Fermilab's "Broken Symmetry" sculpture

Slightly broken symmetry in abstract spaces drives a lot of modern particle (and condensed matter) physics

If quarks were massless, their helicity spin $\cdot \hat{\mathbf{v}}$ would be well-defined \Rightarrow chiral symmetry

The π 's mass comes from: binding energy of quarks; the π is the Goldstone boson of the broken chiral symmetry
Axion mass comes from a broken global $U(1)$ symmetry hypothesized to keep a time-reversal-breaking term in the strong interaction zero.

This could still be all the dark matter.
W, Z exchange bosons of the weak interaction get mass from a broken symmetry

Broken symmetry and wrong-handed ν 's

- ν intro

Direct measurements of ν handedness
All ν 's are left-handed so far

- How atom traps work How we polarize nuclei by direct optical pumping (very similar to Ruohong Li's methods, but we have more time)

Our proposal to measure ν handedness

TRIUMF is located on the traditional, ancestral, and unceded territory of the Musqueam people
UBC Museum of Anthropology shares a Reciprocal Research Network cultural heritage online tool with the Musqueam Indian Band, the Stolo Nation/Tribal Council, and the Umista Cultural Society

[^0]Symmetries: Continuous, Discrete

- Noether's theorem (1915):

Continuous symmetry $\quad \rightarrow \quad$ Conserved quantity
Time-translational invariance
Space-translational invariance Rotational invariance (Laplace-Runqe-Lenz vector) THE LATE EMMY NOETHER.

Profesaor Einatein Writes in Appreola* tion of a Fellow-Mathematician. The the Bditer of The New York Times

In Ted Chiang's "Story of Your Life" [Movie "Arrival"]: aliens think in terms of the action, not position and momentum

Energy
\rightarrow
\rightarrow
\rightarrow Angular momentum $\rightarrow \quad$ name?
gan. In the reaim of algebra, in which the most gifted mathematicisns bsve been busy for eenturisa, the siliscovered methods whtt have proved of enormous importance in the development of the present-day younger generation of mathamaticians. Pure mathematica is, in ita way, the poetry of logical ldeas. One seeks the moat general ideas of operation which will bring together in aimpla, logical and uniffed form the largent ponatble circle of formal ralationshipa. In thls effort toward logical beauty apirItual formulas are discovered necessary for the deeper penetration into the lawn of nature.

- Discrete symmetries in quantum mechanics: Parity, Time reversal \rightarrow

ν was invented to solve an experimental puzzle

Reactor ν 's: first direct confirmation by "Inverse β decay"

sketch of the equipment used at Savannah River. The 200 liters
4×10^{-6} SuperK's

1995 Nobel Prize

Nobel Lecture 1995

Fredrick Reines

compared to the expected ${ }^{2}$

$$
\bar{\sigma}_{\text {exp }}=\left(12^{+7}\right) \times 10^{-44} \mathrm{~cm}^{2}
$$

$$
\bar{\sigma}_{t h}=(5 \pm 1) \times 10^{-44} \mathrm{~cm}^{2}
$$

1st plan: put a detector next to a nuclear bomb Pulsed source, get above natural backgrounds $)$

Must calibrate detector well before experiment $)^{-}$
Reactor worked better: 1956 Science 124103
C. Cowan, F. Reines, Harrison, Kruse, McGuire (Los Alamos) They thought they could predict the number to \sim $30 \% \rightarrow$

Intrinsic spin: a conceptual difficulty for $\mathrm{e}-$ and ν

Physically, we can add the intrinsic spin of the e^{-}to its orbital angular momentum
so we'll treat instrinsic spin of e^{-}and ν like any other angular momentum, and think about it with classical pictures.
We should remember that trying to build a classical picture is pretty tricky. An e^{-}with Bohr radius $4 \pi \hbar^{2} / e^{2} m_{e}$ must rotate about 2 orders faster than the speed of light to have one \hbar of angular momentum.
JB should draw a picture on the board or wave his hands in obvious ways
More on spin:
Eugene Commins, "Electron Spin and Its History," Ann Rev Nucl Part Science 62 133 (2012)
Derek FJ Kimball, "Testing Gravity’s Effect on Quantum Spins," Physics 1680 (2023).

Can one write a 'Bohr radius' for the ν ?

