_W$
 (exp.) measurement. <i>Science</i> 275 (1997) 1759 Follow up at Purdue (in preparation). Planned exp. using ions (Groningen, U. of Washington 	Market Markt Market Market	1-2% measurement done. Theory at several % level.
UCSB) APV 18 x larger Th. can be done ≈ Cs	Ame A	Yb (exp.) 0.5% Antypas et al. Nat. Phys. 15 , 120– 123 (2019)

Ginges et al.: initiated program for Fr theory to 0.1%. (see e.g. PRA **98**, 032504 (2018))

The Fr experiment:

□ Test SM at low energies

Search for extra bosons

Q_{weak} Collaboration, Nature 557, 207–211 (2018) M. S. Safronova et al. R. M. P. **90**, 025008 (2018) G. Toh et al. arXiv:1905.02768v2

Isotopic variation of APV, bounds on z^{\prime} boson mediated interactions

Antypas et al. Nat. Phys. **15**, 120–123 (2019)

The Fr experiment:

- □ Choose an electric dipole forbidden transition e.g. $7s \rightarrow 8s$ in Fr.
- □ Small transition rate due to APV effects ($\approx 10^{-20}$ of allowed in Fr).

The Fr experiment: Stark-induced ns \rightarrow (n+1)s transition

- □ Choose an electric dipole forbidden transition e.g. $7s \rightarrow 8s$ in Fr.
- □ Small transition rate due to APV effects ($\approx 10^{-20}$ of allowed in Fr).
- □ Use Stark Interference technique. (M. Bouchiat & Bouchiat, J. Phys. 36, 493, (1975))

 $\square R \propto |A_{\text{stark}} + A_{\text{PNC}}|^2 \approx (A_{\text{stark}})^2 \pm 2Re(A_{\text{stark}} A_{\text{APV}}^*)$

The Fr trapping facility

□ No stable Fr → TRIUMF
 □ UC_x target
 □ Up to 2 ×10⁹ /s delivered

The Fr trapping facility

□ No stable Fr → TRIUMF
 □ UC_x target
 □ Up to 2 ×10⁹ /s delivered

□ 2 lasers to trap
 □ ≈ 1 million atoms trapped

Other Fr traps:

□ INFN Legnaro (Italy).

□ Tohoku University (Japan).

The Fr trapping facility

❑ No stable Fr → TRIUMF
 ❑ UC_x target
 ❑ Up to 2 ×10⁹ /s delivered

□ 2 lasers to trap
□ ≈ 1 million atoms trapped
□ Up to 50% transfer
□ 20 s lifetime

Other Fr traps:

□ INFN Legnaro (Italy).

□ Tohoku University (Japan).

Tune apparatus with Rb

M. Tandecki et. al. JINST 8, P12006 (2013)

Completed measurements at the francium trapping facility upper trap

□ D1 isotope shifts in a string of light Fr isotopes.

Collister et. al. Phys. Rev. A 90 052502 (2014) and A 92, 019902(E) (2015).

Benchmarks state of the art atomic theory.

□ Hyperfine anomaly in light Fr isotopes.

Zhang et. al. Phys. Rev. Lett. 115 042501 (2015)

> Reconfirms that in terms of nuclear structure 208-213 are "good" nuclei for APNC/anapole.

 \Box Francium 7p_{3/2} photoionization

Collister et. al. Can. J. Phys (2017)

Determines trap loss.

Completed measurements at the francium trapping facility lower trap

Two photon spectroscopy: 7s-8s transition in ²⁰⁸Fr, ²⁰⁹Fr, ²¹⁰Fr, ²¹¹Fr, ²¹³Fr. Radioactive lifetime (T_{1/2}) from

50 s to 192 s.

Isotope shifts.

The Fr experiment: transparent electrodes, ultra precise laser lock

- □ Transparent Electric field plates with ITO coating.
- ✓ Works at 10⁻¹⁰ Torr, up to 6200 V/cm without sparks for hours at a time.
- ✓ Operate magneto optic trap between the field plates !

□ Laser lock for 506 nm based on ULE Fabry Perot cavity.

The Fr experiment: Stark induced 7s → 8s observed in September 2018 !

Fr211, 7s (F=5) \rightarrow 8s(F=4),beta signal at 6124 V/cm

□ Laser locked to ULE Fabry Perot cavity.

We will use this transition to do our PNC experiment.

We have also observed the equivalent 5s-6s transitions in ⁸⁷Rb.

The Fr experiment: laser power build up cavity in vacuum

□ Lock power build up cavity to ULE cavity stabilized laser.

 \Box Aim \rightarrow factor of 2000 build up.

In vacuum now, lower finesses, build up 80.
 Characterize mechanical stability of the chamber.
 Using it to do Rb 5s-6s spectroscopy.

□ On the bench factor of 1000 build up (March)

The Fr experiment: current status

□ Stark induced 7s-8s in Fr and 5s-6s in Rb

□ Preliminary DC Stark shift measurement in 7s-8s in Fr and 5s-6s in Rb □ Measure M1/ β .

