AB

β -decay correlations with laser-trapped $^{37}{\rm K}$ in the LHC era

• Precision measurement of angular correlations

Complementarity with particle phenomenology

- How our atom trap helps us Spin-polarizing nucleus with laser
- Example: The most accurate A_{β} measurement

What we are learning from it How much better we must do

• Plans for time-reversal violation in radiative β decay

 A_{β}

me

extras

TRlumf Neutral Atom Trap collaboration

S. Behling B. Fenker

M. Mehlman

P. Shidling

A. Gorelov J.A. Behr

trap

- M.R. Pearson
- Undergrad
- D. Melconian B. Sheldan
- (I.S. Towner)

Supported by NSERC, NRC through TRIUMF, Israel Science Foundation, DOE, State of Texas

J. McNeil

 A_{β} is the Ph.D. thesis work of B. Fenker

UNIVERSITY OF MANITOBA M. Anholm G. Gwinner

D. Ashery I. Cohen

Electroweak Interactions: what we "know"

• E&M unified with Weak interactions

$$\gamma \Longleftrightarrow \mathsf{Z^0,W^+,W^-}$$

- 1) Only spin-1 "vector" exchange bosons
- 2) Only left-handed ν 's: "parity is maximally violated"

AB

time

• Things we can test:

intro

- 1) Bosons with other spin?
- 2) Couplings to wrong-handed leptons?

2) A big 'Standard Model' success was predicting the Z^0 .

Amount of atomic parity violation is sensitive to extra neutral bosons

(Francium PNC, Manitoba/Maryland/William & Mary/San Luis Potosi/TRIUMF)

Why the weak interaction is 'weak' at low energy

extras

'more massive virtual particles are created for shorter times/distances'

Propagator+vertices: $T \propto \frac{G_{X}(-g^{\mu\nu}+p^{\mu}p^{\nu}/M_{X}^{2})G_{X}}{p^{2}-M_{X}^{2}} \xrightarrow{p < <M_{X}} n \qquad n \qquad p \qquad G_{X}g_{X} = -G_{X}^{2} \qquad \beta$ $T \propto \frac{G_{X}^{2}}{M_{X}^{2}} \Rightarrow \qquad p \qquad X$ Decay rates $\propto \frac{G_{X}^{2}}{M_{W}^{2}} \frac{G_{X}^{2}}{M_{X}^{2}}$ if process interferes with W (couples to left-handed ν)

• IF $G_X \sim$ electroweak coupling, then absence of 0.1% changes in angular correlations $\Rightarrow M_X > 6$ or 30 M_W

• But if G_X small, then M_X can still be small. Popular in neutral boson models, motivated by particle astrophysics

Aß

time

extras

Lepton helicity \rightarrow angular distribution

 independent of isospin mixing and nuclear structure
 Radiative corrections 2x10⁻³, recoil order term is 3x10⁻⁴

← This decay pattern needs non-S.M. chirality

extras

Parity Operation can be simulated by Spin Flip

This is exact

WTRIUMF 3-momentum **T** correlation

$$ec{m{
ho}}_{
u} \cdot ec{m{
ho}}_{eta}^{\lambda} imes ec{m{
ho}}_{\gamma}^{\lambda} = - eta_{ ext{recoil}}^{2} \cdot ec{m{
ho}}_{eta}^{\lambda} imes ec{m{
ho}}_{\gamma}^{\lambda}$$
 $\stackrel{t o -t}{\longrightarrow} eta_{ ext{recoil}}^{2} \cdot ec{m{
ho}}_{eta}^{2} imes ec{m{
ho}}_{\gamma}^{\lambda}$

BUT flipping t is not the same thing as running the decay backwards.

Particles interact on the way out, and you don't reverse that part.

One experimental discovery of parity violation

Wu, Ambler, Hayward, Hopper, Hobson, PR 105 (1957) 1413

extras

³⁷K isobaric mirror decay: a 'heavy neutron' ?

