" fsospin breaking aﬁ%m(d;fharge)
An observable related to isospin breaking of the initial and final states can be related to
triplets of isobaric charge radii Seng and Gorchtein Phys Lett B 2023 (Ref. 2)

The Coulomb potential being r? inside of nuclei leads e.g. to a picture of purely Coulomb

isospin breaking going through the isovector monopole resonance auerbach, Loc NPA 2022
Isospin symmetry relates this contribution to ¢ and isobaric triplet (r3,..) 2

1 shifts xtras atomic theory
2 of 38mK

) 1 5 2 2 Estimation of AM}” and |[AM}’ /(AR?/2)| from different models.
AMy’ = 5(Zi{ren1)” + Z-1{ren,—1)") — Zo{reno) ,
Seng Gorchtein Eq. 22 Transitions AM‘E" (fm?)
. - 1 .
Only triplet with <rc2harge> z known is A=38: WS DFT  HF RPA  Micro

%Ca 3.467(1) fm, ¥"K 3.437(4) fm, ®Ar3.4028(19) fm  “m—“we on o1 ou 005 o

= AMY) =-0.03(54) fm?; models span 0.42 10 0.04 fM? s s o1 om0 oo oo

So making (r2,..)? of 3K 2-3x better using 4S — 4P

makes it as good as the other two

An order of magnitude better 33"K using 45 — 5Pis ~ We hope to interest the ab initio

needed to enable ~ 10% tests of ISB nuclear theory community to
calculate (r2__ )z along with ISB

charge

Towner'20 Satchula’16 Ormand Brown’95

The isospin doublet tests don’t need quite as much accuracy:
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motivation methods

SBmK (12 .4) 2 Methods
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shifts

To optically
pump our atoms
better, we have
improved all
metrology

Fenker NJP 2016

e trap light off

e B <50 mG

Will measure
%7K resonances
for S1188- it
removes 1 fit
parameter
determining our
nuclear spin

Bory

photoionize

polarization by atomic
techniques. Then we will be
ready to measure 3K again.
We should achieve the
natural linewidth '= 6 MHz,
with goal < 0.1 I accuracy
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""“RINAT plans in 4S5}/, 5Py 5

431/2 to 5P, /2 Ksus:

Behrle et al. semiempirical (from
optical isotope shift, muonic

atoms...):

—39+5 GHz-amu (Ref. 18)
Optical I.S. precision needs
improvement to test theory:

Sahoo (preliminary):
-22 + 4 GHz-amu

! L

I 2'T.1 MHz for 0.1 MHZ accuracy

Halloran OC 2008
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atomic theory

From a stable alkali metal
dispenser, we plan to trap
40K to try to reduce its
optical isotope shift error
from 2 MHz to less than 0.5
MHz, to make a better test.

41K Trap 5P >
photoions

F. Klose TRINAT
co-op 2022
FWHM <1.9 MHz

Once that metrology is demonstrated, we would be ready to measure 3™ K wrt 3°K

to 0.1 MHz with TRINAT.
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