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β-decay correlations with laser-trapped 37K in the

LHC era

• Precision measurement of angular

correlations

Complementarity with particle

phenomenology

• How our atom trap helps us

Spin-polarizing nucleus with laser

• Example: The most accurate Aβ

measurement

What we are learning from it

How much better we must do

• Plans for time-reversal violation in

radiative β decay
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Electroweak Interactions: what we “know”

• E&M unified with Weak interactions
γ⇐⇒ Z0,W+,W−

1) Only spin-1 “vector” exchange bosons
2) Only left-handed ν’s: “parity is maximally violated”

• Things we can test:

1) Bosons with other spin?

2) Couplings to wrong-handed leptons?

2) A big ‘Standard Model’ success was predicting the
Z0.
Amount of atomic parity violation is sensitive to extra
neutral bosons
(Francium PNC, Manitoba/Maryland/William &
Mary/San Luis Potosi/TRIUMF)
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Why the weak interaction is ‘weak’ at low energy

‘more massive virtual particles are created for shorter

times/distances’

Propagator+vertices:

T ∝
GX (−gµν+pµpν/M2

X
)GX
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W

G2
X
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X

if process interferes with W (couples

to left-handed ν)

• IF GX ∼ electroweak coupling, then absence of

0.1% changes in angular correlations⇒ MX > 6 or 30 MW

• But if GX small, then MX can still be small. Popular in

neutral boson models, motivated by particle astrophysics
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Lepton helicity→ angular distribution

For 38mK, 0+→0+ decay:

β+

β+

Ar
ν

m=+1/2
m=−1/2

Ar
ν

m=+1/2
m=+1/2

leptons have
opposite helicity
for W (vector)
boson exchange

W [θβν] = 1 + b m
E

+ a
vβ

c
cos θβν

⇒ a = +1, b = 0 a = −1 for scalar

• independent of

isospin mixing and

nuclear structure

• Radiative

corrections 2x10−3,

recoil order term is

3x10−4

K37 37Ar

e+

ν
← This decay pattern needs

non-S.M. chirality
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Parity Operation can be simulated by Spin Flip

Under Parity operation P:

~r→ -~r ~p ∼ d~r
dt
→ -~p ~J=~r×~p→ +~J

ν

βAr

ν

β Ar

ν

βAr

P 180
rotation37K 37K 37K

This is exact
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3-momentum ✓✓T correlation
When t→ -t :

~r→~r ~p ∼ d~r
dt
→ -~p

37Arν

β+

����

~pν · ~pβ× ~pγ = − ~precoil · ~pβ× ~pγ
t→−t
−→ ~precoil · ~pβ× ~pγ

LYSO 2

Plastic

W shield
BGO

LYSO 1

MCP

γ

β+

38Ar+

BUT flipping t is not the same thing as running the decay

backwards.

Particles interact on the way out, and you don’t reverse

that part.
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One experimental discovery of parity violation

Wu, Ambler, Hayward, Hopper, Hobson, PR 105 (1957) 1413

Dilution

Refrigerator

to spin-polarize

60Co→
60Ni + β− + ν̄

W [θ] = 1 + AÎ ·
~pβ

Eβ

= 1 + Av
c

cos[θ]

A = 1.0
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37K isobaric mirror decay: a ‘heavy neutron’ ?

F t (Shidling PRC 2014)⇒
ρ = CAMGT/CV MF =

0.5768±0.0021
⇒ Aβ[SM] = -0.5706±0.0007
Recoil-order + Coulomb +
finite-size corrections ≈
–0.0028 (Eβ/E0)
1st-order recoil-order from
E&M moments; small µ⇒
small weak magnetism
(Coulomb corrections ∼ weak
mag) Holstein RMP 1975
DFT for isospin mixing has
improved its functional
Using weighted average for δC

would→ ρ = 0.5774±0.0022
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Magneto-optical trap

ε

ε

ε

ε

ε−

+

+
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σσ + −
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J=1m=−1
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0
1

Raab et al. PRL 59 2631 (1987)

 oscillator

Damped harmonic −

Zeeman Optical Trap  (MOT)
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What elements can be laser cooled?