 $\mathcal{F}t$ (Shidling PRC 2014) \Rightarrow $\rho = C_A M_{GT} / C_V M_F =$ 0.5768 ± 0.0021 \Rightarrow $A_{\beta}[SM] = -0.5706 \pm 0.0007$ Recoil-order + Coulomb + finite-size corrections \approx $-0.0028 (E_{\beta}/E_{0})$ 1st-order recoil-order from **E&M** moments; small $\mu \Rightarrow$ small weak magnetism (Coulomb corrections \sim weak mag) Holstein RMP 1975 DFT for isospin mixing has improved its functional Using weighted average for δ_{C} would $\rightarrow \rho = 0.5774 \pm 0.0022$

Magneto-optical trap

trap

What elements can be laser cooled?

intro Optical pumping A_{β} time trap **WTRIUMF** AC MOT to turn off trap LL MOT's 7 G/cm Bquad off to e 1% of its value in 100 μ s: CurA (CurB=: B=1% of MOT at 100 us _ 4Y= 8. Polarized EOM 0P 5 Ó 2 3 t [ms]

extras

6

M. Anholm, M.Sc. thesis, UBC 2011

[®]™^{IUMF} How to spin-polarize a nucleus with a laser: Part I

Polarize atom by Direct Optical Pumping

intro

Need 12 photons absorbed to get to 99% of maximum.

• optimize with ⁴¹K, almost same hyperfine splitting as ³⁷K $\vec{F} = \vec{J}_{atom} + \vec{I}_{nucleus}$ H_{hyperfine} = - $\vec{\mu N} \cdot \vec{B_e} = A \vec{I} \cdot \vec{J}$ Spin flips: $\sigma^+ \rightarrow \sigma^-$; small frequency shift (-2 MHz) to compensate Zeeman shift

WTRIUMF Quantifying Polarization from excited state population

Tail \sim few % of peak \Rightarrow We need tail/peak to \sim 10% accuracy to extract *P* to \sim 0.1%

We can't quite extract *P* by inspection: $\Delta F = 0$ for Larmor precession

Same centroid *P* from 2 approaches: Rate eqs for classical populations $\frac{dN_i}{dt} = -R_{ii}N_i + R_{ij}N_j + \lambda N_j$ **Optical Bloch Eqs include B**_⊥ rigorously $\frac{d\rho}{dt} = \frac{1}{i\hbar} [H, \rho] + \lambda$ We measure S₃ and float B $(S_3 = -0.9958(8), -0.9984(13),$ +0.9893(14), +0.9994(5))

Coherent Population Trapping is bad

But easy to remove by counter-propagating beams and by RF detuning

Time since MOT off [us]

 $\sigma \propto$ (1-P) Fenker NJP

main TRIUMF cyclotron 'world's largest' 500 MeV H⁻ (0.5 Tesla)

extras

s ISAC ion be

extras

intro trap

Aβ

time

extras

ion MCP assembly

electrostatic field, delay-line anode

- β , recoil nucleus
- shakeoff *e*⁻ for TOF trigger

June 2014 data at reduced *E* field for A_{β}

The decay pattern shown on the right is helicity-forbidden if the ν goes straight up, independent of Gamow-Teller/Fermi ratio.

- β telescope and shakeoff e^- coincidence remove most decays not from the trap cloud. Remainder is our largest uncertainty.
- Conservatively assume polarized between 0 and 100%.
- These will be removed by MCP position info when we increase to design *E* field

³⁷ K A _{β⁺} Uncerta	ainties
Source $\times 10^{-4}$ [†: β scattering]	ΔA_{eta}
Background (Correction 1.0014)	7
Trap Position	4
Trap Sail velocity	5
Trap Temperature & width	1
BB1 Radius [†]	4
BB1 Energy agreement	2
BB1 threshold	1
Scintillator threshold	0.3
GEANT4 physics list [†]	4
Shakeoff electon t.o.f. region	3
SiC mirror thickness [†]	1
Be window thickness [†]	0.9
Scintillator or summed [†]	1
Scintillator calibration	0.1
Total systematics	12
Statistics	13
Polarization	5
Total uncertainty	18

