Weak interaction breaks parity: Consequences?

'Pulsar kicks'

Fuller PRD 2003 Forced $p + e^- \rightarrow n + \nu$ $W(\theta) = 1 + \frac{\langle m_l \rangle}{I} A_{\nu} \cos(\theta_{\hat{1}})$ B field polarizes p's Need ν_e to include 10^{-8} admixture of $m_{\nu} \sim \text{keV}$

Earthling's amino acids are all left-handed H H R-(-)-1 S-(+)-1 energy hve Letokhov PLA'75 Darguie CHIRALITY 2010 $\Delta E \sim 10^{14-16} {
m eV}$ Not Enough for left-handed

bugs to win, so \rightarrow

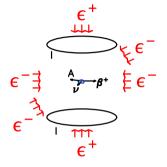
Spin-polarized SN ν 's could preferentially zap wrong-handed amino acids Finding the right environment for spin-polarized amino acids? e.g. : Astrobiology 18 (2018) Selection of Amino Acid Chirality via ν Interactions with ¹⁴N in $\vec{E} \times \vec{B}$ Fields M.A. Famiano, R.N. Bovd (TRIUMF EEC 90's)...

Still no wrong-handed ν s

- ν helicity and Parity *P* symmetry How to test *P* symmetry experimentally Only left-handed ν so far
- How 'magneto-optical' atom traps work
- The most accurate β asymmetry
 What we learn from it
 How much better we want to do

TRlumf Neutral Atom Trap collaboration:

S. Behling B. Fenker M. Mehlman P. Shidling D. Melconian



A. Gorelov J.A. Behr M.R. Pearson Undergrad A. Afanassieva

J. McNeil

2/29

Parity (From A. Zee "Fearful Symmetry")

As of 1955, we thought all interactions respected parity Parity operator $P \psi(\vec{r}) \rightarrow \pm \psi(-\vec{r})$

```
{}^{\prime}\tau - \theta Puzzle'

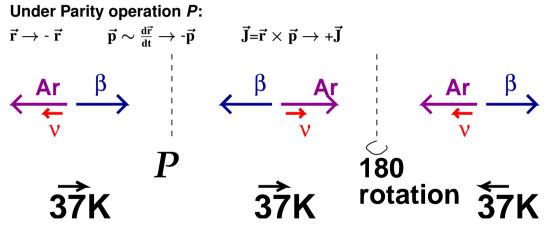
\tau \rightarrow 2\pi

\theta \rightarrow 3\pi

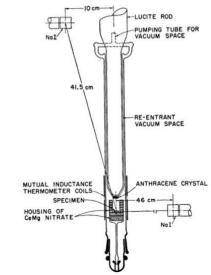
Same lifetime and mass!

but P\pi = -\pi
```

Lee, Yang Phys Rev 104 254 Jun '56: same particle, but parity broken \Rightarrow **Predicted asymmetries** in μ and ⁶⁰Co decay \Rightarrow

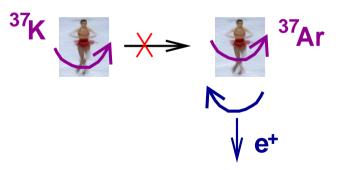


$\mathbf{A}_{\boldsymbol{eta}}$ consequences


Decays: Parity Operation can be simulated by Spin Flip

 \Rightarrow A spin flip corresponds exactly to *P* reversal

One experimental discovery of parity violation

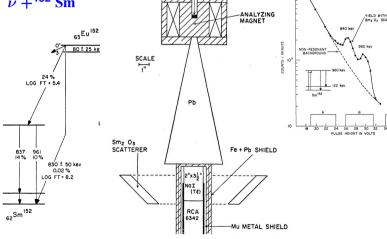


Wu, Ambler, Hayward, Hopper, Hobson. PR 105 1413 Feb '57 **Dilution Refrigerator to** spin-polarize $^{60}\mathrm{Co}
ightarrow ^{60}\mathrm{Ni}$ + eta^- + $ar{
u}$ $W[\theta] = 1 + PA\hat{I} \cdot \frac{p_{\beta}}{E_{\theta}}$ $= 1 + A \frac{v}{c} \cos[\theta]$ $A_{\beta-} \approx -1.0$ **April followup:** 58 Co \rightarrow 58 Fe + β^+ + ν

 $A_{\beta+} > 0$ CP conserved?