. .
Here Be

H

Mg

Dragons

Al

He

Na

Sr

CrCa

Ne

LANL,
TRIUMF

Berkeley

TRIUMF

Cs

Fr

Rb

K Kr

Xe

Ar

Li

Trapped in MOT Radioactives trapped
Long−livedRad. Plans

LANL

 ANL

ANL

Ba

 ANL

KVI

Ra Hg
Stony
Brook,

Legnaro
JILA,

Raizen

Ag

Er YbDy

slain
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AC MOT to turn off trap

MOT’s 7 G/cm Bquad off to
1% of its value in 100 µs:

B=1% of MOT at 100 us

M. Anholm, M.Sc. thesis, UBC 2011
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How to spin-polarize a nucleus

with a laser: Part I
Polarize atom by Direct Optical Pumping

Biased random walk

Simple example:

   

J’ = 1/2

J = 1/2

m  = −1/2 m   =+1/2
J J

σ +

P(m=1/2) = 1 - (2/3)N after N

steps

Need 12 photons absorbed to

get to 99% of maximum.

z

 σ+
(∆m = +1)
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Direct Optical Pumping, I=3/2

β

ε 

ε −

+

K
37 +

e−

OP

770 nm

• Biased

random walk

• σ± light

4S1/2→ 4P1/2

transition
. .

4P1/2
z

4S

F=2
F=1

F=1
F=2

σ+
m=+1∆

m=−2  −1  0   1     2

Γ= 6 ΜΗ

1/2

• optimize with 41K, almost same hyperfine splitting as 37K

~F = ~Jatom +~Inucleus Hhyperfine = - ~µN · ~Be = A~I · ~J
Spin flips: σ+ → σ−;

small frequency shift (-2 MHz) to compensate Zeeman shift
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Quantifying Polarization from excited

state population

. .

4P1/2
z

4S

F=2
F=1

F=1
F=2

σ+
m=+1∆

m=−2  −1  0   1     2

Γ= 6 ΜΗ

5/6

1/2

1/2

Tail∼ few % of peak⇒We need tail/peak

to ∼ 10% accuracy to extract P to∼ 0.1%

We can’t quite extract P by inspection:

∆F = 0 for Larmor precession

Same centroid P from 2 approaches:

Rate eqs for classical populations
dNi

dt
= −RjiNi + RijNj + λNj

Optical Bloch Eqs include B⊥ rigorously
dρ
dt

= 1
i~
[H, ρ] + λ

We measure S3 and float B⊥
(S3=-0.9958(8), -0.9984(13),

+0.9893(14), +0.9994(5))
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Coherent Population Trapping is bad
But easy to remove by counter-propagating beams and by RF detuning

. .

4P1/2
z

4S

F=2
F=1

F=1
F=2

σ+
m=+1∆

m=−2  −1  0   1     2

Γ= 6 ΜΗ

1/2

⇒ Bz = 2.339(10) G
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Optical pumping and probing 37K

. .

4P1/2

4S

F=1

F=1
F=2

σ+
m=+1∆

m=−2  −1  0   1     2

1/2

F=2

355 nm

770 nm

Photoionize 1%

in situ probe

P+=+0.9913(8)

P−=–0.9912(9)

σ ∝ (1-P)

Fenker NJP

2016
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TRIumf Neutral Atom trap at ISAC

TiC target 70 µA

1750oC protons

main TRIUMF cyclotron

‘world’s largest’

500 MeV H− (0.5 Tesla)
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TRINAT lab: “tabletop experiment”

ISAC ion beam 

Ring Laser

Detection trap

Atom detector

Collection trap

Pb
shielding

 0.3 picoatmosphere

CCD Camera

Beta detector
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ion MCP assembly

electrostatic field, delay-line anode
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37K decay geometry

shakeoff

Ion MCP

uniform E field
B Coil Electrodes for

beta

electron MCP

• β, recoil nucleus

• shakeoff e− for TOF trigger

June 2014 data at reduced E field for Aβ

The decay pattern shown on the right is helicity-forbidden if the

ν goes straight up, independent of Gamow-Teller/Fermi ratio.
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β+ asymmetry 37K data