%TRIUMF

 A_{eta} = -0.5706 ± 0.0013 (stat) ± 0.0012 (syst) ± 0.0005 (pol) = -0.5706 ± 0.0018 A_{eta} [SM] = -0.5706 ± 0.0007

time

Better relative uncertainty than 19 Ne -0.0360 \pm 0.0008 [Calaprice 1975] and neutron 0.1197 \pm 0.0006 [PERKEO II PRL 2013, UCNA PRCr 2013] We test physics \rightarrow

intro

extras

Conserved Vector Current ? ²

Together with $\mathcal{F}t$, A_{β} measures the vector current strength i.e. V_{ud} . Considered an isospin mixing test in different transitions than $0^+ \rightarrow 0^+$. It's also a CVC test in a different system. E.g. Salam and Strathdee Nature 1974: phase transitions at very high B fields could drive $\theta_{\text{Cabibbo}} \rightarrow 0$ Hardy Towner PLB 1975 applied to the ³⁵Ar A_{β} controversy.

intro

trap

FRIUMF A_{β} [E_{β}] agrees with S.M. TEXAS A&N Nucleon, Lepton Currents -0.5706 ± 0.0018 -0.45 asym superratio making up Lagrangian (a -0.50 scalar) can separately -0.55 transform like S, T, V, A fit to $A_{a}/(1 + b(m/E_{a}))$ 1957 version of EFT. ø -0.60 - $-0.064 \pm 0.044 \quad \gamma^2/N = 1.00$ Fierz term $\propto \langle \frac{m_{\beta}}{F_{\alpha}} \rangle$ GEANT4 0.01 0.00 38mK -0.01 -0.02 0.04 total E [MeV] ЪНe 0.02 Ft[(m/E)]LHC8 $\sigma[p + p \rightarrow e\nu X]$ 0.00 ຼັ **Naviliat-Cuncic** ²¹Na ల్ –0.02 Gonzalez-Alonso AnDP 2013 RELIMIN 37K -0.04 -(Cirigliano JHEP 2013) $\sigma[pp \rightarrow e\nu X]$ LHC8 1 event expected, 2 seen -0.06 -0.02 0.Ò2 0.06 $(C_{a} \equiv C_{a}^{\dagger})/C_{u}$ Specific models: leptoquarks \rightarrow S, T;

Profumo 2007 PRD: MSUSY sum over sparticles \rightarrow S,T

the Fierz term is 'easier' to constrain but has more competition

For scalars coupling to wrong-chirality ν , we compete with our own ^{38m}K β - ν Gorelov 2005

lphaTRIUMF future $A_{ m recoil} \propto A_{eta}$ + $B_{ u}$

Aβ

time

extras

$\partial TRIUMF \gamma \beta \nu T$ Experiment

Harvey Hill Hill PRL 99 261601 combine QCD+electroweak interaction in the nucleon's \mathcal{L} , and Gardner, He PRD 87 116012 (2013) reduce this to $\mathcal{L} =$

 $\begin{aligned} &-\frac{4c_5}{m_{\text{nucleon}^2}}\frac{e\mathbf{G}_F V_{ud}}{\sqrt{2}}\epsilon^{\sigma\mu\nu\rho}\bar{\mathbf{p}}\gamma_{\sigma}\mathbf{n}\bar{\psi}_{eL}\gamma_{\mu}\psi_{\nu L}\mathbf{F}_{\nu\rho}\\ &\text{which upon interference with S.M.}\\ &\text{gives }\mathbb{T}\text{ decay contribution }\rightarrow\\ &|\mathcal{M}_{c5}|^2\propto\frac{lm(c_5g_V)}{M^2}\frac{E_e}{p_ek}(\vec{p_e}\times\vec{k_\gamma})\cdot\vec{p_\nu}\end{aligned}$

new physics $M \sim {
m MeV}$

- \mathcal{T} 250x larger in ^{38m}K decay than n
- final state fake effect 8x10⁻⁴
- $m \bullet$ ^{38m}K 40,000 atoms, 30000 events/week $ightarrow \sigma \sim$ 0.02