The Ra experiment: search for permanent EDM

□ Charge "+ q" displaced by "r" from charge "– q" creates an EDM

$$\vec{d} = q\vec{r}$$

For a particle EDM indicates a displacement between its center of mass and its center of charge. + q

$$\vec{d} = \int \vec{r} \rho_q d^3 r$$

r

- Q

The Ra experiment: search for permanent EDM

□ Charge "+ q" displaced by "r" from charge "– q" creates an EDM

 $\vec{d} = q\vec{r}$

For a particle EDM indicates a displacement between its center of mass and its center of charge. + q

$$\vec{d} = \int \vec{r} \rho_q d^3 r$$

EDM lies along the spin.

r

- Q

The Ra experiment: search for permanent EDM

□ Charge "+ q" displaced by "r" from charge "- q" creates an EDM

$$\vec{d} = q\vec{r}$$

□ For a particle EDM indicates a displacement between its center of mass and its center of charge. + q ∈

- □ EDM lies along the spin.
- □ EDM violates *T* in a non-degenerate system.
- □ Under the *CPT* theorem *T* violation indicates *CP* violation.
- □ Non-zero EDM is a direct signature of CP violation.

r

The Ra experiment: permanent EDM, CP violation

CP-violation necessary to explain matter-antimatter asymmetry (Sakharov conditions).

CP-violation within the CKM matrix is not enough to explain this observation.

□ Some extensions of SM includes additional sources of CP violation and also sensitive to EDMs.

The Ra experiment: permanent EDM violates T reversal symmetry

□ First EDM search in 1950s with neutron #

As we just saw, EDM search has been extended to other systems since then.
 EDM null so far.

Sector	Exp. Limit (e cm)	Location	Method	Standard Model (e cm)
Electron	1.1×10 ⁻²⁹	Harvard (ACME)	ThO molecules in a beam	10 ⁻³⁸ *
Neutron	1.8×10 ⁻²⁶	PSI	UCN	10 ^{-32 **}
Nuclear	7.4×10 ⁻³⁰	U. Washington	¹⁹⁹ Hg atoms in a cell	10-33 ***

#E.M Purcell and N.F. Ramsey, phys. Rev.78, 807(1950) *B.C. Regan et al., PRL 88 (2002) 071805 **Chupp, Advances in Atomic, Molecular, and Optical Physics, Volume 59, 2010 ***Ramsey-Musolf, "EDMs: New CPV?", 2009

The Ra experiment: EDM measurement principle

$$hv_{+} = 2\mu B + 2dE$$

The Ra experiment: EDM measurement principle

$$hv_{+} = 2\mu B + 2dE$$

 $hv_{-} = 2\mu B - 2dE$

The Ra experiment: EDM measurement principle

$$h\nu_{+} = 2\mu B + 2dE$$

$$h\nu_{-} = 2\mu B - 2dE$$

$$v_{+} - v_{-} = \frac{4dE}{h}$$

B = 30 mG, E= 100 kV/cm $\nu \rightarrow \approx 34$ Hz For d = 1 × 10⁻²⁶ e cm $\nu_{+} - \nu_{-} \rightarrow \approx 1 \mu$ Hz

The Ra experiment: Schiff moment and EDM

□ Neutral atom in an electric field: does not move

P. G. H. Sandars, Contemporary Physics, 42:2, 97-111, (2001)

The Ra experiment: Schiff moment and EDM

- Neutral atom in an electric field: does not move
- Schiff Theorem (1963):
- True for point-like nuclei.
- Not true for nuclei of finite volume.
- □ Schiff moment \rightarrow difference in charge and EDM distribution of the nucleus.
- □ The interaction between atomic electrons and the nucleus is via the nuclear Schiff moment.
- Interaction term

$$H \rightarrow S X$$
$$\vec{S} = \frac{\langle er^2 \vec{r} \rangle}{10} - \frac{\langle r^2 \rangle \langle e\vec{r} \rangle}{6}$$

Schiff moment enhanced in nuclei with both a quadrupole and octupole deformation and in heavy atoms.

E. A. Hinds, Physica, Scripta, Vol. T70, 34-41, (1997) Auerbach, Flambaum & Spevak, PRL (1996)

The Ra experiment: Enhanced EDM sensitivity in ²²⁵Ra

Enhanced Atomic EDM Strong enhancement with increasing Z $d(^{225}\text{Ra}) = -8.5 \times 10^{-17} \left(\frac{S_z}{e \text{ fm}^3} \right) e \text{ cm}$ Dzuba, Flambaum, Ginges, Kozlov (2002) Enhanced Lab-Frame Schiff Moment $\psi^{-} = (|a > -|b >)/\sqrt{2}$ 55 keV $\psi^{+} = (|a > +|b >)/\sqrt{2}$ $\mathbf{S}_{z} = \mathbf{S}_{intr} \frac{2KM}{I(I+1)} \frac{\langle \psi_{-} | \mathbf{W} | \psi_{+} \rangle}{E_{+} - E_{-}}$ Ginges and Flambaum (2004)

Enhancement Factor: EDM (²²⁵Ra) / EDM (¹⁹⁹Hg)

