$\mathfrak{E}_{\mathsf{TRIUMF}}$ TRV in isospin-hindered $^{45}_{19}\mathsf{K}$, $^{47}_{19}\mathsf{K}$ β^- decay

Enhanced sensitivity to some sources of *TRV* for observables "D" and " E_1 ": Barroso and Blin-Stoyle PLB 1973

One *E*₁ measurement: ⁵⁶Co Calaprice, Freedman 1977

Our goal: find an enhanced D measurement case for TRIumf Neutral Atom Trap (TRINAT):

A. Gorelov

J.A. Behr

📾 uOttawa **M. Ozen HA.00073**

Support: NSERC, NRC through TRIUMF, US DOE

TEXAS A&M

D. Melconian

UNIVERSITY 92 MANITOBA

M. Anholm

G. Gwinner

ytras

Isospin-hindered TRV Isospin mixing with TRINAT TRV in isospin-hindered β^- decay

Barroso and Blin-Stoyle, PL 45B 178 (1973) observables:

xtras

P even N-N isovector/tensor TRV: complementary to TRV neutron resonance experiments? Barroso and Blin-Stoyle using Herozog NP 75 655 (1066):

using Herczeg NP **75** 655 (1966):

$$V_{\text{t.v.}} = G_{\text{t.v.}} \frac{1}{2} [f(\mathbf{r})\hat{\mathbf{r}} \cdot \mathbf{p} + \text{h.c.}]$$

$$\times \ [1 + a \sigma^{(1)} \cdot \sigma^{(2)}) (\tau_3^{(1)} + \tau_3^{(2)})$$

+
$$(b + c \sigma^{(1)} \cdot \sigma^{(2)}) \tau_3^{(1)} \tau_3^{(2)}]$$

and used SHO wf's to estimate ¹³⁴Cs matrix elements

Samart Schat Schindler Phillips PRC 2016: Isoscalar and isotensor *P* even *TRV* π -nucleon suppressed by $1/N_C$; at lowest order isovector a_1 contributes, not ρ and h_1

Some TRV interactions in radiative β decay (Gardner, He 2013) would also be enhanced in isospin-suppressed decays– experimentally these seem to come with discrete γ -ray backgrounds

• 2nd-class induced semileptonic *TRV* tensor d_{ll} can accidentally interfere via α_A (Kim+Primakoff PR 180 1502 (1969); J. Mortara Ph.D. thesis 1992)

⁵⁶Co *TRV* experiment

Asymmetry of the 45° γ detectors with nuclear alignment

"Test of time-reversal invariance in the beta decay of ⁵⁶Co" Calaprice, Freedman, (Princeton); Osgood, Thomlinson (BNL) PRC 15 381 (1977) $\textit{E}_{1} = \textbf{-0.01} \pm \textbf{0.02}$

log(ft) = 8.7, yet known allowed:

 E_{eta} spectrum, no eta- γ correlation)

y = -0.13±0.02 PRC 26 287R (1982) Markey, Boehm (RIP Felix 2021)

 V_{Coul} = 2.9 keV, V_{TRV} = 54 ± 110eV (J.L. Mortara Ph.D. thesis 1992 UCB $E_1 = -0.001 \pm 0.006$ $\Rightarrow V_{TRV}$ = 5± 33 eV)

A dozen measurements of M_V , $\langle F | V_{coul} | A \rangle$

Community pushed to find good *TRV* cases Mostly β - γ circular polarization correlation

Atkinson NPA114 143 (1968); Mann PR 137 B1 (1965) ; Behrens ZfP 201 153 (1967)

Some correlation for these 'antianalog' configurations: hints that $|M_V|/|M_A|$ unchanging as $|M_A|$ falls I ⁵⁷Fe V_{Coul} = 54±10 keV, ⁵⁶Co V_{Coul} = 2.9±0.5 keV

Measuring $\langle F | V_{\text{Coul}} | A \rangle$ in ^{45,47}K • $A_{\rm recoil} \propto A_{\beta} + B_{\nu}$

 $A_{\text{recoil}} \stackrel{p_{\text{recoil}} \gg m_{\beta}}{=} 5/8(A_{\beta} + B_{\nu})$ (Depends on recoil energy via predicted kinematics) • So A_{recoil} = 0 for pure Gamow-Teller $A_{
m recoil} = 2\sqrt{rac{J}{J+1}}G_V M_V / G_A M_A$ linear in M_V/M_A

