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Foreword 

When Hal Metcalf and I began to work on laser cooling of neutral atoms in about 
1979, we found ourselves in a field that was nearly unoccupied by other researchers, 
or by any real understanding of what the problems and possibilities were. While 
the study of laser cooling of trapped ions was well under way, only two other 
groups had ventured into laser manipulation of neutral atoms, one in Moscow 
and one at Bell Labs (although the latter had temporarily dropped this line of 
research). Today, laser cooling and its applications represent one of the major 
subfields of atomic, molecular and optical physics, with over one hundred active 
groups around the world. Laser cooling has been the enabling technolgy for a wide 
range of new endeavors. These range from a new generation of atomic clocks, 
which are operating or under construction in many of the world's major standards 
laboratories, to the achievement of Bose-Einstein condensation in atomic alkali 
vapors, one of the fastest growing fields of basic research at the close of the 
twentieth century. From the highly practical to the very fundamental, laser cooling 
has become an important part of many research programs. 

With this explosion of interest in laser cooling came the obvious question of 
writing a book about it. The "right time" to write a book on a new subject is a 
delicate thing. On the one hand, the subject needs to be well enough understood 
and developed so one can produce a text that stands the test of time, a text that 
will not be outdated in a few years. On the other hand, one wants the subject to 
be exciting and of current interest. Metcalf and Van der Straten are two of the 
finest scientists in the field of laser cooling and they have written the right book 
at the right time. Certainly, Laser Cooling and Trapping will serve as a valuable 
reference for researchers working in this field. More importantly it will serve to 
introduce young people to this exciting field. Now, when someone asks me how to 
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start learning about laser cooling, I'll tell them to read Metcalf and Van der Straten. 
I fully expect that some of the most exciting developments yet to come will come 
from researchers who begin their study of laser cooling with this book. 

April 1999 William D. Phillips 
Gaithersburg, MD 



Preface 

The purpose of this book is to introduce students to the dramatic developments in 
electromagnetic control of atomic motions that has emerged since the 1980s. The 
book evolved from lectures and courses given by each of us at Stony Brook and 
Utrecht to advanced undergraduates and beginning graduate students. Its three 
parts have quite different purposes: Part I serves to review, but not teach, those 
elements of quantum mechanics and atomic physics that are applicable to the 
material that follows. Its last chapter addresses certain topics in kinetic theory 
and statistical physics. Part II introduces the experimental tools and techniques 
that have been used for electromagnetic control of atomic motion. The first such 
topic is simply slowing down atoms, usually called laser cooling. But trapping 
them with magnetic or optical fields (or both), focussing and steering them, and 
other kinds of manipulation are discussed. The theoretical methods developed 
in Part I are integrated into these descriptions. Part III discusses some of the 
manifold applications of the spectacular new tools provided to physicists by these 
technologies. It is divided-inte-twoMll:!-j><Uts: those topics for which the traditional 
classical description of atoms moving as classical p6ii1Tpartieles-iuppr~priate, and 
those topics for which this view must be abandoned and the center-of-mass motion 
of the atoms must be described quantum mechanically. It is here where some of 
the most dramatic progress has occurred: atoms in optical lattices, de Broglie wave 
optics, Bose-Einstein condensation, and the fascinating Schrodinger cat states. 

Although there are 50 year-old articles suggesting optical cooling, the topic at­
tracted serious attention with proposals for cooling trapped ions and neutral atoms, 
as well as trapping neutral atoms, at the end of the 1970s. The experimental aspects 
really began with trapped ions in the late 1970s and the beam slowing demonstra­
tions in Troitsk and Gaithersburg in the early 1980s. Then in 1985 the first neutral 
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atom traps were demonstrated: trapping in velocity space was done with optical 
molasses at AT&T Bell Labs, and in configuration space with purely magnetic 
fields at Gaithersburg. Simultaneous cooling and trapping was demonstrated us­
ing the magneto-optical trap at AT&T Bell Labs in 1987. Then there followed an 
explosion of interest in this field that was culminated by the award of the Nobel 
Prize in Physics in 1997 to three of its earliest practitioners. 

The text is written from our experimentalists' perspective. There are no long, 
formal derivations, and most of the theoretical material is presented in a conver­
sational rather than formal manner. It is our goal to inspire the readers with some 
of the beautiful "finger physics" pictures that have evolved in this new field, even 
though there have been quite elegant formalisms developed by many theorists. Any 
book intended as a complete, up-to-date, thorough treatment would be obsolete in 
a few years, and for this lack of completeness we apologize to those whose work 
may have been slighted or omitted. Instead, we have intended this book to be a 
guide for students learning the basic elements of the field. 

Both of us are indebted to the generations of students and postdocs who have 
passed through our laboratories, and whom we have encountered in visits to other 
laboratories, who have taught us so very much. Their fresh approach to the new 
problems posed by this expanding field have made our research careers fascinating 
and our time a great pleasure. We also wish to thank Hanneke de Vries and the 
staff at Springer, including external readers, for all their work on the manuscript. 

June 1999 Harold J. Metcalf 
Peter van der Straten 
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Part I 

Introduction 



1 
Review of Quantum Mechanics 

This chapter presents a brief review of those aspects of quantum mechanics that 
are important for understanding some of the material to be found elsewhere in this 
book. Its purpose is not to teach the subject, because that is so very well done 
in numerous other textbooks [1-9]. Rather, the intent is to bring together certain 
things that are sometimes scattered throughout such texts, to establish notation 
and conventions, and to provide a reference point for many important and useful 
formulas. 

1.1 Time-Dependent Perturbation Theory 

The time-dependent SchrOdinger equation is 

.. . all1(i:, t) 
1t1l1(r,t)=lh , at (1.1) 

where 1t is the total Hamiltonian for an atom in a radiation field and r is the 
coordinate of the electron. The field-free, time-independent atomic Hamiltonian 
is denoted as 1to, its eigenvalues as En == hwn, and its eigenfunctions as lPn (r). 
Then 1tOlPn (r) = EnlPn (r). The interaction with the radiation field is described by 
1t' (t), and thus 1t(t) = 1to + 1t' (t) when the radiation is considered as a classical 
electromagnetic field, which is appropriate for laser cooling. Since the eigenfunc­
tions lPn(r) form a complete set, the solution lI1(r, t) of Eq. 1.1 is expanded in 
terms of lPn (r) as 

lI1(r, t) = L q(t)lPk(r)e-iwkl , 

k 

(1.2) 
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where the coefficients q (t) are generally time-dependent. The Schrodinger equa­
tion then becomes 

1t(t)l.{I(r,t) = [1to+1t'(t)]Lq(t)cf>di)e-iWkl (1.3) 

k 

= (iii) (~) L q(t)cf>k(r)e-iwkf . 
at k 

Multiplying on the left by cf>j(r) and integrating over spatial coordinates r gives 

dc' (t) 
ili-J- = "" c (t)1t'. (t)eiwjkl 

dt L... k Jk ' 
k 

(1.4) 

where 1tjk(t) == (cf>jl1t'(t)lcf>k) and Wjk == (Wj - Wk). 
Equation 1.4 is exactly equivalent to the SchrMinger equation 1.1: no approx­

imations have been made. However, for the case of an atom in a radiation field 
it is unsolvable, and so approximations are required. One of the most common 
approaches found in textbooks is the use of perturbation theory. For an atom in 
the ground state (k = 1) at t = 0, all q(O) = 0 except for c) (0) = 1. For the 
perturbation approximation, one chooses 

(1.5) 

for all k =1= 1 and does a formal time integration ofEq. 1.4 to calculate these q(t) 
values. The small components q(t) of the excited states cf>k(r) for k =1= 1 that 
are mixed into l.{I(r, t) become the transition amplitudes and their squares are the 
transition rates. 

