Improving optical pumping methods for nuclear β decay \mathcal{E} RIUMF \mathcal{E} \mathcal{E} Support: NSER J.A. Behr, A. Gorelov, TRIUMF; Anastasia Afanassieva, McMaster U.; J. McNeil, M. Khoo UBC; D. Melconian, Texas A&M; M. Anholm, G. Gwinner, U. Manitoba

Optical pumping of ³⁷K for β decay asymmetry β angular distribution $W(\theta)d\theta = 1 + P A_{\beta}\cos(\theta)$ We've polarized ³⁷K atoms with nuclear polarization $P = \frac{\langle m_l \rangle}{l} = 0.9913 \pm 0.0009$ and measured: $A_{\beta}[exp.] = -0.5707(13)_{syst}(13)_{stat}(5)_{pol}$ Theory -0.5706(7) Best fractional accuracy A_{β} in nuclei B. Fenker et al. Phys Rev Lett **120** 062502 (2018)

Direct Optical Pumping

 Optically pump ³⁷K atoms for 2 ms after AC MOT off

- 4S_{1/2} ightarrow 4P_{1/2} , σ^{\pm}
- Diode laser with RF injected excites g.s F=1 and F=2
- Test with ⁴¹K, almost same hyperfine splitting as ³⁷K $\dot{F} = \dot{J} + I$
- $\mathbf{H}_{\text{hyperfine}} = \vec{\mu_{\text{N}}} \cdot \vec{B_e} = \mathbf{A} \vec{I} \cdot \vec{J}$

F=2 F=1 $\sigma \pm$ $\Delta m = +1/$ **F=2** F=1

Fluorescence Diagnostic stable ⁴¹K, 10⁶ atoms

 Burst of fluorescence as atoms are optically pumped I-photon counting Modelled with rate equations and OBE's Including stray B_{\perp} field \mathbb{Q} and imperfect S₃ • P depends on ultimate

B, not B_{quad}[t] while MOT turns off

 Optimize parameters for ³⁷K nolarization

1/2 $\Gamma = 6 \text{ MHz}$

 $4S_{1/2}$

m=-2 -1 0 1 2

β decay geometry and optical pumping

- Combine OP and MOT beams with angle-tuned 780 nm laser-line filter
- Flip spin state with liquid crystal variable retarder
- Relieve stress-induced birefringence with PCTFE (Neoflon) viewport seals C.Warner Rev Sci Instr 85 113106 (2014)
- $S_3 = -0.9958(8), -0.9984(13),$ +0.9893(14), +0.9994(5)

Improvements in progress

 $S_3 \rightarrow \pm 0.9996$ laser by 3x to improve statistics lower-frequency half-sinusoid to dissipate 1/10 the power while maintaining confinement

• Trim B_{\perp} field gradients • Twisted nematic liquid crystal: • PMT \rightarrow 100 μ s CMOS \Rightarrow dP/dz ? • higher-power 355 nm photoionizing • gentler RAC-MOT with

• Lower E_{β} threshold (0.5 MeV) by changing mirror substrates $250\mu m SiC \rightarrow 70 nm Au 4\mu m Kapton pellicles \leftarrow [Stern Family]$

of National Photocolor]

to test Standard Model predictions.