• Recoil- γ coincidences to select the antianalog Determination of y with uncertainty \sim 0.02 or better should be possible

 45 K Q=4197 ⁴⁵K decay to antianalog NDS 2008 3/2 +18m Entries Mean Std Dev . E 60 GAGG 1 one hour, singles 8 61% 1705 keV log(ft) br <u>.</u>⊆ 40 counts 0 6.6 5.75 15.5 10 5.845.99 1,3,5/2 $3/2^{+}$ 51 5.74 3/2 1.4 7.6 <u>7</u>.9 $\frac{5}{2}$ <u>7.6</u>

51% branch to 3/2+ state in 45Ca. Should have the 'antianalog' configuration. $\langle F | V_{coul} | A \rangle \sim 5$ to 50 keV ?

GAGG

90min data: shakeoff e⁻& recoil clean even for $t_{1/2}=18$ min; M.Ozen HA.00073 had γ &recoil challenges

RIVAT AND D

Have considered D in ${}^{37}\!
m K \rightarrow$ ${}^{37}
m Ar + \beta^+ + \nu$ 5x10⁻⁴ statistical uncertainty per week of counting is possible.

Hard to compete with *n* and with ¹⁹Ne on the G_V/G_A interference physics

(constrained by Ng-Tulin PRD 2012) $\sigma_{\rm D}\sim\!\!10^{-3}\!$ /week for $^{47}{\rm K},$ an isospin-hindered case:

 β^- decay always makes a charged recoil for efficient detection.

Uncertainty Projection: Given $E_1 = -0.01 \pm 0.02$ in ⁵⁶Co, and winning by isospin sqrt(7/2), we can get a limit on $K = y/(1 + y^2)\sin\alpha$ by this effect 4x better per week of counting. We project similar statistics for I=1/2 ⁴⁷K How that translates into sin(α_V) and V_{TBV} depends on V_{Coul} (2.9 keV in ⁵⁶Co).

TRIUMF D in atom trap: Features, Systematics

- Collect recoils going into 4 pi with electric field of 1 kV/cm
- Full reconstruction of recoil and beta momenta
- Point source: we know where it is (by sampling photoionization) and it doesn't move when we flip the polarization

• Any stray polarization along wrong axis is deadly, a lowest-order fake D: Measure with singles asymmetry for recoils and β 's

10/12

 $1/2^{+}$ ⁴⁷K wrt ⁴⁵K O⁻=6644 8 80% branch $1/2^+ \rightarrow 1/2^+$: no $^{47}_{19}\text{K}_{28}$ need for γ coincidence Shorter $t_{1/2} \rightarrow$ less background $I\beta^$ from untrapped atoms @ @ 1.18 Likely better calculation of final-state *D_{EM}* is possible ⁽²⁾ Faster G-T. similar to ³⁶K ©? ©? 79.8 Adequate online rates from 18.7 TRIUMF/ISAC ©? < 2.0Cross-shell isospin breaking: an interesting test for IMSRG? (e.g. Martin Stroberg Holt Leach PRC 104 014324 (2021))

Holstein PRC 5 1529 (1972) • Assumes weak magnetism *b* and induced tensor *d* are single-particle values, not suppressed like $M_A \Rightarrow$ Should be an upper limit • Needs a full calculation, but

should be OK

For ⁵⁶Co final-state E_1 =0.0002 (Calaprice 1977)

[®]TRIUMF *TRV* in isospin-hindered ⁴⁵/₁₉K, ⁴⁷/₁₉K decay

Implementing Barroso and Blin-Stovle PLB 1973 with TRINAT. We would measure $D \hat{J} \cdot \frac{\vec{p_{\beta}}}{E_{\beta}} \times \frac{\vec{p_{\nu}}}{E_{\beta}}$ • To optimize case, and extract V_{TBV} from D, needs a measurement of $V_{\rm coul}$ via M_V . using the recoil asymmetry wrt spin • Project 10^{-3} statistics per week for 47 K, which would produce 4x better precision on $K = \sqrt{\frac{J+1}{J}D}$ than ⁵⁶Co Calaprice and Freedman using E

• Complementary to other *TRV*: *P* even, Isovector/tensor N-N *TRV* (evades Ng-Tulin 2012 EDM constraint on *D*)

left ٠

right

BVY

2.0

1.5

2.5

^{, 92}Sr **γ**s'

 $BGO \rightarrow GAGG (Ce:Gd_3Al_2Ga_3O_{12})$

