An observable related to isospin breaking of the initial and final states can be related to triplets of isobaric charge radii Seng and Gorchtein Phys Lett B 2023 (Ref. 2)

The Coulomb potential being r^2 inside of nuclei leads e.g. to a picture of purely Coulomb isospin breaking going through the isovector monopole resonance Auerbach, Loc NPA 2022

Isospin symmetry relates this contribution to $\delta_{\mathcal{C}}$ and isobaric triplet $\langle r_{\mathrm{charge}}^2 \rangle^{\frac{1}{2}}$:

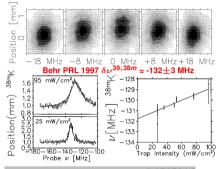
$$\Delta M_B^{(1)} \equiv \tfrac{1}{2} (Z_1 \langle r_{\mathrm{ch},1} \rangle^2 + Z_{-1} \langle r_{\mathrm{ch},-1} \rangle^2) - Z_0 \langle r_{\mathrm{ch},0} \rangle^2 \quad \text{Seng Gorchtein Eq. 22}$$

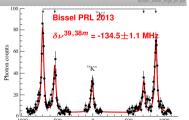
Only triplet with $\langle r_{\text{charge}}^2 \rangle^{\frac{1}{2}}$ known is A=38:

 38 Ca 3.467(1) fm, 38 mK 3.437(4) fm, 38 Ar 3.4028(19) fm $\Rightarrow \Delta M_B^{(1)} = -0.03(54)$ fm²; models span 0.42 to 0.04 fm²

So making $\langle r_{\rm charge}^2 \rangle^{\frac{1}{2}}$ of $^{38{\rm m}}$ K 2-3x better using 4S \to 4P makes it as good as the other two

An order of magnitude better ^{38m}K using 4S \rightarrow 5P is needed to enable \sim 10% tests of ISB

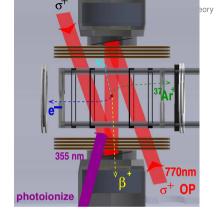

estimation of $\Delta M_B^{(1)}$ and $ \Delta M_B^{(1)}/(AR^2/2) $ from different models					
Transitions	$\Delta M_B^{(1)}$ (fm ²)				
	WS	DFT	HF	RPA	Micro
26m Al \rightarrow 26 Mg	-0.12	-0.12	-0.11	-0.05	-0.03
$^{34}\text{Cl} \rightarrow ^{34}\text{S}$	-0.17	-0.21	-0.16	-0.06	-0.04
38m K \rightarrow 38 Ar	-0.15	-0.42	-0.15	-0.07	-0.04


Towner'20 Satchula'16 Ormand Brown'95

We hope to interest the ab initio nuclear theory community to calculate $\langle r_{\rm charge}^2 \rangle^{\frac{1}{2}}$ along with ISB

The isospin doublet tests don't need quite as much accuracy:

$^{\rm motivation}$ K $\langle \textit{r}_{\rm charge}^2 \rangle^{\frac{1}{2}}$ methods


Frequency relative to the hfs centroid of 38Kz (MHz)

To optically pump our atoms better, we have improved all metrology

Fenker NJP 2016

- trap light off
- $\bullet~{
 m B}<$ 50 mG

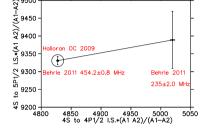
Will measure ³⁷K resonances for S1188– it removes 1 fit parameter determining our nuclear spin

polarization by atomic techniques. Then we will be ready to measure 38m K again. We should achieve the natural linewidth Γ = 6 MHz, with goal < 0.1 Γ accuracy

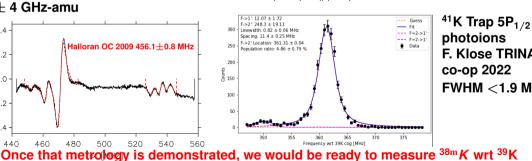
 $4S_{1/2}$ to $5P_{1/2}$ K_{SMS} :

Behrle et al. semiempirical (from optical isotope shift, muonic atoms...):

 -39 ± 5 GHz-amu (Ref. 18) **Optical I.S. precision needs** improvement to test theory: Sahoo (preliminary):


-22 + 4 GHz-amu

0.4


0.2 -

-0.0 -

-0.4

From a stable alkali metal. dispenser, we plan to trap ⁴⁰K to try to reduce its optical isotope shift error from 2 MHz to less than 0.5 MHz, to make a better test.

photoions F. Klose TRINAT co-op 2022 FWHM < 1.9 MHz

to 0.1 MHz with TRINAT.