Further sensitivity to wrong-handed leptons

So far: ν is left-handed, $\bar{\nu}$ is right-handed I'll show you data on this One can measure the ν helicity more directly \rightarrow

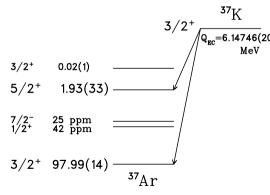

Fuist SOURCE

Measure ν helicity: transfer to γ circular polarization

Goldhaber, Grodzins, Sunyar Phys Rev 109 1015 (Dec 1957)

- Upward-going ν populates $\langle I_z \rangle = 0, +1 \text{ not -1}$
- So γ is circularly polarized– transmission through magnet depends on iron polarization: $\frac{N_+ - N_-}{N_+ + N_-} = 0.017 \pm 0.003$
- Upward ν boosts γ momentum so it can be absorbed on-resonance $\Rightarrow \nu$ helicity -1 \pm 10%
- (• $\bar{\nu}$ helicity \sim +1 Palathingal PRL 524 24 '69)

 $e^- + {}^{152\mathrm{m}}\mathrm{Eu}
ightarrow
u + {}^{152}\mathrm{Sm}$



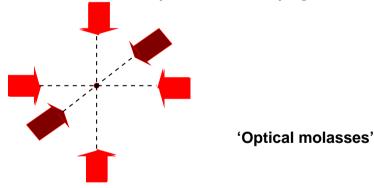
³⁷K isobaric mirror decay: a 'heavy neutron' ?

Here there are 2 operators, so A_{β} isn't 1 or -1 or a clean fraction

'Fermi' operator changes n to p;

'Gamow-Teller' changes n to p and flips nucleon spin

 $\begin{array}{c} {}^{37}\mathrm{K} \\ \hline \mathbb{Q}_{\mathrm{gc}^{-6.14746(20)}} \\ {}^{\mathrm{MeV}} \end{array} \begin{array}{c} \tau, \ \mathcal{Q} \text{ and branch} \Rightarrow \text{decay strength } \mathcal{F}t \\ \mathrm{We \ know \ the \ Fermi \ } \mathcal{F}t_0 \ \text{from \ the \ } 0^+ \rightarrow 0^+ \\ \mathrm{decays, \ so \ from \ } \mathcal{F}t \ \text{we \ can \ get \ the} \\ \mathrm{Gamow-Teller \ strength:} \\ \mathcal{F}t \ (\text{Shidling \ PRC \ 2014}) \Rightarrow \end{array}$

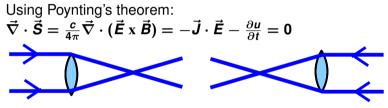

 $\rho = C_A M_{GT} / C_V M_F = 0.5768 \pm 0.0021$

Implies $A_{\beta}[SM] = -0.5706 \pm 0.0007$

traps

Magneto-optical trap: damping

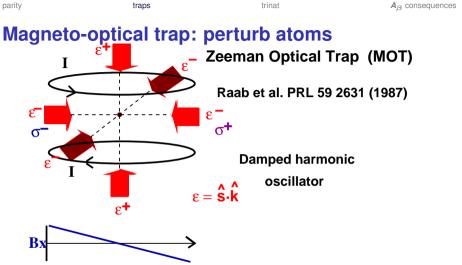
For a trap, we want a damped harmonic oscillator 'Red-detuned' beams provide the "damping"

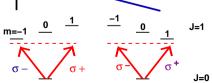

We still need a position-dependent force

"Why Optical Traps Can't Work"

Earnshaw Theorem: $\vec{\nabla} \cdot \vec{E} = \mathbf{0} \Rightarrow$

no electrostatic potential minimum for charge-free region


"Optical Earnshaw Theorem" (Ashkin + Gordon 1983):



 \Rightarrow no 3-D traps from spontaneous light forces with static light fields

Dodges !