• Test asymmetry of apparatus with coincidence pairs • n \rightarrow p $\beta \nu \gamma$ branch (Nico Nature 06, Bales PRL 16) $\Rightarrow \frac{\text{Im}(c_5)}{M^2} \leq 8MeV^{-2} \Rightarrow$ Asym can be 100%

AB

GEANT4 simulation of $\gamma \beta \nu X$

\bullet the new 'c5' term needs Fermi or Fermi+GT transition $\Rightarrow \beta^+$ emitters

 \bullet background from β 'external bremsstrahlung' suppressed by requiring β^+ to hit plastic

• Require two 511's in BGO, so we know they didn't go to γ detector, enables measurements at $E_{\gamma} < 0.2$ MeV.

intro

WTRIUMF TRIUMF Neutral Atom Trap

We have measured the eta asymmetry of 37 K decay to be A_{eta} =-0.5706 \pm 0.0018

Agrees with theory, complements the best β decay measurements

We plan to measure A_{β} 3-5 x better, and A_{recoil} with sensitivity to '4-fermion contact' interactions complementary to $\pi \rightarrow e\nu\gamma, \pi \rightarrow e\nu$, and LHC $\rho + \rho \rightarrow e\nu X$

We also plan a TRV $\beta\nu\gamma$ 3-momentum correlation, first of its type in 1st-generation particles

time

extras

AB

$$\begin{array}{c} n \\ g \\ p \end{array} \begin{array}{c} G_{\mathbf{x}} g_{\mathbf{x}} \\ G_{\mathbf{x}} g_{\mathbf{x}} \\ G_{\mathbf{x}} \end{array} \begin{array}{c} G_{\mathbf{x}} \\ G_{\mathbf{x}} \\ G_{\mathbf{x}} \\ G_{\mathbf{x}} \\ G_{\mathbf{x}} \end{array} \begin{array}{c} G_{\mathbf{x}} \\ G_$$

AB

time

nucleon form factors

trap

Herczeg Prog Part Nucl Phys 46 (2001) 413 pointed out need for form factors

n Gg S p 2001: " $0.25 < g_s < 1$ " depressing to the experimentalist q_{τ} related to transverse spin structure function Bhattacharya, Cirigliano, ... Huey-Wen Lin... PRD 85 05412 (2012) first lattice gauge calculations, $g_s = 0.8 \pm 0.4$, $g_T =$ 1.05 ± 0.35 Green... Negele... PRD 86 114509 (2012) lattice QCD, $q_s = 1.08 \pm 0.28$ (stat) ± 0.16 (syst); $q_T = 1.038 \pm 0.011$ (stat) \pm

0.012(syst)

 g_{s} =1.02 \pm 0.10 Gonzalez-Alonso, Camalich PRL 112 042501 (2014)

AB

TEXAS A&N

WTRIUMF 2nd-class currents

2nd-class currents violated isospin symmetry. 'induced tensor' d is predicted zero in isobaric mirror decay. although the limit on **d** is not competitive yet, there are models where 2nd-class currents change with system where this result is complementary

4-Fermion interaction primer/jargon Lee+Yang (Phys Rev 104 254 (1956)) 4-Fermion interaction

$$H_{\text{int}} = \sum_{X} (\bar{\psi}_{p} O_{X} \psi_{n}) (C_{X} \bar{\psi}_{e} O_{X} \psi_{\nu} + C_{X}' \bar{\psi}_{e} O_{X} \gamma_{5} \psi_{\nu}) \qquad (1)$$

H_{int} invariant under Lorentz transformations X: the 5 possible Lorentz transformation properties: vector (V) γ_{μ} axial vector (A) $\gamma_5 \gamma_{\mu}$ tensor $\sigma_{\mu\nu}$ (T) scalar (S) pseudoscalar (P) γ_5 Combinations of C_X and C'_X produce projection operators $1 \pm \gamma_5$ which project out either L or R-handed ν 's. Generalized in the SM to the guark-lepton interaction, $C_V = C'_V$ and $C_A = -C'_A$, given by spin-1 W boson exchange. Only L-handed ν 's are emitted. 'Tensor' and 'scalar' just mean these Lorentz

transformation current properties: 'tensor' does not imply spin-2.