Parity

As of 1956, we thought all interactions respected parity Parity operator
(From A. Zee "Fearful Symmetry")

$\boldsymbol{P} \psi(\vec{r}) \rightarrow \pm \psi(-\vec{r})$

1957:

$\tau-\theta$ Puzzle
$+\mu$ decay
$+{ }^{60} \mathrm{Co}$ decay \Rightarrow

Decays: Parity Operation can be simulated by Spin Flip

Under Parity operation P :

$$
\overrightarrow{\mathbf{r}} \rightarrow-\overrightarrow{\mathbf{r}} \quad \overrightarrow{\mathbf{p}} \sim \frac{\mathrm{d} \mathbf{r}}{\mathrm{dt}} \rightarrow-\overrightarrow{\mathbf{p}} \quad \overrightarrow{\mathbf{J}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \rightarrow+\overrightarrow{\mathbf{J}}
$$

\Rightarrow A spin flip corresponds exactly to P reversal Decays don't exactly test T-reversal symmetry
© One experimental discovery of parity violation

Fig. 2. Gamma anisotropy and beta asymmetry for polarizing field pointing up and pointing down.

This does not tell us directly about the ν 's helicity

Wu, Ambler, Hayward, Hopper, Hobson, PR 1051413 Feb '57 Dilution Refrigerator to spin-polarize
${ }^{60} \mathrm{Co} \rightarrow{ }^{60} \mathrm{Ni}+\beta^{-}+\bar{\nu}$
$W[\theta]=1+P A \hat{I} \cdot \frac{\overrightarrow{\mathcal{P}_{\beta}}}{E_{\beta}}$
$=1+A \frac{v}{c} \cos [\theta]$
$A_{\beta-} \approx-1.0$
Followup:
${ }^{58} \mathrm{Co} \rightarrow{ }^{58} \mathrm{Fe}+\beta^{+}+\nu$
$\boldsymbol{A}_{\beta+}>0$
CP conserved?

Measure ν helicity $\epsilon=\hat{\boldsymbol{s}_{\nu}} \cdot \hat{\boldsymbol{k}_{\nu}}$ directly: transfer $\hat{\boldsymbol{s}_{\nu}}$ to γ circular polarization; boost $\overrightarrow{\boldsymbol{k}_{\gamma}}$ by $\pm \overrightarrow{\boldsymbol{k}_{\nu}}$ Goldhaber, Grodzins, Sunyar Phys Rev 1091015 (Dec 1957)

$$
\begin{gathered}
e^{-}+^{152 m} \mathrm{Eu} \rightarrow \\
\nu+{ }^{152} \mathrm{Sm}
\end{gathered}
$$

- Upward-going ν populates $\left\langle I_{z}\right\rangle=0,+1$ not -1
- So γ is circularly polarizedtransmission through magnet depends on iron polarization: $\frac{N_{+}-N_{-}}{N_{+}+N_{-}}=0.017 \pm 0.003$
- Upward ν boosts γ momentum so it can be absorbed on-resonance $\Rightarrow \nu$ helicity $-1 \pm 10 \%$

Magneto-optical trap: damping

For a trap, we want a damped harmonic oscillator 'Red-detuned' beams provide the "damping"

'Optical molasses'

We still need a position-dependent force

"Why Optical Traps Can’t Work"

Earnshaw Theorem: $\vec{\nabla} \cdot \vec{E}=\mathbf{0} \Rightarrow$
no electrostatic potential minimum for charge-free region
"Optical Earnshaw Theorem" (Ashkin + Gordon 1983):
Using Poynting's theorem:
$\vec{\nabla} \cdot \vec{S}=\frac{c}{4 \pi} \vec{\nabla} \cdot(\vec{E} \times \vec{B})=-\vec{J} \cdot \vec{E}-\frac{\partial u}{\partial t}=0$

\Rightarrow no 3-D traps from spontaneous light forces
with static light fields

Dodges!

- Time-dependent forces (pulsed lasers)
- Dipole Force traps ("optical tweezers")
- Modify internal structure of atom with external fields

Magneto-optical trap: restoring force must perturb atoms

 $\varepsilon^{-} \sigma^{+}$

Damped harmonic

$$
\varepsilon=\hat{\mathbf{S}} \cdot \hat{\mathbf{k}}
$$

oscillator

How to spin-polarize a nucleus with a laser

Polarization of nuclei by Optical Pumping
Biased random walk
Simple example:
$J \prime=1 / 2$
$J=1 / 2$

$P(m=1 / 2)=1-(2 / 3)^{N}$ after N steps

Need 12 cycles to get to 99% of maximum.

What elements can be laser cooled?