• Backscatter from scint

agrees ∼10%
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Background

SOE time­of­flight [ns]

0 20 40 60 80 100

C
o
u
n
ts

 /
 0

.5
 n

s

1

10

210

3
10

410

B
ac

k
g

ro
u

n
d

 r
eg

io
n

Background

region

80 1006040200

Background
   Region

4

2

1

310

10

10

10

Shakeoff electron TOF [ns]

B
ac

kg
ro

u
n

d
 r

eg
io

n

C
o

u
n

ts
 / 

0.
5 

n
s

• β telescope and shakeoff e− coincidence remove most

decays not from the trap cloud. Remainder is our largest

uncertainty.

• Conservatively assume polarized between 0 and 100%.

• These will be removed by MCP position info when we

increase to design E field
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37K Aβ+ Uncertainties
Source ×10−4 [†: β scattering] ∆Aβ

Background (Correction 1.0014) 7

Trap Position 4

Trap Sail velocity 5

Trap Temperature & width 1

BB1 Radius† 4

BB1 Energy agreement 2

BB1 threshold 1

Scintillator threshold 0.3

GEANT4 physics list† 4

Shakeoff electon t.o.f. region 3

SiC mirror thickness† 1

Be window thickness† 0.9

Scintillator or summed† 1

Scintillator calibration 0.1

Total systematics 12

Statistics 13

Polarization 5

Total uncertainty 18

Aβ = –0.5706 ±
0.0013 (stat) ±
0.0012 (syst) ±
0.0005 (pol)

= -0.5706 ± 0.0018

Aβ[SM] =

–0.5706 ± 0.0007

Better relative

uncertainty than
19Ne –0.0360±0.0008

[Calaprice 1975]

and neutron

0.1197±0.0006

[PERKEO II PRL 2013,

UCNA PRCr 2013]

We test physics→
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Conserved Vector Current ?

Together with F t , Aβ

measures the vector

current strength i.e. Vud .

Considered an isospin

mixing test in different

transitions than 0+ → 0+.

It’s also a CVC test in a

different system.

E.g. Salam and Strathdee

Nature 1974:

phase transitions at

very high B fields

could drive θCabibbo→ 0

Hardy Towner PLB 1975

applied to the 35Ar Aβ

controversy.
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Right-handed vector currents

37K constraint

complementary

ζ = 0:

WR M > 348 GeV

(better than

Pβ/Aβ
12N

Thomas 2001 )

LHC M ′
W > 3.7

TeV 90%

‘Non-manifest’ models:
37K⇒ gR . 7.7 at 4 TeV

(or at 2 TeV gR < 4, but LHC 2 TeV ‘bump’ had g ∼ 0.5)

For M ′
W < 70 GeV, nuclear β decay constrains Vud R

(Severijns Naviliat-Cuncic ARNPS 2011)
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‘Non-manifest’ Left-Right models
gR > gL or

V R
ud < V L

ud

E. Thomas NPA

Hiding light ‘weakly coupled’

but electrically charged

bosons from direct detection

is tricky. But there is

background at M < MW ; e.g.

for measured

σ[e+e− → W+W−]

PDG lists tight cuts on final

W mass
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Aβ [Eβ] agrees with S.M.

LHC8 σ[p + p → eνX ]
Naviliat-Cuncic

Gonzalez-Alonso AnDP 2013

(Cirigliano JHEP 2013)

1 event expected, 2 seen

Nucleon, Lepton Currents

making up Lagrangian (a

scalar) can separately

transform like S, T , V , A

1957 version of EFT.