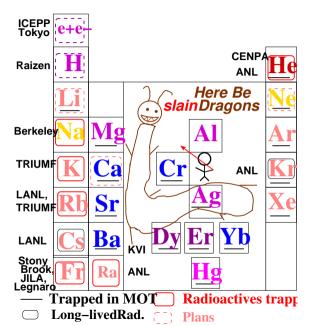
- Time-dependent forces (pulsed lasers)
- Dipole Force traps ("optical tweezers")
- Modify internal structure of atom with external fields

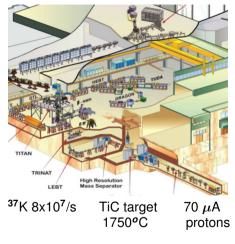
traps

trinat

Why atom traps are shallow

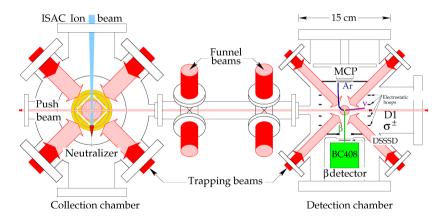
Atomic transition "saturates" Maximum scattering rate = $\gamma N_e/N \rightarrow \gamma/2$


So radiation pressure traps are shallow IF they rely on spontaneous emission


traps

trinat

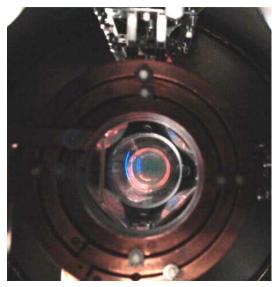
What elements can be laser cooled?

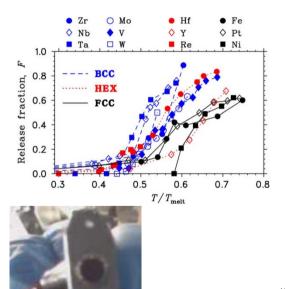

main TRIUMF cyclotron 'world's largest' 500 MeV H⁻ (0.5 Tesla)

RIUMF TRINAT plan view

- Isotope/Isomer selective Avoid untrapped atom background with 2nd trap
- 75% transfer

• 0.7 mm cloud for β -Ar⁺ $\rightarrow \nu$ momentum

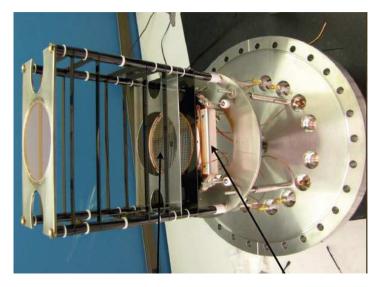



 \bullet Spin-polarized 99.1 $\pm0.1\%$

parity

trinat

Neutralizer and Collection trap

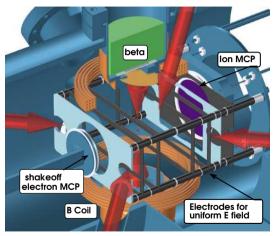


xtras

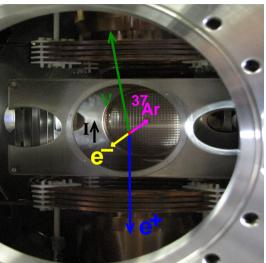
traps

trinat

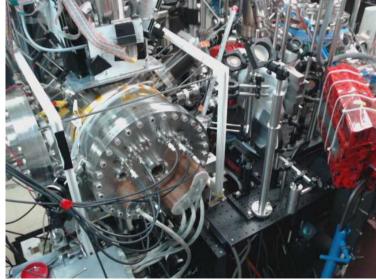
ion MCP assembly


14 inch CF flange **Electrostatic field** delay-line anode for position info no stray wires Low-Z (glassy carbon, titanium) to minimize β^+ scattering

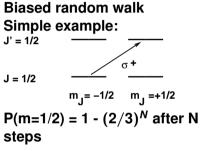
parity

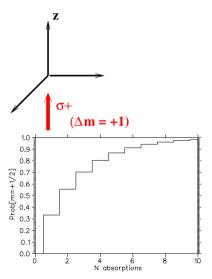

traps

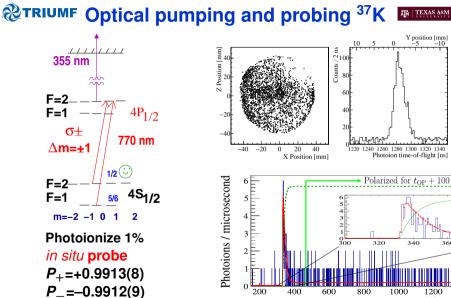
trinat


RIUMF ³⁷K decay geometry

- β , recoil nucleus
- shakeoff e^- for TOF trigger The decay pattern shown on the right is helicity-forbidden if the ν goes straight up