For transitions to the continuum, such as photoionization, averaging over the 
density of final states results in the familiar "Fermi Golden Rule" of quantum me­
chanics. For transitions between discrete states driven by radiation whose spectral 
width is larger than the natural width of the transition, averaging over the spectral 
density gives the same golden rule. 

1.2 The Rabi Two-Level Problem 

Such a textbook approach is not suitable for narrow-band laser excitation of atoms, 
however, because large excited-state populations are possible, thereby violating 
Eq. 1.5. Instead, a different approximation is made by truncating the summation of 
the exact Eq. 1.4 to just two terms, the single ground and excited state connected 
by the laser frequency, and solving the resulting coupled differential equations 
directly. Such a calculation for a two-level system was first studied by Rabi [10] in 
connection with magnetic resonance, and is described very well in textbooks [5,11]. 

The solution of this Rabi problem begins by absorbing any diagonal elements 
of1t'(t) into 1to, and then only one nonzero value, 1t~e(t) = 1t~g *(t), remains in 
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the summation (here 1 --* g and 2 --* e). Then Eq. 1.4 becomes 

dcg(t) . 
ili-- = C (t)H' (t)e- 1Wat 

dt e ge 
(1.6a) 

and 
iii dce(t) = C (t)H' (t)e iwat 

dt g eg , 
(1.6b) 

where Wa == Weg is the atomic resonance frequency. 
Evaluation of H~e (t) begins in the most general way by writing 

H(t) = p2/2m + V, (1.7) 

where V is the Coulomb potential seen by the electron whose momentum is p, and 
then by replacing p by the canonical momentum to obtain p - (e/c)ACr, t), where 
A (1:, t) is the vector potential of the applied field, in this case, the laser light) . The 

Hamiltonian can now be expanded and manipulated, beginning with £ = A/c, 
until the expression 

H'(t) = -e£Cr, t) . r (1.8) 

emerges (this is the classically expected operator). Here the A2 term is not consid­
ered because it represents only the energy of the electromagnetic field of the light 
and is transparent to the atomic eigenstates lPn (r). (The reader is cautioned that 
deriving Eq. 1.8 is fraught with certain difficulties that have been discussed in the 
literature over the past 40 years, and will not be considered here [12,13].) 

Using Eq. 1.8 to solve Eqs. 1.6 for the case of only two atomic levels con­
nected by a single, narrow-band excitation requires the use of two very well­
known approximations in addition to truncating the sum in Eq. 1.4. The first of 
these approximations is the rotating wave approximation (RWA), which consists 
of neglecting terms of order l/we compared with terms of order 1/0, where we 
is the laser frequency and 0 is the laser detuning from the atomic resonance fre­
quency,o == We - Wa [1,3,14]. The second approximation is the electric dipole 
approximation, which consists of neglecting the spatial variation of £(r, t) over 
the region of the spatial integral of H~e (t) because the optical wavelength A is 
typically several hundred nm whereas the wavefunctions lPn (r) are almost entirely 
contained within a sphere of radius typically < 1 nm. 

For a plane wave traveling in the positive z direction, the electric field operator 
is 

£(r, t) = Eoe cos(kz - wet), (1.9) 

where e is the unit polarization vector and Eo is the amplitude of the light field. 
The coupling element for this case becomes H~g(t) = lin cos(kz - wet), where 
n is the Rabi frequency defined by 

-eEo 
n == -1i-(e1r lg ) (1.10) 

I Although the present discussion refers to a quasi one-electron atom, the fonnulation is more general 
and is valid for other atoms as well. 
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and r is the electron coordinate. Here the electric dipole approximation has been 
made. For a two-level atom the dipole moment of the atom er is parallel to the 
polarization e of the field. This will be reconsidered in more detail in Chapter 4, 
where "real" atoms with mUltiple levels are discussed. However, the present ap­
proach is perfectly valid for a two-level atom, where the coupling strength between 
the atom and the field can always be identified with a single Rabi frequency. The 
reader should note that there are many definitions of Q in the literature, but this 
one is chosen because it is the real oscillation frequency of ICk (t) 12 for 0 = O. 

The Rabi frequency is proportional to the matrix element (elrlg), which, in 
general, is not easily calculated. For the hydrogen atom, the wavefunction of the 
electron in the bound states is known, and these elements can be calculated accu­
rately, but for all other atoms the situation is more complicated (see Sec. 4.5). 

The two Eqs. 1.6 can be uncoupled by differentiating the first One and substituting 
for Ce to find 

(l.11a) 

and 
d2ce(t) . dce(t) Q2 
dT + l0d[ + 4Ce(t) = 0, (l.11b) 

where the RWA has been made. This result applies to the case of a two-level atom 
interacting with a single frequency field, but in laser cooling it is often necessary 
to consider more complicated atoms and fields, such as multilevel atoms in a 
multifrequency field. This will be discussed in more detail in Chapter 4. 

The solution of Eqs. 1.11 for the same initial conditions as On p. 4, namely, 
cg(O) = 1 and ce(O) = 0, are 

cg(t) = cos - - i-sin - e+101 / 2 ( Q't 0 Q't) . 
2 Q' 2 

(l.12a) 

and 
Q Q't . 

C (t) = -i - sin _e-1Ot / 2 
e Q' 2 ' 

(1.12b) 

where 
(l.12c) 

Note that the probability for finding the atom in the initial state g or the excited 
state e, Icg (t)12 or Ice (t)12, oscillates at frequency Q', and that increasing the de­
tuning 101 increases the frequency of the oscillation while decreasing its amplitude 
as shown in Fig. 1.1. The segment of the oscillation associated with the transition 
from the excited state down to the ground state corresponds exactly to stimulated 
emission, and the result here illustrates clearly why the Einstein coefficients Bkj 

and Bjk are equal. When sin2 (Q't/2) is between its extreme values, the system 
may be driven toward either ground or excited state depending on the relative phase 
between the driving field t(r, t) and the oscillations of llI(r. t) (see Eq. 1.2). 
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FIGURE 1.1. Probability ICe(t)12 for the atom to be in the excited state for n = y and 13 = 
o (solid line), 13 = y (dotted line), and 13 = 2.5y (dashed line). Time is in units of l/y. 

1.2.1 Light Shifts 

In the presence of the off-diagonal Hamiltonian matrix elements of the operator 
1i' (t), the energies En that are the eigenvalues of1io are no longer the eigenvalues 
of the full Hamiltonian. The energy shifts are most readily found by first eliminating 
the time dependence associated with 1i'(t). An algebraic equivalent to the usual 
textbook approach oftransforming to a rotating frame [14] is to replace the c's in 
Eqs. 1.6 by 

(1.13a) 

and 
(1.13b) 

(Note that the rotating frame transformation is exact, as is this algebraic equivalent, 
and is completely different from the RWA.) Substituting these c's into Eqs. 1.6 
and then making the RWA for 1i~e(t) gives 

dc~(t) I lin 
ili-- = c (t)-

dt e 2 
(1.l4a) 

and 

iii d«t) = c~(t) lin _ c~(t)li8. 
dt 2 

(1.l4b) 

Now the oscillations of Eqs. 1.6 are gone. This new set of equations is exactly 
what would arise by evaluating Eq. 1.4 directly with both a time-independent 
perturbation 1i~e and the time dependence e-iwkt absorbed directly into each of 
the q(t)'s so that the unperturbed energies of states g and e do not appear. This 
justifies the next step of diagonalizing the matrix formed from the coefficients of 
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FIGURE 1.2. Energies of the two coupled states with the light field off and the light field 
on. The states are shifted due to the atom-light interaction, and the shift is called light shift. 

