John D'Auria, the relativistic chemistry of francium, and MeV-mass ν 's

Otto Häusser, Peter Jackson, and John D'Auria started TRlumf's Neutral Atom Trap "TRINAT"

M. Kalita and T. Hucko showed recent Fr physics results Monday

- JDA's interest: Chemistry of francium for its own sake S-states are sucked in by relativity
- We tried to trap ²²⁶Fr with TRINAT at TISOL Searched for MeV-mass ν 's instead

Crganizers: J. D'Auria, D. Gil, A. Yavin

T. Goldman HI 1993 tossing \bar{p} at ceiling D'Auria HI 81 275 1993 TISOL Behr, Orozco, Sprouse, Gwinner et al. HI 81 197 (1993) but I didn't go ("\$") \odot . I did read the conference summary: O.Hausser HI 81 197 (1993) \odot :

- We trapped ⁷⁹Rb at Stony Brook
- Otto hired me (4th choice) for TRINAT

<u>"Traps for Antimatter and Radioactive Nuclei"</u> 1993

'1st TRINAT meeting' JD'A, JB Apr'94 APS meeting: JD'A: We wanna trap Fr and study it for its own sake JB: I thought we were mostly doing β - ν correlations?

JD'A: Eh, that's Otto (cough)

TRINAT at **TISOL:** A good match for surface ion source for alkali production

- Developed stopper/neutralizer (flexible beamtime)
- Trapped ³⁷K and measured isotope shift (flexible beamtime)
- Tried to trap ²²⁶Fr

2

'Simpler chemistry': 1997 Neutralizer development

One day the trap was not working ⁽²⁾, so we scrounged foils and tried out release:

Best release from BCC

Melconian et al 2005 NIMA

Miedema and Dorleijn Surf. Sci. 95 (1980) 477: adsorption enthalpy related to bulk properties like T_{melt} and work function \rightarrow

Zr won

We tried lower-T foils \rightarrow

lower-T foils

When Gorelov and I blew up the Lithium foil and went to lunch, JD'A cleaned box Al didn't work either

further backup from JD'A

J.B.'s only visit to TISOL front end:

One day, vacuum valves closed. After 8 hrs: 5 Rem/hr P.M. reconnaissance: Polyethelyne (auxiliary) tubing cracked

J.B. capped the PolyFlo (50 sec), knocked over the cooling fan. JD'A fixed the fan

®TRIUMF 1997 Attempt to trap ²²⁶Fr at TISOL

$\mathfrak{B}^{\mathsf{TRIUMF}}$ MeV-mass ν 's and cosmology

Gelmini PRL 2004 Such ν 's don't overclose the universe in cosmologies with low reheating temperature (MeV's, enough to make BBN)

EXAMPLE 1 State of the set of

JD'A+J. Vincent: Can TRINAT trap rhodium and measure e⁻ energies? No, but:

Levinger '53: hydrogenic ψ 's, with K/Ar $E_{\rm bind}$, n^*

Some higher-energy shakeoff e⁻, but very few above threshold for double-strand DNA breaks, \sim 25 eV [Friedland Rad Res 150 172 (1998)]

Relativity and ionization potentials of alkalis

Relativity binds S states tighter. Consequences include:

Au is gold Hg is a liquid ekaRn Z=118 may have e^- affinity > 0

Cold chemistry: Photoassociation \rightarrow Fr₂ molecular dimers

• Excite one atom to a P state, making a dipole interaction with the other.

 C_3 molecular potential \rightarrow quantitative info on $\langle s || E1 || p \rangle$ to interpret atomic PNC interpretation.

Stony Brook (Orozco, Gomez, et al.) looked for Fr₂ and FrRb, did not see.

Aymar et al. JPB 39 2006 predict: greater Fr spin-orbit coupling \rightarrow different dimer potential than Rb₂, Cs₂: similar rates, but fewer Fr₂ molecules near g.s.

internuclear separation R

Jones et al. RevModPhys 2006

Most efficient probe by far is photoionization, so TRINAT may be a better facility than FranciumTrappingFacility to do this.

John D'Auria, the relativistic chemistry of francium, and MeV-mass ν 's

Many radioactive MOT's now

TRINAT testing phase needed regular beamtime from TISOL

JD'A and TRINAT:

J.D'A, Buchmann, Dombsky, Jackson, Sprenger, JB, 1997 NIMB on TISOL J.B. PRL 1997 Trapping 37K Melconian NIMB 2005 NIMA Trinczek PRL 2003

M. Kalita and T. Hucko showed recent Fr physics results Monday CAP