Fierz term ∝ 〈
mβ

Eβ
〉

Specific models: leptoquarks→ S, T;

Profumo 2007 PRD: MSUSY sum over sparticles→ S,T
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Couplings to wrong-handed ν

the Fierz term is ‘easier’ to constrain but has more competition

For scalars coupling to wrong-chirality ν, we compete with our

own 38mK β-ν Gorelov 2005
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future Arecoil ∝ Aβ + Bν
Technique demonstrated in
80Rb Pitcairn PRC 2009

Ave Arecoil depends on ρ;

p dependence doesn’t
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γβν��T Experiment
Harvey Hill Hill PRL 99 261601

combine QCD+electroweak

interaction in the nucleon’s L, and

Gardner, He PRD 87 116012 (2013)

reduce this to L =

− 4c5

mnucleon
2

eGF Vud√
2
ǫσµνρp̄γσnψ̄eLγµψνLFνρ

which upon interference with S.M.

gives ✓T decay contribution→

|Mc5|
2 ∝ Im(c5gV )

M2
Ee

pek
( ~pe × ~kγ) · ~pν

LYSO 2

Plastic

W shield
BGO

LYSO 1

MCP

γ

β+

38Ar+

new physics M ∼ MeV

•��T 250x larger in 38mK decay than n

• final state fake effect 8x10−4

• 38mK 40,000 atoms, 30000 events/week⇒ σ ∼ 0.02

• Test asymmetry of apparatus with coincidence pairs

• n→ p βνγ branch (Nico Nature 06, Bales PRL 16)⇒
Im(c5)

M2 ≤ 8MeV−2⇒ Asym can be 100%
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GEANT4 simulation of γβν��T

• the new ‘c5’ term needs Fermi or Fermi+GT transition⇒
β+ emitters

• background from β ‘external bremsstrahlung’

suppressed by requiring β+ to hit plastic

• Require two 511’s in BGO, so we know they didn’t go to γ
detector, enables measurements at Eγ < 0.2 MeV.

LYSO 2

Plastic

W shield
BGO

LYSO 1

MCP

γ

β+

38Ar+
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Helicity-driven null in mirror decay

K37 37Ar

e+

ν

W(θβνi ) ≈ 1 +Aβνi cos(θβνi)

Aβνi =
a+PB−2cT/3

1+PA

For P=-1, Aβνi=1,

independent of MGT /MF

2014 data under analysis
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TRIUMF Neutral Atom Trap

We have measured the β asymmetry of
37K decay to be Aβ=–0.5706 ± 0.0018

Agrees with theory, complements the

best β decay measurements

We plan to measure Aβ 3-5 x better, and

Arecoil with sensitivity to ‘4-fermion

contact’ interactions complementary to

π → eνγ, π → eν, and

LHC p + p → eνX

We also plan a TRV βνγ 3-momentum

correlation, first of its type in

1st-generation particles

g
X

ν
β

p

n
G G’ 

X
x x
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nucleon form factors

Herczeg Prog Part Nucl Phys 46 (2001) 413 pointed out need

for form factors

g
s

ν
β

p

n
G

S

G’ 

〈p|ūd|n〉 = gs(q
2)ūpun

〈p|ūσλµd|n〉 = gT (q
2)ūpσλµun

2001: “0.25 < gs < 1” depressing to the experimentalist

gT related to transverse spin structure function

Bhattacharya, Cirigliano, ... Huey-Wen Lin... PRD 85 05412

(2012) first lattice gauge calculations, gs = 0.8±0.4, gT =

1.05±0.35

Green... Negele... PRD 86 114509 (2012) lattice QCD,

gs=1.08±0.28 (stat) ± 0.16 (syst); gT = 1.038 ± 0.011(stat) ±
0.012(syst)

gs=1.02±0.10 Gonzalez-Alonso, Camalich PRL 112 042501

(2014)
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2nd-class currents

2nd-class currents

violated isospin

symmetry.

‘induced tensor’ d is

predicted zero in isobaric

mirror decay.

although the limit on d is

not competitive yet, there

are models where

2nd-class currents

change with system

where this result is

complementary
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4-Fermion interaction primer/jargon
Lee+Yang (Phys Rev 104 254 (1956)) 4-Fermion interaction

Hint =
∑

X

(ψ̄pOXψn)(CX ψ̄eOXψν + C′
X ψ̄eOXγ5ψν) (1)

Hint invariant under Lorentz transformations

X : the 5 possible Lorentz transformation properties:

vector (V) γµ axial vector (A) γ5γµ
tensor σµν (T) scalar (S) pseudoscalar (P) γ5

Combinations of CX and C′
X produce projection operators

1± γ5 which project out either L or R-handed ν’s.