Eqs.1.14: 

(1.15) 

The solutions show that the shifted energies are given by 

Ii / 
Ee,g = "2(-8 =f Q), (1.16) 

as shown in Fig. 1.2. In the limit where Q « 181, the resulting energies are shifted 
by 

(1.l7a) 

and 

(1.l7b) 

Since the light intensity is proportional to Q2, !:lEg,e as given above is appropriately 
called the light shift. In the limit Q » 181, the solutions give !:lEg = sgn(8)IiQ/2 
and !:lEe = -sgn(8)IiQ/2, where sgn(8) == 8/181. The eigenstates corresponding 
to !:lEg,e are called the dressed states of the atom and are calculated in the next 
section. Very often the light field is not homogeneous (e.g., in a standing wave) 
producing a spatially dependent light shift !:lEg,e(r). The force that results from 
this gradient of energy is called the dipole force and is discussed in more detail in 
Chapter 9. 
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FIGURE 1.3. Energy level diagram for the atom plus field Hamiltonian. In each vertical 
column there is the familiar level scheme of a typical atom, but the columns are vertically 
displaced by liwe because of the addition of one laser photon per column. The nearly 
degenerate pairs are indicated. 

1.2.2 The Dressed Atom Picture 

The eigenfunctions ofthe Schr6dinger equation for a two-level atom in a monochro­
matic field are best described in terms of the "dressed states" of the atom [5]. It 
begins with the total Hamiltonian 

(1.18) 

where Ha is the usual atomic part denoted by Ho in Sec. 1.1 that gives the atomic 
energy levels, Hrad = liwe (a t a + 1/2) is the radiation part whose eigenvalues are 
En = (n + 1/2)liwe, and Hint is the atom-field interaction such as H' (t) in Sec. 1.1 
that causes transitions as well as light shifts. 

The energy level diagram of the first two terms in Eq. 1.18 consists of the 
ordinary atomic energies repeated for each value of n and vertically displaced by 
liwe each time, as shown schematically in Fig. 1.3. Attention is focused on the 
two atomic states coupled by the laser light that form closely spaced pairs of one 
excited state and one ground state separated by 1iO, as shown in Fig. 1.4. They are 
each mixtures of the ground and excited states, found by diagonalizing the matrix 
in Eq. 1.15. 

The third term in the Hamiltonian, the interaction between the atom and the 
field embodied in Hint. couples the ground and excited states that form each of 
these pairs through the off-diagonal matrix elements H~e (t). This splits the energy 
levels farther apart to IiQ' as given in Eq. 1.12c. Q' is independent of the sign of 
8, and the shift Ii(Q' - 181)/2 is the light shift of each dressed state (see Eq. 1.16). 
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FIGURE 1.4. The nearly degenerate pairs of energy levels of Fig. 1.3. In the presence of 
the coupling interaction, each of these pairs is a mixture of ground and excited states, so 
each can decay by spontaneous emission as indicated. This figure is different from Fig. 1.2 
because the energy levels here are separated only by 8, whereas in Fig. 1.2 their separation 
is (J)a. 

The light also mixes the states by an amount expressed in terms of a mixing 
angle () given by cos(2(}) == -fJ/Q', so that each ground state is mixed with a 
component of excited state and vice versa. These eigenstates of the Hamiltonian 
including this interaction are called the "dressed states" of the atom in the field [5]. 
The eigenfunctions are given by 

11>,) = cos (}Ig) - sin (}Ie) (1.19a) 

and 

1rf>2) = sin (}Ig) + cos(}le). (1.19b) 

In a standing wave, the light shifts of these dressed states vary from zero at the 
nodes to a maximum at the antinodes. The spatially oscillating energies found from 
Eq. 1.16 are not sinusoidal, except in the limit of fJ » Q. This is apparent because 
these oscillatory terms will always be dominated by fJ2 in the vicinity of a node. 
Thus, for any value of Q » fJ, the expansion of Eq. 1.16 as t1E ~ IiQI cos kzl/2 
will eventually fail near a node. 

The spatial variation of the internal energy of the atoms results in a force related 
to the gradient of the energy. Although a more thorough and rigorous discussion 
of optical forces is given in later chapters, it is simply noted here that the spatial 
average over a wavelength of this force vanishes. However, the potential, and hence 
the force, is different for different atomic states, and spatially dependent optical 
pumping among various states of multilevel atoms can result in a non-vanishing 
force. 
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FIGURE 1.5. Graphical representation of the Bloch vector R on the Bloch sphere. 

1.2.3 The Bloch Vector 

Because the overall phase of the wavefunction has no physical meaning, there 
are really only three free parameters in the solutions of Eqs. 1.6 for the complex 
q(t)'s. In a classic paper, Feynman, Vernon, and Hellwarth [15] considered a 
transformation to a rotating frame where they then combined the real and imaginary 
parts of the q(t)'s to form the three real parameters 

rl == CgC; + C;Ce, (1.20a) 

.( * *) r2 == , cgce - cgce , (I.20b) 

and 
r3 == Icel2 - Icgl2. (1.20c) 

The equations of motion 1.6 can be used to show that, in the rotating frame, a 
vector R whose components are the three ri 's given above, obeys 

dR .. .. 
-=QxR, 
dt 

(1.21) 

where the vector n has the three components Re(1i~e)' Im(1i~e)' and M. Usually 

1i' is taken to be real, so Im(1i~e) vanishes and the components of n become 
1i~e' 0, and M. This result is equivalent to the "Bloch vector" picture [16] and is 
graphically depicted in Fig. 1.5. 

Equation 1.21 shows that the Bloch vector R precesses with time without chang­
ing length, and its motion is thus confined to the surface of a sphere. The south 
(north) poles of this sphere correspond to the ground (excited) states of the atom, 
and equatorial points correspond to equal superpositions with various phases. 
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(a) (b) (c) 

FIGURE 1.6. The evolution of the Bloch vector R during adiabatic rapid passage. (a) It 
begins with small precessions near the South pole because the atom starts in the ground state 
and the large detuning makes Q pass near the poles. (b) As the detuning approaches zero the 
precession of R becomes large circles centered on a point near the equator as shown in the 
center picture. (c) Finally the detuning is very large in the opposite sense to its beginning, 
resulting in small circular precession near the North pole. Thus the atom is left in the excited 
state. In all three pictures, the x component of Q is chosen to be zero, and the y component 
is constant as shown. The detuning is represented by the z vector pointing downward at the 
start (a) and upward at the end (c). 

When 1i8 » 11l~el, the precession axis passes very nearly through the poles. 
In this case, an atom initially in the ground state undergoes rapid precessions on 
a small circle near the south pole and thus has a small excitation probability, as 
shown in Eq. 1.12 and Fig. 1.1. By contrast, for 8 = 0, Q passes through the equator 
so an atom initially in the ground state is described by a Bloch vector R undergoing 
slow, full-circle oscillations through the poles. The response of an atom initially 
in an equal superposition of ground and excited states (on the equator) to a field 
tuned to resonance (8 = 0) will therefore depend strongly on the components of 
R and thus on the mechanism that produced the superposition. 

The steady state for the Bloch vector is given by Q x R = O. There are two such 
Bloch vectors, where one is parallel and the other antiparallel to Q. It can easily 
be shown that these two vectors correspond to the eigenstates ofEq. 1.19. 