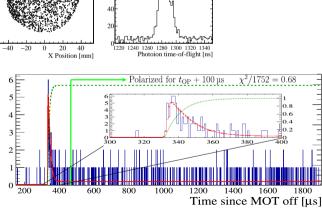





How to spin-polarize a nucleus with a laser

Polarization of nuclei by Optical Pumping

Need 12 cycles to get to 99% of maximum.



traps

Fenker NJP 2016

trinat

parity

A_G consequences

Polarization

0.6

04

0.2

1800

0.8

0.6 0.4

0.2

photoionize

355 nm

traps

trinat

 β^+ asymmetry ³⁷K data TEXAS A&M Data 400 GEANT4 σ^+ 200 counts $\chi^2/228 = 1.02$ 100 CL = 42%duals Scintillator energy [MeV] -0.45 $\chi^2/42 = 1.02$

superratio CL=43.% -0.50 asym -0.55 -0.60 8 OP GEANT4 770 nm roc 0.01 0.00 -0.01 ata--0.02

Fenker et al. Phys Rev Lett 120, 062502 (2018) A_{β} [experiment]= -0.5707 ± 0.0019 A_{β} [theory] = -0.5706 ± 0.0007 The best fractional accuracy achieved in nuclear or neutron β decav

traps

trinat

 37 K $A_eta = -0.5707 \pm 0.0018$ agrees with standard model -0.5706 \pm 0.0007

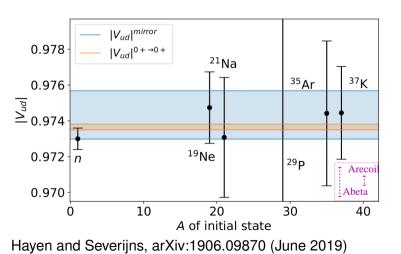
Better absolute uncertainties from: ¹⁹Ne $A_{\beta} = -0.0360 \pm 0.0008$

neutron \textit{A}_{β} = -0.11985 \pm 0.00017 \pm 0.00012 PERKEO III 2019 lifetime must still be settled

What physics can we probe? ightarrow

To explain some weak decays:

 $|\boldsymbol{u}\rangle \rightarrow |\boldsymbol{d}\rangle + \epsilon |\boldsymbol{s}\rangle$ i.e. $|\boldsymbol{u}\rangle \rightarrow \cos(\theta_{z})|\boldsymbol{d}\rangle + \sin(\theta_{z})$


$$|u
angle
ightarrow \cos(heta_{\mathcal{C}})|d
angle+\sin(heta_{\mathcal{C}})|s
angle$$

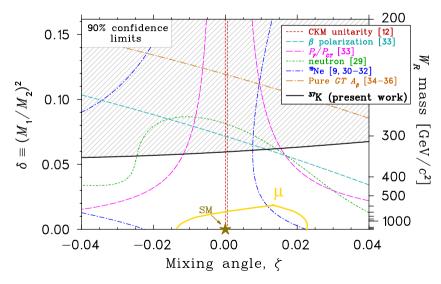
For 3 families of particles,

 $\begin{array}{l} |u\rangle \rightarrow \cos(\theta_{C})|d\rangle + \sin(\theta_{C})|s\rangle + \epsilon'|b\rangle \\ \text{3x3 matrix. Unitarity} \Rightarrow |V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 \end{array}$

Models exist to explain the value of θ_c Such models can invoke 'spontaneous symmetry breaking' and then maybe restore the symmetry under some conditions We interpret our measurement to measure θ_{Cabibbo} i.e. V_{ud}

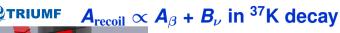
֎ Weak interaction: same strength, all nuclei?

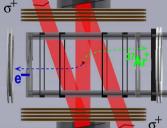
Deduced V_{ud} from mirror decays Are people overestimating their uncertainties? We aren't ⁽²⁾

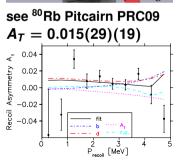

TEXAS A&M

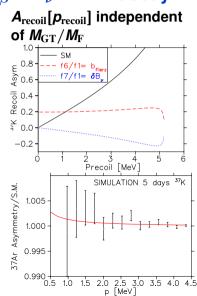
We project to reach 0.0005 accuracy, as good as any $0^+ \rightarrow 0^+$ except ^{26m}Al.