• Generalized in the SM to the quark-lepton interaction,

CV =C′
V and CA=-C′

A, given by spin-1 W boson exchange.

Only L-handed ν’s are emitted.

‘Tensor’ and ‘scalar’ just mean these Lorentz

transformation current properties: ‘tensor’ does not imply

spin-2.

Spin-0 ‘leptoquarks’→ σµν ‘tensor’ after ’Fierz’

rearrangement.
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MSSM and β decay correlations
Profumo, Ramsey-Musolf, Tulin

PRD 75 075017 2017

CS+C′
S can be 0.001 in MSSM in

1-loop order including mixing

Include mixing of:

• left and right sfermions (this is where β decay can help;

constraints are said to be few)

• sfamily mixing (already tightly constrained, e.g. by µ→ e γ...)

Effective 4-fermi scalar and tensor couplings are generated that

contribute to bFierz and spin correlation observables like Bν as

large as 0.001.
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��T, ✟✟✟CP, and ‘Us’

CP and T symmetry are related by the
‘CPT Theorem’: All local Lorentz invariant QFT’s are
invariant under CPT.
Then ✟✟CP⇒ ✓✓T

✟✟CP discovered in KK̄ meson decays in 1963

Sakharov JETP Lett 5 24 (1967) used ✟✟CP to generate
the universe’s excess of matter over antimatter:
•✟✟CP,
• baryon nonconservation, and
• nonequilibrium.
But known ✟✟CP is too small by 1010, so ‘we’ need more
to exist
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E.g.: scalar interaction constraints

0+ → 0+ fT values constrain scalars

coupling to s.m. chirality

β-ν correlation constrains others as

well

π → eν constrains both (even

though it is pseudoscalar, higher

order interaction)

π → eν and pp→eνX are EFT

constraints assuming scales (200

GeV and 1 TeV). Direct LHC

searches for the bosons are a

separate story.
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TRIUMF’s Neutral Atom Trap

• Isotope/Isomer selective

• Evade 1000x untrapped atom background by→ 2nd MOT

• 75% transfer (must avoid backgrounds!); 10−3 capture

• 0.7 mm cloud for β-Ar+→ ν momentum→
β-ν correlation

• 99% polarized, known atomically
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Polarization fit to all 37K data

σ− Polarization State σ+ Polarization State

Transverse field (Bx) common to all: 124(8)mG
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optics and detectors
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E field status

Nested

insulators: E no

longer falls

across dielectric

surfaces

E

INSULATORS ELECTRODES

HV WIREPATH ALONG
INSULATOR SURFACE

• Argon conditioning

• 1.2 kV/cm reached

• Improved ion MCP mount (as in

Hong et al. NIM Seattle-Argonne) in

progress

• More compact shakeoff e− MCP

and wedge-and-strip readout to

allow simulataneous ion and e−

detection.

• Remove Aβ

background

• Adds Arecoil

• All detectors together

for trap diagnostics

and for ρ-independent

β-recoil observable
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TRINAT lab: “tabletop experiment”
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Polarization Improvements

SYST ×10−4 ∆P ∆T

σ− σ+ σ− σ+

Initial T 3 3 10 8

Global fit v. ave 2 2 7 6

Sout
3 Uncertainty 1 2 11 5

Cloud temp 2 0.5 3 2

Binning 1 1 4 3

Bz Uncertainty 0.5 3 2 7

Initial P 0.1 0.1 0.4 0.4

Require I+ = I− 0.1 0.1 0.1 0.2

Total SYSTEMATIC 5 5 17 14

STATISTICS 7 6 21 17
B. Fenker New J. Phys 18 073028

2016

• pellicle

mirrors:

less β+

scattering

• define T by OP

• trim B gradients

• improve S3 flipping

and gradients

• add flipping of Bz

• higher-power

photoionizing laser

• gentler RAC-MOT

P(σ+) = +0.9913(8) T (σ+) = −0.9770(22)
P(σ−) = −0.9912(9) T (σ−) = −0.9761(27)

• Uncertainty ∝
(1-P)
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EDMs and ��T radiative β decay