Skyrme Model	Isoscalar	Isovector
SIII	300	4000
SkM*	300	2000
SLy4	700	8000

Schiff moment of ²²⁵Ra, Dobaczewski, Engel (2005) Schiff moment of ¹⁹⁹Hg, Ban, Dobaczewski, Engel, Shukla (2010)

"[Nuclear structure] calculations in Ra are almost certainly more reliable than those in Hg." – Engel, Ramsey-Musolf, van Kolck, Prog. Part. Nucl. Phys. (2013)

The Ra experiment: complications of using ²²⁵Ra for the EDM search

□ Radioactive

□ 9 mCi (or ≈ 10¹⁴ atoms) ²²⁵Ra ($t_{1/2}$ = 14.9 days, I = 1/2) sources from Oak Ridge National Lab.

- □ Test source: 4 µCi (or ≈ 10¹⁶ atoms) ²²⁶Ra ($t_{1/2}$ =1600 years, I = 0).
- □ Low vapor pressure
- ✓ Laser cooling and trapping.

The Ra experiment: collect atoms in a MOT

J. R. Guest et al., PRL 98 093001 (2007)

The Ra experiment: optical dipole trap

□ Atoms are trapped at the focus

- \Box λ =1550 nm laser, power = 50 Watt
- □ Focused to 100 μ m diameter → trap depth 400 μ K

The Ra experiment: transfer atoms from MOT to "bus" ODT

The Ra experiment: transport to science chamber

The Ra experiment: "bus" to "holding" ODT

The Ra experiment: "bus" to "holding" ODT

Magnetic Field : B = (15-30) mG Uniformity: < 0.1%/cm along Z Instability: < 0.01% over 50 sec Electric Field : E = 67 kV/cm Copper electrodes w/ 2.3 mm gap Leakage current: < 2 pA

$$m_{\rm f}$$
 -1/2 +1/2 $^{1}P_{1}(F=1/2)$ — —

□ Polarize.

R. H. Parker et al., PRL 114, 233002 (2015)

Upgrades:

- □ Improved vacuum
- □ New ODT geometry
- □ ODT lifetime > **40 s** Vs 10 s.

□ Precession time w/ E-field is **20 s** Vs 1.2 s.

Systematic Effect	∆d _{225Ra} (e cm)
Imperfect E field reversal	< 1 × 10 ⁻²⁵
External B-field correlations	< 1 × 10 ⁻²⁵
Holding ODT power correlations	< 6 × 10 ⁻²⁶
E-field ramping	< 9 × 10 ⁻²⁸
Blue laser power correlations	< 7 × 10 ⁻²⁸
Blue laser frequency correlations	< 4 × 10 ⁻²⁸
$E \times v$ effects	< 4 × 10 ⁻²⁸
Leakage current	< 3 × 10 ⁻²⁸
Geometric phase	< 1 × 10 -31
Total	< 2 × 10 ⁻²⁵

M. Bishof et. al., Phys. Rev. C 94,025501,(2016)

Upgrades being undertaken:

□ Improved E field (Nb,150 kV/cm)

- Detection efficiency (STIRAP)
- □ Loading efficiency (New slower)
- Available atoms

Silo m/s 60 m/s 60 m/s Atom Velocity

Projected

□ FRIB (B. Sherrill, MSU)

□ Beam dump recovery with a ²³⁸U beam 6×10⁹ /s

□ Dedicated running with a 232 Th beam 5×10¹⁰ /s

□ ISOL@FRIB (I.C. Gomes and J. Nolen, Argonne)

□ Deuterons on thorium target, 1 mA × 400 MeV = 400 kW, 10¹³ /s

□ MSU K1200 (R. Ronningen and J. Nolen, Argonne)

D Deuterons on thorium target, 10 μ A × 400 MeV = 4 kW,10¹¹ /s

R. Ready et al. Abstract: P01.00002, APS March Meeting 2020 Vol. 65, Number 1 D. W. Booth et al., arXiv:1910.03047v1 [physics.atom-ph]

Fr team

Ra team

From left to right: Michael Kossin, A.C. DeHart, Matt Pearson, Seth Aubin, Gerald Gwinner, Eduardo Gomez, Mukut Kalita, Alexandre Gorelov, John Behr, Luis Orozco, Tim Hucko, Anima Sharma. Not in the picture: Andrew Senchuk

Kevin Bailey, Michael Bishof, John Greene, Roy Holt, Nathan Lemke, Zheng-Tian Lu, Peter Mueller, Tom O'Connor, Richard Parker, Matt Dietrich; Mukut Kalita, Wolfgang Korsch; Jaideep Singh, Tenzin Ragba, Roy Ready

Summary:

Atoms and molecules are attractive systems for experimental tests of the SM and searching for physics beyond the SM.

□ Some rare and radioactive systems have favorable atomic and nuclear properties for these kind of tests.

- □ I have showed two examples, first with francium and then with radium where we use laser cooling and trapping techniques to prepare the atoms for measurements.
- □ The radium experiment has demonstrated the feasibility for EDM experiment.
- □ The francium experiment is getting closer towards first demonstration of APV measurements.