1.2.4 Adiabatic Rapid Passage 

The motion of R on the Bloch sphere allows a particularly graphic interpretation 
of a phenomenon called adiabatic rapid passage. If the frequency of the applied 
field is swept through resonance, an atom initially in the ground state is left in 
the excited state (and vice versa) with very high probability. At the beginning of 
the frequency sweep, R executes small, rapid orbits near the south pole, and these 
grow in size as 8 sweeps toward 9 and the precession axis consequently ~proaches 
the equatorial plane. At 8 = 0, R undergoes polar oscillations because Q is now in 
the equatorial plane, but the continually shifting axis now moves the center of the 
orbit on the surface of the sphere toward the north pole. Near the end of the sweep, 
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FIGURE 1.7. Schematic diagram of the adiabatic rapid passage experiment of Ekstrom et 
al. [17]. A metastable He beam crosses the axis of a focused laser beam at a distance L R. 

R executes small, rapid orbits near the north pole, and at the end of the sweep, R 
is left at the north pole, and the atom is left in the excited state (see Fig. 1.6). 

The name adiabatic rapid passage may seem a bit enigmatic: how can something 
be both adiabatic and rapid? During the process of raising R from the south to the 
north pole of the Bloch sphere, there is always some component of the excited 
state present, with a corresponding probability of spontaneous decay. Thus this 
coherent excitation process can succeed only if it occurs in a time short compared 
with the natural lifetime of the excited state 4Je(r), so it must be fast. Needless 
to say, it must also be slow enough for the precessing Bloch vector R to follow 
the evolving axis of Q adiabatically. Thus there are boundaries determined by the 
atomic parameters on the rate of sweeping the detuning d«5/dt. In practice, these 
limits can be satisfied with ordinary lasers and atoms, but it takes some effort. 

In a very clever experiment [17] this has been accomplished in an atomic beam 
(see Fig. 1.7). The atoms traverse a focused laser beam along path a, well away from 
its waist, so they experience a significant part of the wavefront curvature (which is 
strongest at the Rayleigh length, L R). As a result of the Doppler shift, the atoms 
first experience light whose frequency is shifted toward the blue, and then the 
frequency sweeps through «5 = 0 and toward the red as they leave the laser beam. 
(This sweep can be reversed by aligning the atomic beam along the alternative 
path a' shown in Fig. 1.7.) The Doppler shift is WD == -k· v = -kv cos e, where 
v is the atomic velocity, and k is the laser's wavevector whose magnitude is 2rr / A. 
From geometry, cot e = vt / L R. Thus for small angles e, the frequency sweep 
wDt = (-kv2 / LR)t is linear in time t. 

For the experiment discussed here [17], metastable He(23S» atoms (v ~ 2000 
mls) were excited to their 23p state (lifetime r ~ 100 ns) by A = 1.083 JLm light. 
For such atoms traversing a beam with a waist Wo ~ 1 0 JLm at a Raleigh length from 
it, the passage time 2-J2wo/v ~ 15 ns, is considerably less than the excited-state 
lifetime. The waist size and wavelength determine the beam's angular divergence to 
be A/rrwO, and hence a total frequency sweep of2v/rrwo, which is over 100 MHz. 
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Thus the intensity of the light is chosen to make Q « 1 00 MHz, and corresponds 
to a few mW/cm2 at the waist. The total power required is thus only a few nW! The 
experimenters used the deflection of the highly collimated beam of atoms resulting 
from their excitation, followed by the spreading caused by spontaneous emission, 
to determine that more than 98% of the atoms were excited this way. 

1.3 Excited-State Decay and its Effects 

In the discussion of time-dependent response of atoms to a radiation field above, 
the eigenfunctions of the time-independent Hamiltonian 1to were written as time 
independent. The wavefunction of the total Hamiltonian 1t in Eq. 1.2 included only 
the purely oscillatory behavior associated with the eigenvalues and the radiation­
induced time dependence of the Ck (t) 's. That discussion omitted the spontaneous 
decay of the excited states resulting from their interaction with the zero-point 
energy of the electromagnetic field. Spontaneous emission has played an important 
role in atomic physics since the conception of discrete atomic states by Bohr in 
1913. 

The problem of radiative transitions between discrete states in atoms was dis­
cussed by Einstein in 1917 [18], where he considered three radiative processes. In 
the first process, an amount of optical energy hwe (a "photon") is absorbed from an 
applied radiation field of angular frequency we, and atoms make transitions from 
the ground to the excited state. The newly introduced second process is stimulated 
emission, where a photon is emitted into the applied radiation field and the atoms 
make a transition from the excited to the ground state. Note that in both of these 
processes the total energy of the system consisting of the applied radiation field 
and the atoms is conserved. The third process is spontaneous emission, where a 
photon is also emitted and the atoms also make transitions from the excited to the 
ground state. However, unlike stimulated emission, the photon is not emitted in the 
mode of the radiation field, but has a random direction or polarization. Since the 
photon is emitted into the vacuum field, there is no longer conservation of energy 
for the system of radiation field plus atoms, since the vacuum field is outside the 
system. Finally, from the distribution of black body radiation, Einstein deduced 
that the fourth process, spontaneous absorption, is not possible. 

The discussion in this chapter so far has properly accounted for the two stim­
ulated processes discussed above (see Eqs. 1.11 and 1.12). The combined action 
of these two processes causes the oscillation in both the excited and ground state 
probabilities (see Fig. 1.1). For atoms initially in the ground state, the probability 
for absorption is large and the probability for them to go into the excited state 
increases. Once the atoms have a large probability to be in the excited state, how­
ever, the probability for absorption decreases and the probability for stimulated 
emission increases, which leads to the oscillations. 

Up to now, spontaneous emission has been left out of the discussion. Including 
it is very complicated, since it leads to loss of photons, and hence energy, from 
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FIGURE 1.8. Trajectories for atoms is a radiation field with Q = Y and 8 = -y, where y 
is the natural width. The number of atoms averaged over is I (a), 10 (b), and 100 (c). 

the system of radiation field and atoms. One way to avoid the difficulty might be 
to include the vacuum field in the system, which would then be closed as before. 
However, the task of doing so is formidable because both the emission direction 
and the polarization direction are random in spontaneous emission. Thus it would 
be necessary to include the entire continuum of these parameters in the system, and 
such a description is beyond the scope of this book. Furthermore, in most cases the 
properties of the emitted photon are not of interest, and information on the atom 
and the applied radiation field suffices. 

The usual way to treat this problem in quantum mechanics is to introduce the 
density matrix p and to discuss the excitation of the atoms in terms of populations 
and coherences instead of amplitudes. This follows in the next chapter. Here an 
alternative view of this problem is presented. 

This view is called the Monte Carlo wavefunction method and was recently 
described anew [19]. It is a numerical simulation that treats the evolution of the 
system with the same coupled Eqs. 1.6. However, at each instant there is some 
probability that an atom will undergo spontaneous emission within a certain, small 
time interval. This probability is proportional to the probability of the atom being 
in the excited state, Ice l2 . In this "gedanken" experiment the state ofthe system is 
observed by detecting the emitted photons with a photon counter. At each instant, 
the output of a random number generator is compared with the probability for a 
spontaneous emission, and if the random number is smaller, it is assumed that 
spontaneous emission has occurred (this is why this method is named after a city 
most famous for gambling). At that instant the evolution starts again from the 
values cg = 1 and Ce = O. Since there is no interest in the emitted photon, it is 
disregarded. 