No spin involved, so different physics at lowest order, but

Gardner Fermi
Ng, Vos on my office

whiteboard:

‘Im(c5)’ interaction

+ s.m. β decay

→ n EDM at 2 loops

‘Naive Dimensional Analysis’:

dn ∼
Im(c5)GF e

M2

GF m5
n

(16π2)2 ∼
10−22e−cm

M2 [MeV−2]

dn[exp] < 3× 10−26e-cm (Baker 2006 PRL)

null n EDM⇒ Im(c5)
M2 < 3× 10−4[MeV−2]→ 10−3 asym

We can still reach this sensitivity at higher Eγ



intro trap Optical pumping Aβ time extras

D~I · ~vβ × ~vν and γβνTRV

n

p
e

ν

K. Vos, W. Dekens

(private communication)

One loop correction produces

large D observable

‘Naive Dimensional Analysis’

Dc5 ≈ I
α
4π

4M2
N

Im(c5)
M2 ⇒

Im(c5)
M2 ≤ 1/I Dc5 × 10−3[MeV−2]

37K wins by p2 ∼ 25 w.r.t neutron, and

if M2 is tuned we could win by 25 more

But this is still a tight constraint,

depending on whether I is 0 or infinity
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Fluorescence Diagnostic 41K

• single-photon

counting

• burst of fluorescence

as atoms are optically

pumped

• Modelled with rate

equations including

stray B⊥ field and

imperfect S3

• Used to optimize

parameters for use in
37K
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Aβ+ Uncertainties and fixes
Source ×10−4 [†: β scattering] ∆Aβ

Background (Correction 1.0014) 7

Trap Position 4

Trap Sail velocity 5

Trap Temperature & width 1

BB1 Radius† 4

BB1 Energy agreement 2

BB1 threshold 1

Scintillator threshold 0.3

GEANT4 physics list† 4

Shakeoff electon t.o.f. region 3

SiC mirror thickness† 1

Be window thickness† 0.9

Scintillator or summed† 1

Scintillator calibration 0.1

Total systematics 12

Statistics 13

Polarization 5

Total uncertainty 18

• New trap control

system and faster

CMOS camera→
smaller cloud

temp. and size.

Will try 405nm

cooling.

• Pellicles→ less

β+ scattering.

• Properly tapered

collimators

• better ion MCP:

better-known

photoions
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Polarization by data set

A B C D E
N
u
cl
ea
r
P
ol
a
ri
za
ti
on

0.988

0.989

0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

σ
−

σ
+

Field [V cm−1]

tOP [µs]

395 535 415

332 732 432
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Polarization time dependence

s]µTime since MOT off [
400 600 800 1000 1200 1400 1600 1800 2000

P
ol

ar
iz

at
io

n

0.987

0.988

0.989

0.99

0.991

0.992

0.993

0.994

41K data also suggest a 1 millisec Bquad component

materials: 316L, 316LN, Ti, glassy carbon electrodes
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Viewport birefringence

Characterizing viewport birefringence allows prediction of S3 in

center given S3 in and out.
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gentler RAC MOT

1/2-sinusoid dissipates less power and keeps confinement.
Liam Lawrence, McMaster U., poster CEU at DNP, Oct 14 downtown
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Optics Techniques

766.5nm

770nm

Polarizer

Variable
retarder

LL filter

lambda/4

L
C

V
R

T
rap

 L
ig

h
t

P
o

larizatio
n

−

P
o

larizer

P
h

o
to

d
io

d
e

m
o

n
ito

r
O

P
 L

ig
h

t

m
ain

tain
in

g
 fib

er
L

en
s

λ/2
P

o
larizin

g
b

eam
−

sp
litter

L
L

01−
780

 λ/4

• Combine 769.9nm D1 and

766.49 D2 with angle-tuned

780 nm laser-line filter

• Flip spin state with liquid

crystal variable retarder

• Relieve stress-induced

birefringence with PCTFE

(Neoflon) viewport seals

(S3=-0.9958(8), -0.9984(13),

+0.9893(14), +0.9994(5))
Diode Laser (A)

(C)

(B)

(D)
AOM

RF

K

(E)
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