WTRIUME Time-reversal violation \mathcal{X} in radiative β decay: experimental progress

- X Motivation
- Our geometry and simulation for $\beta \nu \gamma$ correlation
- \bullet Parasitic test $^{92}\text{Rb}~0^- \rightarrow 0^+$

TRlumf Neutral Atom Trap:

A. Gorelov J.A. Behr

D. Melconian

AM | TEXAS A&M

D. Ashery

Support: NSERC, NRC through TRIUMF, US DOE, Israel Science Foundation

CTRIUMF *T*, **CP**, and baryon asymmetry

Sakharov JETP Lett 5 24 (1967) used CP to generate the universe's excess of matter:

- CP,
- baryon nonconservation, and
- nonequilibrium.

But known CP in the standard model is too small by 10¹⁰ to generate us Caveats: can use CPT

(Dolgov Phys Rep 222 (1992) 309)

We need more CP in the early universe,

not necessarily now

 $\rightarrow \bullet$ We should look for CP i.e. T violation where we can

geometry

RIUMF 3-momentum *T* correlation: Our example

When t \rightarrow -t : $\vec{r}
ightarrow \vec{r}$ $\vec{p} \sim rac{d\vec{r}}{dt}
ightarrow -\vec{p}$

- We can test symmetry of apparatus with coincident pairs
- Not exact: outgoing particles interact \rightarrow 'final-state' fake $\pmb{\mathcal{T}}$

xtras

3-momentum \mathcal{T} correlations: Other examples

Don't depend directly on spin, so only generate EDM's in higher order

• Medium energy **T** 3-momentum correlation:

 $K^-
ightarrow \pi^0 e^- ar{
u}_e \gamma$ INR Moscow 2007,

 $A_{TRV} = -0.015 \pm 0.021$

Three progressively better calculations of the final-state effects were done (Khriplovich+Rudenko 1012.0147 Phys Atomic Nuclei 2011)

 \bullet 3-momentum correlations (no γ) at LHCb and BABAR, 0 \pm 0.003 (Martinelli arXiv 1411.4140)

• General formalism for triple product momentum asymmetries Bevan 1408.3813

Proposed \mathcal{X} in $\pi^{\pm} \rightarrow e^{\pm} \nu e^{+} e^{-}$ [Flagg Phys Rev **178** 2387 (1969)] never done:

Ours would be unique measurement in 1st generation of particles

geometry

$\partial \mathcal{T}$ RIUMF $\gamma \beta \nu \mathcal{X}$: A model

Harvey Hill Hill PRL 99 261601 combine in SM QCD+electroweak interaction in the nucleon's \mathcal{L} Gardner, He PRD 2013 $\mathcal{L} \rightarrow$ $\frac{-4c_5}{m_{nucleon}^2} \frac{eG_F V_{ud}}{\sqrt{2}} e^{\sigma \mu \nu \rho} \bar{p} \gamma_{\sigma} n \bar{\psi}_{eL} \gamma_{\mu} \psi_{\nu L} F_{\nu \rho}$ interference with SM vector current gives \mathcal{T} decay contribution $|\mathcal{M}_{c5}|^2 \propto \frac{Im(c_5 g_V)}{M^2} \frac{E_e}{p_e k} (\vec{p_e} \times \vec{k_{\gamma}}) \cdot \vec{p_{\nu}}$

new physics $M \sim {
m MeV}$

- 7 250x larger in ^{38m}K decay than neutron
- final state fake effect 8x10⁻⁴

• n \rightarrow p $\beta \nu \gamma$ branch (Nico Nature 06, Bales PRL 16) $\Rightarrow \frac{Im(c_5)}{M^2} \leq 8MeV^{-2} \Rightarrow Asym can be \sim 1$ Bales b.r. = (3.35 \pm 0.16) $\times 10^{-3}$, 1.7 σ higher than theory 3.08 $\times 10^{-3}$

$\mathcal{R}^{\mathsf{TRIUMF}}$ **T** radiative β decay and EDMs

No spin \rightarrow different physics at lowest order, but

Ng, Vos private comm.: $(Im(c_5))$ interaction + S.M. β decay \rightarrow n EDM at 2 loops 'Naive Dimensional Analysis': $d_n \sim rac{Im(c_5)G_Fe}{M^2} rac{G_Fm_n^5}{(16\pi^2)^2}$ $\sim \frac{10^{-22}e-cm}{M^2}$ [MeV⁻²] $d_n[\exp] < 3 \times 10^{-26}$ e-cm (Baker 2006 PRL) null n EDM $\Rightarrow \frac{lm(c_5)}{M^2} < 3 imes 10^{-4} [MeV^{-2}] \rightarrow 10^{-3}$ asym We can still reach this sensitivity Since n_{edm} usually targets other physics, it would be good to know independently if this is there