Spin-0 'leptoquarks' $\rightarrow \sigma_{\mu\nu}$ 'tensor' after 'Fierz' rearrangement.

A_{β}

time

extras

MSSM and β decay correlations

Profumo, Ramsey-Musolf, Tulin PRD 75 075017 2017 $C_S+C'_S$ can be 0.001 in MSSM in 1-loop order including mixing

FIG. 2. Feynman diagrams relative to supersymmetric contributions giving rise to anomalous amplitudes in β decay processes.

Include mixing of:

• left and right sfermions (this is where β decay can help; constraints are said to be few)

• sfamily mixing (already tightly constrained, e.g. by $\mu \rightarrow e \gamma ...$) Effective 4-fermi scalar and tensor couplings are generated that contribute to **b**_{Fierz} and spin correlation observables like **B**_{ν} as large as 0.001. intro trap Optical pumping A_{β} time extras **EXTRIUMF T**, **CP**, and 'Us'

- CP and T symmetry are related by the 'CPT Theorem': All local Lorentz invariant QFT's are invariant under CPT. Then $CP' \Rightarrow T'$ CPI discovered in $K\bar{K}$ meson decays in 1962
- \mathcal{CP} discovered in $K\bar{K}$ meson decays in 1963
- Sakharov JETP Lett 5 24 (1967) used CP to generate the universe's excess of matter over antimatter:
- CP,
- baryon nonconservation, and
- nonequilibrium.

But known CP is too small by 10¹⁰, so 'we' need more to exist

AB

extras

E.g.: scalar interaction constraints

Optical pumping

AB

time

extras

TRIUMF's Neutral Atom Trap

- Isotope/Isomer selective
- \bullet Evade 1000x untrapped atom background by \rightarrow 2nd MOT
- 75% transfer (must avoid backgrounds!); 10^{-3} capture
- ullet 0.7 mm cloud for $eta ext{-}Ar^+ o
 u$ momentum o
 - β - ν correlation

trap

• 99% polarized, known atomically

time

WTRIUMF Polarization fit to all ³⁷K data

 A_{β}

extras

optics and detectors

trap

Aß

RIUMF E field status

Nested insulators: E no longer falls across dielectric surfaces

trap

- Argon conditioning
- 1.2 kV/cm reached
- Improved ion MCP mount (as in Hong et al. NIM Seattle-Argonne) in progress
- More compact shakeoff e^- MCP and wedge-and-strip readout to allow simulataneous ion and $e^$ detection.

- Remove A_{β} background
- Adds A_{recoil}
- All detectors together for trap diagnostics and for ρ -independent β -recoil observable

RIUMF Polarization Improvements

SYST ×10 ⁻⁴	ΔP Δ		T		
	σ^{-}	σ^+	σ^{-}	σ^+	• pellicle
Initial T	3	3	10	8	mirrors:
Global fit v. ave	2	2	7	6 💆	less β^+
S ^{out} Uncertainty	1	2	11	5 🌌	scattering
Cloud temp	2	0.5	3	2	define T by OP
Binning	1	1	4	3	trim B gradients
B _z Uncertainty	0.5	3	2	7	
Initial P	0.1	0.1	0.4	0.4	Improve S ₃ flipping
Require $\mathcal{I}_+ = \mathcal{I}$	<u>0.1</u>	0.1	0.1	<u>0.2</u>	na gradients
Total SYSTEMATIC	5	5	17	14 📍	add flipping of Bz
STATISTICS	7	6	21	17 🔹	higher-power
B. Fenker New J. Phys 18 073028 photoionizing laser					
2016				•	gentler RAC-MOT
$P(\sigma^+) = +0.9913(8)$	T(σ	+) =	-0.9	770(2	$\tilde{2}$ • Uncertainty \propto
$P(\sigma^{-}) = -0.9912(9)$	Τ(σ	-)́ =	-0.9	761(2 ⁻	7) (1-P)

intro

Aß

9

extras

$\mathcal{C}^{\mathsf{TRIUMF}}$ EDMs and \mathcal{T} radiative β decay

No spin involved, so different physics at lowest order, but

Ng, Vos on my office whiteboard: 'Im(c₅)' interaction + s.m. β decay \rightarrow n EDM at 2 loops