Numerical results from this method are shown in Fig. 1.8. Note that there is a 
random aspect of the description, which means that repeating the procedure for 
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the same atom but with a different starting point in the pseudo random number se­
quence produces a different result. Thus a particular sequence results in a particular 
trajectory for a certain atom, but infinitely many different trajectories are possible. 
Figure 1.8a shows one possible trajectory for one atom. The oscillatory behavior 
is evident, as suggested in Fig. 1.1; however, the oscillations are interrupted by 
a spontaneous emission events near t = 1.9/y and t = 6.0/y. Repeating the 
procedure with N=lO or 100 atoms (see Figs. 1.8b,c) still results in oscillatory 
behavior for small time periods; however, these oscillations damp out for longer 
times. Also the discrete jumps, clearly visible for N = 1, can no longer be easily 
observed. This results from the averaging process, since the emission times are 
random and thus different for different atoms. This causes the oscillations to be 
damped and the excitation probability reaches its steady-state value. 

One common misconception that may arise from Fig. 1.8c is that the atoms 
eventually cease oscillating between the ground and excited states. In most ex­
periments, measurement are made on a large number of atoms and indeed the 
oscillations are damped. However, Fig. 1.8a clearly shows that each individual 
atom still oscillates, but that these oscillations are damped out by the averaging 
process. This topic will reappear in the density matrix approach that describes the 
evolution of an ensemble of atoms. 



2 
The Density Matrix 

Chapter 1 presented the equations for the coherent evolution of the amplitudes of 
a two-level atom in a radiation field. However, the effects of spontaneous emission 
cannot be described in terms of such coherent evolution of the eigenstates of 
the system. Spontaneous emission is most readily handled by the density matrix, 
which is introduced in this chapter. Since this topic is covered by many textbooks 
in quantum mechanics, it is only briefly presented in the first section here (for 
instance, see Ref. 20). In the next section it is applied to the specific case of a two­
level atom in a radiation field. The resulting equations are solved and discussed 
in terms of the effects of spontaneous emission on the interaction of atoms by 
radiation fields. 

2.1 Basic Concepts 

In quantum mechanics all information about a system in a pure state is stored 
in the wavefunction IW}. However, in an experiment IW} cannot be measured 
directly. Instead, one can only determine the expectation values of a set of quantum 
mechanical operators A given by 

(A) = (WIAIW), (2.1) 

when W is normalized according to (WIW) = 1. By proper arrangement of the 
experiment the wavefunction can be determined completely, except for one un­
necessary parameter, the overall phase. 

Alternatively, the state of the system can be described by the density operator p, 
which is given by p = IW}(WI. The density operator p can be written in terms of 
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the n x n density matrix, where n is the number of wavefunctions that completely 
spans the Hilbert space. In general, the wave function \11 can be expanded in a basis 
set {¢n} as in Eq. 1.2, 

n 

\11 = LCi¢i, (2.2) 
i=1 

so that the elements of the density matrix become 

(2.3) 

and the normalization ofthe wavefunction yields Tr(p) = (\I1I\11) = 1. In the case 
of a two-level atom in a radiation field, n = 2 so that P is a 2x2 matrix. 

Clearly the elements Pij depend on the basis states {¢n}. The diagonal elements 
are the probabilities ICi 12 for the atom to be in state i, which are all between 0 and 
1. The off-~iagonal elements cicj are called the coherences, since they depend on 
the phase dIfference between Ci and C j. 

The expectation value of an operator given in Eq. 2.1 can be written as 

j i.j 

i,j j 

Note that ifthe wavefunction \11 is multiplied by an arbitrary phase factor eict , there 
is no change of any observable of the system as shown by Eq. 2.4. Also P remains 
unchanged in this case, as required for an observable. 

Since the density matrix contains n2 complex elements, in principle it would 
have 2n2 real, independent parameters. Because P is Hermitian (see Eq. 2.3), 
Pij = Pji and there remain n 2 independent elements. By contrast, thewavefunction 
\11 is completely specified by the expansion coefficients Ci, which contain only 
2n - 1 independent parameters apart from its overall phase. This reduction in 
the number of parameters arises because the system under discussion here is in 
a pure state, which means that there is a fixed relation between the diagonal and 
off-diagonal elements. This relation is found from Eq. 2.3 to be PijPji = PiiPjj. 

The alternative to such a pure state is a statistical mixture of several states {\11 n} 
that can no longer be specified by just a single wavefunction. In that case the state 
is represented by a density operator of the form 

(2.5) 

This relation has the intuitive meaning that the system is in state i with a certain 
probability Pi. It can easily be checked that there is no longer a fixed relation 
between diagonal and non-diagonal elements, but instead PijPji ~ PiiPjj. The 
complete information on the system now requires n2 independent elements of the 
density matrix. 
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The advantages of the density matrix formalism compared to the wave function 
approach can be summarized as follows: (1) It eliminates the arbitrary overall 
phase, (2) it establishes a more direct connection with observable quantities, and 
(3) it provides a powerful method for doing calculations. In addition, it can handle 
pure states as well as mixed states, the last one being of importance in the case of 
spontaneous emission. 

The distinction between pure states and statistical mixtures is of fundamental 
importance in quantum mechanics. Suppose that for a certain quantum mechanical 
system there is a complete set of commuting operators. The question if a set of 
commuting operators is complete depends on the system under study. Then one 
measurement with each operator completely determines the state. Any subsequent 
measurement with one of the operators yields the same outcome as before, since 
all operators commute with each other. In this way the system has been prepared 
in a pure state, also referred to as a state of "maximum knowledge". If there is no 
measurement with one of the operators of this complete set, there is no information 
on the outcome of such a measurement. The system will then be in a statistical 
mixture of states H\IInH with a probabilities pj to be in a pure state \IIj, where i 
labels the eigenstates of the unmeasured operator. 

Spontaneous emission results in a transition of the system from an initial to a 
final state and can convert a pure state to a statistical mixture. This can happen 
because statistical mixtures are not only a consequence of incomplete preparation 
of the system, but also occur if there is only partial detection of the final state. 
Suppose a system consists of two parts A and B, such as an atom and a radiation 
field that are coupled, but only part A is observed. Then information about part B 
is lost, and a statistical average over part B is necessary. Using the density matrix 
to describe the system, one has to take the trace over part B, or 

(2.6) 

If the system was initially in a pure state, the incomplete detection process causes 
the pure state to evolve into a statistical mixture. 

As an example, consider a two-level atom in the excited state. After a short time 
the atom has a probability to remain in the excited state or it can make a transition 
to the ground state by spontaneous emission of a photon. The evolution of this 
system is given by 

1\11) = a(t)le; 0) + L !Js(t)lg; Is), 
s 

(2.7) 

where the state of the atom is indicated by e or g and the emitted photon by 
S = (k, e) with its wavevector k and its polarization e. Note that the photon can 
be emitted in all directions with a certain polarization, so the sum runs over all 
possible values of S. If one only observes the state of the atom and not the emitted 
photon, then the atom will be found in either the excited state Ie) or the ground state 
Ig); however, it will no longer be in a pure state. The new state can be described 
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by its density matrix Patom: 

Patom = Trph I \II} (\III = Icx(t)1 2 Ie}(el + L IfJs(t)12 Ig}(gl. (2.8) 
s 

The pure state I\II} has evolved to a statistical mixture of Ie} and Ig} since the 
emitted photon has not been observed. Equation 2.8 shows that phase information 
has been lost from Eq. 2.7. 