荗triump TRIumf Neutral Atom trap at ISAC

main TRIUMF cyclotron
'world's largest'
$500 \mathrm{MeV} \mathrm{H}^{-}$(0.5 Tesla)

㡙TRIUMF TRINAT plan view

- Isotope/lsomer selective - Avoid untrapped atom background with 2nd trap
- 75\% transfer
$\bullet 0.7 \mathrm{~mm}$ cloud for $\beta-\mathrm{Ar}^{+} \rightarrow \nu$ momentum

- Spin-polarized $99.1 \pm 0.1 \%$

Neutralizer and Collection trap

发triumf TRINAT lab: "tabletop experiment"

要TRIUMF

- $\boldsymbol{\beta}$, recoil nucleus
- shakeoff \boldsymbol{e}^{-}for TOF trigger

The decay pattern shown on the right is helicity-forbidden if the ν goes straight up

ion MCP assembly

14 inch CF flange
Electrostatic field delay-line anode for position info
no stray wires
Low-Z (glassy carbon, titanium) to minimize β^{+} scattering

Fenker et al. Phys Rev Lett 120, 062502 (2018)
$\boldsymbol{A}_{\boldsymbol{\beta}}[$ experiment] $=$ - 0.5707 ± 0.0019
$\boldsymbol{A}_{\beta}[$ theory] $=$ -0.5706 ± 0.0007

The best fractional accuracy achieved in nuclear or neutron β decay

decay has helicity-driven null

A different isospin mirror-decay spin-polarized observable

2014 polarized β-recoil

$I^{\pi}=3^{+} \rightarrow 2^{+}$decay of ${ }^{38 \mathrm{~g}} \mathrm{~K}$ or $I^{\pi}=1^{+} \rightarrow 0^{+80} \mathrm{Rb}$ would complete a direct ν helicity determination

$$
\mathrm{W}(\theta, P) \approx 1+a_{\mathrm{pol}} \cos \left(\theta_{\beta \nu}\right)
$$

$$
\text { where } a_{\mathrm{pol}}=\left(A_{\beta}-B_{\nu}\right) P-a_{\beta \nu}+2 c / 3=1 \text { or } 0, \text { independent of } \frac{M_{G T}}{M_{F}}
$$

The neutron community checks this combination of observables for consistency Mostovoì+Frank Pis'ma Zh. Eksp. Teor. Fiz. 2445 (1976)

Broken Symmetry and Wrong-handed ν 's

- ν intro

Direct measurements of ν handedness
All ν 's are left-handed so far

- How atom traps work

How we polarize nuclei by direct optical pumping (very similar to Ruohong Li's methods, but we have more time)

Our proposal to measure ν handedness
A. Gorelov
B. Kootte
J.A. Behr

University of Manitoba
G. Gwinner
D. Melconian
M. Vargas-Calderon
"...since the π is both a Nambu-Goldstone boson and a $q \bar{q}$ bound state, it holds a unique position in nature" Horn, Roberts JPG 432016073001
Continuous symmetry leaving a Lagrangian invariant \rightarrow spin-0 $\boldsymbol{m}=0$ boson Goldstone Salam Weinberg PR 127965 (1961)
Breaking that symmetry generates a pseudo Nambu Goldstone boson with $\boldsymbol{m} \neq 0$
JB is ignoring sublety here- the Lagrangian can stay symmetric while a vacuum expectation value of a field can break the symmetry...

- The π can be treated as a Goldstone boson acquiring m from broken chiral symmetry. (Remember chiral symmetry means m_{q} 's $=0$, so q 's then have well-defined handedness.)

Remembering that $m_{\rho} \approx 4 / 5 m_{\text {nucleon }}$, and constituent q 's work for μ_{ρ}, but $m_{\pi} \approx 1 / 7 m_{\text {nucleon }}$

Gell-Mann Oakes Renner PR 1752195 (1968)
(note this pre-dates QCD)
$m_{\pi}^{2} \propto\langle\pi| U_{E C S B}|\pi\rangle$
$U_{E C S B}$ is interactions
breaking chiral symmetry
(also $m_{\pi}^{2}+3 m_{\eta}^{2}-4 m_{K}^{2}=0$)
π as a $q \bar{q}$ bound state of constituent q's leads instead to $m_{\pi} \propto\langle\pi| U_{\text {ECSB }}|\pi\rangle$
(to get $\boldsymbol{m}_{\pi}=135 \mathrm{MeV}$ needs fine tuning)

- If \boldsymbol{m}_{q} 's $=0$, then for a Goldstone boson $\pi, \boldsymbol{m}_{\pi}=\mathbf{0}$, and its interactions also vanish (!) Restoring chiral symmetry in nuclei was a possible solution to the Gamow-Teller strength deficit (below).
- We saw that chiral EFT of N-N interaction is based on \approx chiral symmetry of the q's. So is chiral perturbation theory, which quantifies a QCD-induced weak decay (below). The axion is another Goldstone boson from \bar{X} in QCD (below)

Photoionize 1\%
in situ probe
$P_{+}=+0.9913(8)$
$P_{-}=-0.9912(9)$
Fenker NJP 2016

Whexsim Still no wrong-handed ν 's 发triump

Extra W^{\prime} with heavier mass, couples to wrong-handed ν_{R}

LHC $M_{w}^{\prime}>3.7 \mathrm{TeV}$ 90\%

[^0]: Senator Pastore: Is there anything connected in the hopes of this accelerator that in any way involves the security of the country?

