WTRIUMF Kinetic energy of shakeoff atomic electrons from ³⁷K β^+ decay

Atomic electrons are 'shaken off' by β^+ decay. We have measured their energies from 2-150 eV.

- Motivations:
 Precision measurement
 Atomic energies in β decay
 Radiation damage
- Experiment and results:
- E_{e-} spectrum agrees with ψ_H
- $\bar{E}_{e-} = 3 \text{ eV}$ is less than estimated

 \Leftarrow K is like H

RIUMF TRIUMF Neutral Atom Trap collaboration

**R.S. Behling **B. Fenker **M. Mehlman * P.D. Shidling D. Melconian

- *A. Gorelov J.A. Behr
- M.R. Pearson
- K.P. Jackson
- L. Kurchananov
- K. Olchanski

UNIVERSITY <u>OF</u> MANITOBA **M. Anholm G. Gwinner

D. Ashery I. Cohen

```
\frac{\text{Undergrad }\psi'\mathbf{s}}{\text{C. Farfan, McGill}}
```

** Grad student * PDF

Supported by NSERC, NRC through TRIUMF, DOE, State of Texas, Israel Science Foundation

experiment

results

WTRIUMF Main motivation: TRINAT precision exp

 ${}^{37}K \rightarrow \beta^+ + \nu + {}^{37}Ar^-$ Gorelov H.I. 1999: Ar⁻, Ar⁰ 84%, Ar⁺ 11%, Ar⁺² 3.1% ... The shakeoff atomic *e*⁻ cleans up the β^+ asymmetry, and is the TOF trigger for recoil asymmetry.

We need to understand these atomic electrons well enough to ensure we don't introduce false asymmetries

 \bullet Test atomic ψ to calculate dependence of charge state on recoil momentum

$\mathcal{R}^{\text{TRIUMF}}$ Ar⁻ from ³⁷K β^+ decay Ar⁻ has a metastable state $3s^2 3p^5 4p$, τ =260 ns Unusual configuration: if populated in β^+ decay, Ar⁻ can move before releasing the electron. Since ³⁷Ar has spin-correlated asymmetry, this generates a false β asymmetry We constrain Ar^{-*} population from β^+ - e^- timing: 10⁴ Delayed e⁻ from $Ar^{-*} \tau = 260 \text{ ns}$ 10³ < 4% implies counts <0.08% correction to A 10² -10 10⁰ -

200 300

T beta [ns]

1ററ

-200 - 100

400

500

 $\mathfrak{C}^{\mathsf{TRIUMF}}$ Atomic energy change from β^+ decay

- Sudden approximation $\langle \psi_i | \psi_f \rangle$ predicts final ion charge states (Carlson PR169 1968; Couratin PRL108 2012).
- Levinger PR 90 1953 E_{e-} analytic calculation uses hydrogenic ψ_i and Coulomb ψ_f for K, L shells
- Serber Snyder 1952: Thomas-Fermi calculation for energy of atomic cloud change in β^{\pm} decay (65 eV at Z=18)

Carlson used Levinger to estimate $\bar{E} = 1.8\Sigma P_{nlj}E_{nlj} = 38$ eV, accounting for 1/2 the atomic energy

• Superallowed FT $\propto Q^5 \to 100$ eV makes a 0.0001 effect. The 65 eV calculated energy is worth testing.

reauta

xtras

WTRIUMF Radiation damage from low-energy *e*⁻

Radiation damage from β decay: creation of OH, H₂O₂ ions Do shakeoff *e*⁻'s add DNA breaking? Not much...

• Double-strand DNA breaks: Threshold: $E_{e-} \approx 25 \text{ eV}$ Peak: $E_{e-} \approx 400 \text{ eV}$ [Friedland Rad Res 150 172 (1998)]

• There is interest in EC decay for localized therapy: [T.Behr Eur J Nucl Med (2000) 27:753]

We could provide a benchmark for such MC [Lee Comp Math Meth Med 2012]

WTRIUMF Other work: shakeoff E_e at Kyiv

Mitrokhovich Nucl Phys Atom Energy 11 125 (2011) Thin source, Integral spectrometer 152 Eu β^- decay for E_e > 150 eV

Impressively low E_{e-} for a source with backing.

Fig. 5. The differential spectra of electrons of "shake-of at β -decay (solid square dots) and internal conversion (open circle) in ¹⁵²Eu, obtained from measurements γee_{o} -coincidences. The values of a correlation Υ for

RIUMF Experimental method

- β⁺-e⁻ coincidence, uniform E field
 AC MOT to turn B quad off quickly
- Bz= 2.2 Gauss uniform
- Position-sensitive 80 mm e⁻ MCP+delay-line anode (Roentdek HEX75)
- e^- distribution into 4π makes flat-topped position distributions with width given by E_e

[⊗]TRIUMF ³⁷K shakeoff e[−] energy

$\mathfrak{CTRIUMF}$ Improving ψ_i and ψ_f

- Bound ψ_i Roothaan-H-F, Bunge et al. ADNDT 1993
- ψ_{f} : Coulomb wavefunctions, screened,
- Phase shift $r \to \infty$ from quantum defect [Burgess, Seaton MNRAS 120 122 (1960) photoionization accurate $\sim 20\%$] Match ψ and $d\psi/dr$ as screened potential changes with r

- Disagrees at low *E_e*-
- Predicts some high-*E_e*-

xtras

WTRIUMF Kinetic energy of shakeoff atomic electrons from ³⁷K β^+ decay

- No bias for SM tests Little extra radiation damage
- Rough agreement with 1953 Levinger \overline{E} = 3eV is less than estimated (because K is hydrogen-like)
- Some higher-*E* e⁻

CALC Prediction of *E*_{recoil}-dependence shakeoff

experiment

WTRIUMF ³⁷Ar charge states

Gorelov Hyperfine Interactions 127 373 (2000)

Figure 4. Daughter atom charge state distribution measured in 37 K, 80 Rb β^+ -decay, compared to ORNL 41 Ar, 85 Kr β^- -decay data. The normalization of 80 Rb is uncertain by 2×.

Charge state dependence on recoil momentum

Behr and Gwinner JPG 2009

Shakeoff depends on E_{recoil}

So does $a_{\beta\nu}$

But we measure much more than the E_{recoil} spectrum– we measure β - ν angle directly