From the definition of the density matrix in Eq. 2.3, it is easy to show that for a 
pure, normalized state p2 = p, whereas for a statistical mixture p2 =f:. p. In a pure 
state, one of the eigenvalues of the density matrix is unity and all the others are 
zero. In the case of a statistical mixture there are several eigenvalues between 0 and 
1, which are the probabilities for the state to be in a particular eigenstate. These 
properties make it possible to determine from a given density matrix whether the 
system is in a pure state or not. 

2.2 Spontaneous Emission 

The previous section showed that spontaneous emission causes a pure state to 
evolve into a mixed state because only the atom and the laser field are considered 
(part A) and not the spontaneously emitted light (part B). This results in a huge 
simplification of the description because the spontaneously emitted light can travel 
in many different directions and have different polarizations. The number of modes 
is infinite and this complicates the situation enormously. Furthermore, spontaneous 
emission cannot be properly handled within the framework of a semiclassical 
description of the electromagnetic field as was done in Chapter 1, because it is 
induced by vacuum fluctuations of the field. There are various books describing 
the quantization of the field that produces such fluctuations, and these books should 
be consulted for details [21-23]. 

In his famous 1917 paper [18], Einstein not only showed that stimulated emis­
sion was necessary to explain Planck's blackbody spectrum, but also derived the 
spontaneous emission rate using detailed balancing between spontaneous and stim­
ulated processes. Although his result is correct, his derivation does not show the 
true nature of the spontaneous emission process. Its properties emerge from the 
Wigner-Weisskopftheory that is summarized here [24]. In this theory it is shown 
that an atom in the excited state decays exponentially as a result of the fluctuations 
of the quantized vacuum field. The rate of this decay process is just the spontaneous 
emission rate. 

Consider an atom in the excited state at t = 0 and no photons in the radiation 
field. The system is in a pure state Ie; O}, where the first parameter in the ket 
describes the state of the atom and the zero indicates the absence of photons in 
the field. The system makes a transition from the excited to the ground state by 
spontaneous emission, emitting one photon into the radiation field. Then the state 
is denoted by Ig; Is} with S = (k, e) the mode of spontaneous emission, where 
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the direction of the emitted photon is explicitly indicated by its wavevector k and 
its polarization bye. The state of the system can now be described analogously to 
Eq. 1.2 by 

\{I(t) = ceoe-iWe'le; 0) + LCglSe-i(Wg+W)'lg; Is), (2.9) 

s 

where the sum is over all possible modes S. Note that the frequency w in the 
exponent must be replaced by kc for the summation. Even though the summation 
runs over an infinite number of modes, this notation is sufficient for now. 

To describe the evolution of the wavefunction in time, the Hamiltonian of the 
system has to be defined. This requires the quantization of the electromagnetic 
field, which will not be described here. However, the only part of the Hamiltonian 
that couples the two states in Eq. 2.9 is the atom-field interaction: the atomic and 
field parts play no role. This coupling is analogous to its semiclassical counterpart, 
and the result for the time evolution of the two states is 

. dCeQ(t) _ '" (t) n -i(w-wa), 
I - ~CglS ~'s e 

dt s 
(2. lOa) 

and 
.dCglS(t) _ ( ) n* i(w-wa ), 
I - CeO t Us e . 

dt 
(2. lOb) 

These equations are similar to Eq. 1.4, where the coupling for each mode is given 
by nOs = -;1 . Ew and Os is called the vacuum Rabi frequency. The dipole 
moment is;1 = e{elrlg) and the electric field per mode is found from the classical 
expression for the energy density to be 

(2.11) 

Here V is the volume used to quantize the field, and it will eventually drop out of 
the calculation. The total energy of the electromagnetic field in the volume V is 
given by hwj2, corresponding to the zero point energy of the radiation field. By 
directly integrating Eq. 2.10b and substituting the result into Eq. 2.10a, the time 
evolution of ceo(t) is found to be 

dC~~(t) = _ L IOsl2 t dt'e-i(w-wa)(t-t')ceo(t'). 
s Jo 

(2.12) 

This represents an exponential decay of the excited state, and to evaluate the decay 
rate it is necessary to count the number of modes for the summation and then do 
the time integral. 

To count the number of modes S = (k, e), represent the field by the complete set 
of traveling waves in a cube of side L. Since the field is periodic with a periodicity 
L, the components of k are quantized as ki = 2rrn;/L, with i = x, y, z. Then 
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dni = (L/2rr)dki and therefore dn = (L/2rr)3d3k. The frequency W is given by 
w = kc, so 

Va} 
dn = 2 x -3-3 sin () dwd()dt{J. 

8rr c 
(2.13) 

The factorof2 on the right-hand side ofEq. 2.13 derives from the two independent 
polarizations e of the fluorescent photons. Now replace the summation in Eq. 2.12 
by an integration over all possible modes, insert the result of Eq. 2.13, and then 
integrate over the angles () and t{J to find 

(2.14) 

where the volume V has dropped out, since 1 Qs 12 ex 1/ V. In this result, the 
orientation of the atomic dipole with respect to the emission direction has been 
taken into account, which yields a reduction factor of 1~ for a random emission 
direction. 

The remaining time integral can be evaluated by assuming that the dipole mo­
ment J.L varies slowly over the frequency interval of interest, so it can be evaluated 
at w = Wa. Furthermore, the time integral is peaked around t = t', so that the co­
efficient ceo(t) can be evaluated at time t and taken out of the integral. The upper 
boundary of the integral can be shifted toward infinity, and the result becomes 

lim r dt' e-i(w-wa)(t-t') = rro(w _ wa ) _ P ( __ i_) , 
t-+oo 10 W - Wa 

(2.15) 

where o(x) is the delta function and P(x) is the principal value. The last term is 
purely imaginary and causes a shift of the transition frequency, which will not be 
discussed further. Substitution of the result of Eq. 2.15 into Eq. 2.14 yields the 
final result 

dceo(t) = -~c o(t) 
dt 2 e , 

(2. 16a) 

where 
W3J.L2 

Y = 3rrEollc3' 
(2.16b) 

Since the amplitude of the excited state decays at a rate y /2, the population of the 
state decays with y and the lifetime of the excited state becomes r == 1/ y . 

The decay of the excited state is irreversible. In principle, the modes of the 
spontaneously emitted light also couple to the ground state in Eqs. 2.10, but there 
is an infinite number of modes in free space. The amplitude for the reverse process 
has to be summed over these modes. Since the different modes add destructively, 
the probability for the reverse process becomes zero. The situation can be changed 
by putting the atom in a reflecting cavity with dimensions of the order of the optical 
wavelength A.. Then the number of modes can be changed considerably compared 
to free space. In quantum optics, several experiments have been carried out where 
this effect has been detected. 
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2.3 The Optical Bloch Equations 

It is straightforward to use Eq. 1.4 to show that the time dependence of the density 
matrix depends on the Hamiltonian simply as 

. dp 
lli- = [1i, pl. 

dt 
(2.17) 

This relation points out the special role of p in quantum mechanics. Note that the 
sign on the right-hand side is opposite to the usual Heisenberg equation of motion 
for quantum mechanical operators. The rest of this section continues the analysis 
of the Rabi two-level problem using the density matrix, which is written for a pure 
state as 

p = ( Pee 
Pge 

(2.18) 

The effects of the coupling to the light field and spontaneous emission can be 
added independently [25]. The evolution equation for the terms Pij in the case of 
interaction with a laser can be found by applying the evolution equation for the 
amplitudes, given by Eq. 1.11. For instance, in the case of Pgg this is 

dpgg dc g * dc; . Q* _ . Q _ 
dt = d(cg + cgd( = I TPeg -1"2 Pge , (2.19) 

where Pge == pgee-i8t . In the same manner, equations for the time derivative of 
the other elements of the density matrix can be obtained. Solving these equations 
gives the same solutions as Eqs. 1.12. The identification of Pij in terms of cicj is 
valid for a pure state, but loses its meaning for a statistical mixture. 