Assumes 5% isospin breaking calculation.

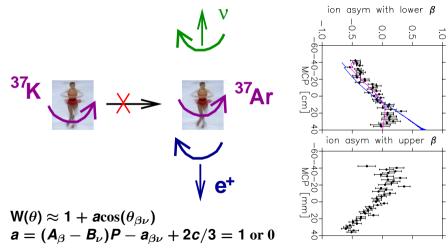

TRIUME Still no wrong-handed ν 's $\mathfrak{A}^{\mathsf{TRIUME}}$




Extra W' with heavier mass, couples to wrong-handed ν_B LHC $M'_{W} > 3.7 \text{ TeV}$ 90%


xtras

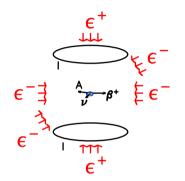
27/29



Completed upgrade to 1 kV/cm, fine-tuning polarization: plan to be ready in October 2020.

®TRIUMF Helicity-driven null in mirror decay

u can't go with I if β is against

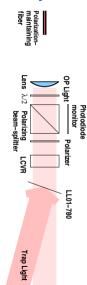

• ν helicity and Parity **P** symmetry

P symmetry can be tested by flipping spins

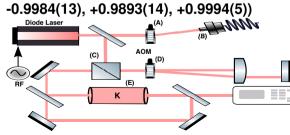
The standard model violates *P* 'maximally' so far

• 'Magneto-optical' atom traps and optical pumping provide ν - β coincidence experiments

We have made the most fractionally accurate A_{β} measurement (0.32%) Fenker et al. PRL 120 062502 (2018) We want to reach 0.1% accuracy to complement high-energy collider searches

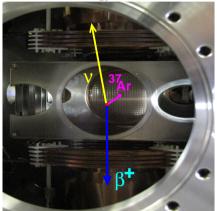

trinat

Why the weak interaction is 'weak' at low energy

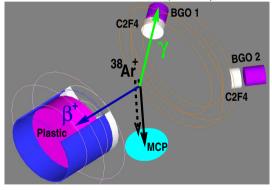

'more massive virtual particles are created for shorter times'

WTRIUMF Optics Techniques

- Combine 769.9nm D1 and 766.49 D2 with angle-tuned 780 nm laser-line filter
- Flip spin state with liquid crystal variable retarder
- Relieve stress-induced birefringence with PCTFE (Neoflon) viewport seals (S₃=-0.9958(8),



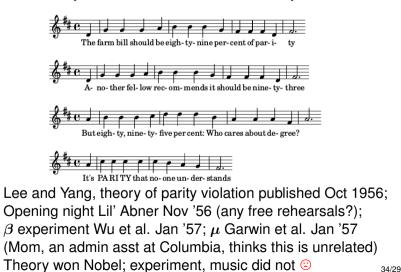
optics and detectors



WTRIUMF What about **7**? 3-momentum correlation

When t
$$ightarrow$$
 -t :
 $ec{r}
ightarrowec{r}$ $ec{p}\simrac{dec{r}}{dt}
ightarrow$ - $ec{p}$

$$\vec{\boldsymbol{\rho}_{\nu}} \cdot \vec{\boldsymbol{\rho}_{\beta}} \times \vec{\boldsymbol{\rho}_{\gamma}} = -\vec{\boldsymbol{\rho}_{\text{recoil}}} \cdot \vec{\boldsymbol{\rho}_{\beta}} \times \vec{\boldsymbol{\rho}_{\gamma}}$$
$$\stackrel{t \to -t}{\longrightarrow} \vec{\boldsymbol{\rho}_{\text{recoil}}} \cdot \vec{\boldsymbol{\rho}_{\beta}} \times \vec{\boldsymbol{\rho}_{\gamma}}$$


BUT flipping t is not the same thing as running the decay backwards. Particles interact on the way out, and you don't reverse that part.

Parity: influences? 1956 Broadway Musical Lil' Abner

trinat

20 minutes by public transit

Timeless Lyrics: Gene de Paul, music Johnny Mercer