[Some $\gamma \beta \nu$ interactions make at 1 loop a n_{EDM}]

WTRIUMF Geometry: simplest addition to TRINAT

Generic phase space for $\gamma \beta \nu X$

- ullet Classical bremsstrahlung \propto 1/ E_γ
- Any time-reversal violating interaction involves β , ν and γ and produces a 4-body phase space $\propto E_{\gamma}(Q E_{\gamma})^3$

counts

10

 10^{3}

 10^{2}

SIMULATION

4 days

40,000 atoms

EB > 600 keV

 γ c, allowed

γ SM

511s+E**B**>600keV

Online β - γ doubles:

511 keV from E&M showers Shoulder of 3-6% 815 keV γ from ⁹²Rb decay

East and west-going ions lon TOF spectrum similar for top and bottom β

- γ spectrum & β^- & ions 'west' vs. 'east'.
- 5x10⁶ ion- β coincidences: Sensitivity to few % γ branch

$\mathfrak{PTRIUMF} \quad \mathcal{T} \gamma \beta \nu$: Experimental progress

- Unique to 1st generation of particles
- Sensitive to MeV-scale X
- Complementary to $K^- \rightarrow \pi^0 e^- \bar{\nu}_e \gamma$ INR Moscow 2007, $A_{TRV} = -0.015 \pm 0.021$

• Adding γ 's to TRINAT's $\beta\nu$ detection Focus on $E_{\gamma} > 0.511$ MeV and 'opposite' β^+ ⁹²Rb 0⁻ \rightarrow 0⁺ test: possible sensitivity to T pseudoscalar • Vector current mechanism of Gardner and He: Projection for 40,000 atoms ^{37,38m}K trapped and a week: If new physics has 3% branch, 5 days for 1% on T asym. Sensitivity to 5% of SM bremsstrahlung \rightarrow 10% on T asym

92Rb test

TRIUMF TRIumf Neutral Atom Trap at ISAC

xtras

main TRIUMF cyclotron 'world's largest' 500 MeV H⁻ (0.5 Tesla)

 \rightarrow 10,000 atoms ³⁷K demonstrated

Funnel beams

Trapping beams

ISAC Ion beam

Neutralizer

Collection chamber

Push

beam

Detection chamber

- 15 cm —

MCP

BC408 Bdetector hoops

σ±

DSSSD

Past radiative nuclear β^- decay experiments

⁶He Bienlein and Pleasonton NP 1965

³⁵S vector current $\mathcal{O}(10^{-2})$ Boehm and Wu PR 93 518 (1954)

FIG. 3. Internal bremsstrahlung of $S^{3\delta}$.

For axial vector current

5-10% discrepancies allowed

Powar and Singh JPG 2 43 (1976)

${\cal T}$ in radiative β decay and EDMs

Dekens, Vos 1502.04629: dim 6 operators at TeV scale

$$\mathcal{L}_{6}^{\text{eff}} = -\frac{8ic_{w}}{gv^{2}} V_{ud} \operatorname{Re} C_{\varphi \tilde{W} B}(\Lambda) \varepsilon^{\mu\nu\alpha\beta} (\bar{u}_{L}\gamma_{\mu}d_{L}) (\bar{e}_{L}\gamma_{\nu}\nu_{L}) F_{\alpha\beta}$$

 \rightarrow 10⁻¹⁰ asymmetries if constants ~ 1. Also generates EDMs \Rightarrow constants ~ 0.01 So TeV-scale general dim 6 ops can make $\mathcal{T} \gamma \nu \beta$ and EDMs, but don't make measureable nuclear radiative β decay; effects ~ $p_{lepton}^2/scale^2$.

The QCD-like MeV-scale example of Gardner and He is tuned to maximize contribution to neutron β decay and avoid other experiments. E.g. direct searches by colliders are masked by jets.

EDMs constrain the Gardner term anyway ightarrow

Vector current needs β^+ emitter

- β^- decays with vector current:
- n, ³H, (not easy)
- 'isospin-forbidden Fermi' amplitudes with $log(ft) \sim 5-6$ (e.g. ³⁵S)

aeometry

- But isobaric analogs usually lie high in excitation for β^- E.g. ²⁴Na 4⁺ \rightarrow ²⁴Mg 4⁺, *log(ft)* = 6 (famous for the analog transition from ²⁴Al), feeds 2 subsequent γ s so does not help.
- $^{92}\text{Rb}~0^- \rightarrow 0\text{+}$ is 'first-forbidden G-T' which does not have the vector current,
- nor does first-forbidden unique $^{42}\text{K}~2^- \rightarrow 0^+$
- Other first-forbidden can have vector current
- contributions times some other operator ($^{93}{\rm Rb}$) but these have a lot of $\gamma{\rm s}$
- The interference with SM term requires this vector current to produce the Gardner-He term.