Spontaneous emission can now be described by an exponential decay of the 
coefficient Peg (t) with a constant rate y /2, 

( dPeg ) Y 
dt spon = -'2Peg ' 

(2.20) 

The ground state is stable against spontaneous emission, but the population of 
the ground state still changes because of the spontaneous emission process, since 
the excited state decays to the ground state. The loss of population of the excited 
state leads to a gain of population in the ground state. This leads to the following 
equations for the two-level system, including spontaneous emission: 

(2.21) 
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FIGURE 2.1. Probability ICe(t)12 for the atom to be in the excited state for Q = Y and 
Il = -y by numerical integration of the OBEs. The solutions are identical to the Monte 
Carlo wavefunction method with an infinite number of atom trajectories. Time is in units 
of l/Y. 

These equations are called the optical Bloch equations (aBE), in analogy to the 
Bloch equations for nuclear magnetic resonance. Note that dpee/dt = -dpgg /dt, 
in accordance with the requirement of a closed two-level system where the total 
population Pgg + Pee = 1 is conserved. 

Furthermore, it is explicitly assumed that the decay of the coherences and the 
decay of the excited state are described by a single parameter y. This will always be 
the case in the systems discussed within the framework of laser cooling. However, 
in cases where collisions between atoms playa role, the decay of the coherences and 
the populations are described by different decay parameters, and in those cases 
parameters Tt and T2 are introduced to account for this difference. For details 
regarding this issue the reader is referred to several books on this topic [7,14]. 

The steady-state solutions of Eqs. 2.21 are discussed in the next section. How­
ever, the temporal behavior can be found by direct numerical integration. The 
results are shown in Fig. 2.1 for the case Q = y and 8 = -y. This is identical to 
the result obtained with the Monte Carlo wavefunction method at the end of Chap­
ter 1, if an infinite number of trajectories is used in the Monte Carlo wavefunction 
method. 

2.4 Power Broadening and Saturation 

The steady-state solutions of the aBE can be found by setting the time derivatives 
to zero and exploiting certain relationships among the n2 = 4 real, independent 
parameters of P for a two-level system. The conservation of the population given 
by Pgg + Pee = 1 eliminates one of these parameters, and two of the others are 
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complex conjugates. Using the population difference w == Pgg - Pee and the optical 
coherence Peg = P;e in the aBE gives 

and 

dPeg (Y. ) iwQ dt = - "2 - zli Peg + -2-

dw . * * dt = -yw -1(QPeg - Q Peg) + y. 

(2.22a) 

(2.22b) 

The steady-state case has dPeg/dt = dw/dt = 0, and the resulting equations can 
be solved for wand Peg: 

W=--
I+s 

and 

Peg = 2(y /2 - ili)(1 + s)' 

Here the saturation parameter s is given by 

\Q\2 \Q\2/2 So 
s= - =------;:;-

- 2\(y /2 - ili)\2 - li2 + y2/4 - I + (2li/y)2' 

where the last step defines the on-resonance saturation parameter 

with the saturation intensity given by 

(2.23a) 

(2.23b) 

(2.24a) 

(2.24b) 

(2.24c) 

For the case of a low saturation parameter, s « 1, the population is mostly in 
the ground state (w = 1), whereas in the case of high s the population is equally 
distributed between the ground and excited state (w = 0). The population Pee of 
the excited state is given by 

I s so/2 
Pee = 2(1 - w) = 2(1 + s) = 1 + So + (2li/y)2' (2.25) 

and for s » 1, Pee approaches 1/2, Since the population in the excited state decays 
at a rate y, and in steady state the excitation rate and the decay rate are equal, the 
total scattering rate yp of light from the laser field is given by 

yp = YPee = I + So + (2li/y)2' 
soy/2 

(2.26) 

At very high intensities, where so» 1, yp saturates to y /2. This equation can be 
rewritten as 

( So ) ( y/2 ) 
yp = 1 + So I + (2li/y')2 ' 

(2.27a) 
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FIGURE 2.2. Excitation rate yp as a function of the detuning 8 for several values of the 
saturation parameter so. Note that for So > 1 the line profiles start to broaden substantially 
from power broadening. 

where 

y' = yJI +so (2.27b) 

is called the power-broadened linewidth of the transition. Because of saturation, 
the linewidth of the transition as observed in an experiment, where the absorption 
of light is detected while scanning its frequency, is broadened from its natural 
linewidth y to its power-broadened value y'. 

Figure 2.2 shows a plot of yp as a function of the detuning 8 for several values 
of the saturation parameter so. For large values of So there is a significant power 
broadening of the spectral profile, which is a direct consequence of the fact that 
for large So, the absorption continues to increase with increasing intensity in the 
wings, whereas in the center half of the atoms are already in the excited state. The 
absorption in the center of the profile is therefore saturated, whereas in the wings 
it is not. 

Note that other line-broadening mechanisms, such as the Doppler effect, pres­
sure broadening, and others, have been left out of the present discussion. However, 
they might also playa significant role under certain conditions, and their convolu­
tion with power broadening has to be considered carefully because of the different 
line shapes. 

The scattering of light from a laser beam results in intensity loss when the beam 
travels through a sample of resonant atoms. The amount of scattered power per 
unit of volume is given by hwypn, where n is the density of the atoms. Thus 
dl/dz = -hwypn for a laser beam of intensity I traveling in the z-direction. For 
low intensity light tuned near the atomic resonance, the scattering rate is given by 
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Yp ~ soY /2, so the absorption rate is 

dl - = -Gegn/, 
dz 

(2.28a) 

where the cross section Geg for scattering light out of the beam on resonance is 
given by 

liwy 3A.2 
Geg = - = -. (2.28b) 

2Is 2n 

Note that this cross section is of the order of A. 2 , which is much larger than the 
cross section for atom-atom interactions, typically of the order of a5. 

The solution of Eq. 2.28a is 1 (z) = 10 exp( -Gegnz), and the cross section of 
Eq. 2.28b allows for an estimate of the densities for which absorption becomes 
important. Using A. ~ 500 nm and an interaction length of I mm, the laser beam 
is appreciably absorbed if the density is of the order of 1010 atoms/cm3• Such 
densities can be achieved in optical traps, and so the total absorption of the light 
at the edge of the atomic cloud can severely diminish the trapping potential. Also, 
the reabsorption of spontaneously emitted light causes a repulsion between the 
atoms, which limits the obtainable density in optical traps. 



3 
Force on Two-Level Atoms 

Laser cooling and trapping rely on the interaction between laser light and atoms 
to exert a controllable force on the atoms, and many sophisticated schemes have 
been developed using the special properties of the interaction. The outcome is a 
new field called laser cooling and trapping of atoms that has flourished over the 
last decade. 

This chapter considers the simplest schemes for exerting optical forces on atoms, 
namely, a single-frequency light field interacting with a two-level atom. The de­
scription is one dimensional (the z-direction) and shows how the absorption and 
emission of light alters the velocity of the atoms. It is based on the interaction of 
two-level atoms with a laser field as discussed in Chapters 1 and 2. Although this is 
the simplest possible scheme, it is pedagogically valuable because it shows many 
of the features that will be encountered in the rest of the book. 