'Naive Dimensional Analysis': $d_n \sim \frac{Im(c_5)G_Fe}{M^2} \frac{G_Fm_n^5}{(16\pi^2)^2} \sim \frac{10^{-22}e - cm}{M^2} [\text{MeV}^{-2}]$ $d_n[\text{exp}] < 3 \times 10^{-26}\text{e-cm} \text{ (Baker 2006 PRL)}$ null n EDM $\Rightarrow \frac{Im(c_5)}{M^2} < 3 \times 10^{-4} [\text{MeV}^{-2}] \rightarrow 10^{-3}$ asym We can still reach this sensitivity at higher $E\gamma$ $rak{R}^{TRIUMF}$ D $ec{l}\cdotec{v}_{eta} imesec{v}_{
u}$ and $\gammaeta
u$ TRV

Optical pumping

p v n v

trap

intro

K. Vos, W. Dekens (private communication) One loop correction produces large D observable 'Naive Dimensional Analysis' $D_{c5} \approx \mathcal{I} \frac{\alpha}{4\pi} 4M_N^2 \frac{\mathrm{Im}(c_5)}{M^2} \Rightarrow \frac{\mathrm{Im}(c_5)}{M^2} \leq 1/\mathcal{I} \ D_{c5} \times 10^{-3} [MeV^{-2}]$

AB

extras

 37 K wins by p² \sim 25 w.r.t neutron, and if M^2 is tuned we could win by 25 more But this is still a tight constraint, depending on whether \mathcal{I} is 0 or infinity

WTRIUMF Fluorescence Diagnostic ⁴¹K

• single-photon counting

intro

- burst of fluorescence as atoms are optically pumped
- \bullet Modelled with rate equations including stray B_{\perp} field and imperfect \textbf{S}_3
- Used to optimize parameters for use in ³⁷K

TEXAS A&M

A_{β^+} Uncertainties and fixes

Source $\times 10^{-4}$ [†: β scattering]	ΔA_{β}
Background (Correction 1.0014)	7
Trap Position	4
Trap Sail velocity	5
Trap Temperature & width	1
BB1 Radius [†]	4
BB1 Energy agreement	2
BB1 threshold	1
Scintillator threshold	0.3
GEANT4 physics list [†]	4
Shakeoff electon t.o.f. region	3
SiC mirror thickness [†]	1
Be window thickness [†]	0.9
Scintillator or summed [†]	1
Scintillator calibration	0.1
Total systematics	12
Statistics	13
Polarization	5
Total uncertainty	18

%TRIUMF

- New trap control system and faster CMOS camera → smaller cloud temp. and size. Will try 405nm cooling.
- Pellicles \rightarrow less β^+ scattering.
- Properly tapered collimators
- better ion MCP: better-known photoions

RIUMF Polarization by data set

⁴¹K data also suggest a 1 millisec B_{quad} component materials: 316L, 316LN, Ti, glassy carbon electrodes

time

AB

extras

Viewport birefringence

Characterizing viewport birefringence allows prediction of S_3 in center given S_3 in and out.

extras

CALL OF BENEFINER BAC MOT

intro

trap

Aß

extras

RIUMF Optics Techniques

Combine 769.9nm D1 and 766.49 D2 with angle-tuned 780 nm laser-line filter
Flip spin state with liquid crystal variable retarder
Relieve stress-induced birefringence with PCTFE (Neoflon) viewport seals (S₃=-0.9958(8), -0.9984(13), +0.9893(14), +0.9994(5))