3.1 Laser Light Pressure 

The philosophy of the correspondence principle requires a smooth transition be­
tween quantum and classical mechanics. Clearly the orbits of the planets can be 
described with arbitrary accuracy using classical mechanics, but just as clearly, 
they must conform to the rules of quantum mechanics. The quantum version of 
Newton's laws is embodied in the Ehrenfest theorem [26], a simple statement that 
the expectation value of an operator must correspond to the behavior of its classical 
counterpart. 



30 3. Force on Two-Level Atoms 

In this section the semiclassical description of the interaction of a light field 
with a two-level atom is used to derive the laser light pressure on an atom. The 
force F on an atom is defined as the expectation value of the quantum mechanical 
force operator F, as defined by 

d 
F = (F) = - (p) . 

dt 
(3.1) 

The time evolution of the expectation value of a time-independent quantum me­
chanical operator A is given by [6] 

d i 
dt (A) = Ii ([H, A]) . 

The commutator of Hand p is given by 

aH 
[H, p] = ili-, 

az 

(3.2) 

(3.3) 

where the operator p has been replaced by -ili(ajaz). The force on an atom is 
thus given by 

F=-(~7)· (3.4) 

This relation is a specific example of the Ehrenfest theorem and forms the quantum 
mechanical analog of the classical expression that the force is the negative gradient 
of the potential. 

Discussion of the force on atoms caused by light fields begins with the relevant 
part of the Hamiltonian of the system, H' (t) given in Eq. 1.8. Then the force is 
simply 

(F) = F = e(:z (l(r, t)· r)). (3.5) 

Using the electric dipole approximation, i.e., neglecting the spatial variation of the 
electric field over the size of an atom, allows the interchange of the gradient with 
the expectation value, and gives 

F = e :z ((l(r, t) . r)) , (3.6) 

whose matrix has only off-diagonal entries. The expectation value can be found 
using the definition of the Rabi frequency of Eq. 1.10 and the expectation value 
(A) = Tr(pA) from Eq. 2.4, resulting in 

( an * an* ) 
F = Ii azPeg + a;:Peg . (3.7) 

Deriving this result requires the RWA that neglects terms oscillating with the laser 
frequency. Note that the force depends on the state of the atom, and in particular, 
on the optical coherence between the ground and excited states, Peg. 
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Although it may seem a bit artificial, it is instructive to split anjaz into its real 
and imaginary parts (the matrix element that defines n in Eq. 1.10 can certainly 
be complex): 

(3.8) 

Here qr + iqi is the logarithmic derivative of n. In general, for a field E(z) = 
Eo(z) exp(i¢(z» + c.c. the real part of the logarithmic derivative corresponds to 
a gradient of the amplitude Eo(z) and the imaginary part to a gradient of the phase 
¢(z). Then the expression for the force becomes 

Equation 3.9 is a very general result that can be used to find the force for any 
particular situation as long as the optical Bloch equations (OBE) for Peg can be 
solved (see Eqs. 2.21). In spite of the chosen complex expression for n, it is 
important to note that the force itself is real, and that first term of the force is 
proportional to the real part of np:g , whereas the second term is proportional to 
the imaginary part. 

3.2 A Two-Level Atom at Rest 

The remainder of this chapter will be devoted to two specific cases for the laser 
field. The first one is a traveling wave whose electric field is given by Eq. 1.9: 

E(z) = ~o (ei(kZ-WI) + c.c.). (3.10) 

In calculating the Rabi frequency from this, the RWA causes the positive frequency 
component of E(z) to drop out (see Eqs. 1.2 and 1.10). Then the gradient ofthe 
Rabi frequency becomes proportional to the gradient of the surviving negative 
frequency component, so that qr = 0 and qi = k. For such a traveling wave the 
amplitude is constant but the phase is not, and this leads to the nonzero value of 
qi· 

This is in direct contrast to the case of a standing wave, composed of two 
counterpropagating traveling waves so its amplitude is twice as large, for which 
the electric field is given by 

E(z) = Eo cos(kz) (e- iW1 + c.c.) , (3.11) 

so that qr = -k tan(kz) and qi = o. Again, only the negative frequency part 
survives the RWA, but the gradient does not depend on it. Thus a standing wave 
has an amplitude gradient, but not a phase gradient. The singularity in qr from the 
tangent function for a standing wave does not lead to problems, since it occurs at 
the node of the field where the Rabi frequency n is zero. 
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The steady-state solutions of the aBE for an atom at rest are given in Eqs. 2.23. 
Substituting the solution for Peg of Eq. 2.23b into Eq. 3.9 gives 

(3.12) 

Note that the first term is proportional to the detuning ", whereas the second term 
is proportional to the decay rate y. For zero detuning, the force becomes F = 
(hky /2)[so/(so + 1)], a very satisfying result because it is simply the momentum 
per photon hk, times the scattering rate yp of Eq. 2.26. 

It is instructive to identify the origin of both of the terms in Eq. 3.12. Absorption 
of light leads to the transfer of momentum from the optical field to the atoms. If the 
atoms decay by spontaneous emission, the recoil associated with the spontaneous 
fluorescence is in a random direction, so its average over many emission events 
results in zero net effect on the atomic momentum. Thus the force from absorption 
followed by spontaneous emission can be written as 

Fsp = hk Y Pee, (3.13) 

where the first factor is the momentum transfer for each photon, the second factor 
is the rate for the process, and the last factor is the probability for the atoms 
to be in the excited state. Although it may seem natural for this expression to 
depend on the ground-state population Pgg and not the excited-state population 
Pee, using Pee simply builds in the dependence of absorption on detuning and 
intensity, including saturation. Using Eq. 2.26, the force resulting from absorption 
followed by spontaneous emission becomes 

F. _ hksoy/2 
sp - -1-+-s-o-+-(2-"-/-y-=)2' (3.14) 

which saturates at large intensity as a result of the factor So in the denominator. 
Increasing the rate of absorption by increasing the intensity does not increase the 
force without limit, since that would only increase the rate of stimulated emission, 
where the transfer of momentum is opposite in direction compared to the absorp­
tion. Thus the force saturates to a maximum value of hky /2, because Pee has a 
maximum value of '/2 (see Eq. 2.25). 

Examination of Eq. 3.13 shows that it clearly corresponds to the second term 
of Eq. 3.9. This term is called the light pressure force, radiation pressure force, 
scattering force, or dissipative force, since it relies on the scattering of light out of 
the laser beam. It vanishes for an atom at rest in a standing wave where qi = 0, 
and this can be understood because atoms can absorb light from either of the 
two counterpropagating beams that make up the standing wave, and the average 
momentum transfer then vanishes. This force is dissipative because the reverse of 
spontaneous emission is not possible, and therefore the action of the force cannot 
be reversed. It plays a very important role in the slowing and cooling of atoms as 
discussed in Chapters 6 and 7. 
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By contrast, the first term in Eq. 3.9 derives from the light shifts of the ground and 
excited states, described in Sec. 1.2.1. Such light shifts depend on the strength of the 
optical electric field. A standing wave is composed of two counterpropagating laser 
beams, and their interference produces an amplitude gradient that is not present 
in a traveling wave. The resulting spatially modulated light shift produces a force 
that is different from that of Eq. 3.13. The force is proportional to the gradient of 
the light shift, and Eq. 1.17a can be used to find the force on ground-state atoms 
in low intensity light: 

a(L'1Eg) hQ aQ 
Fdip=- =--. 

az 28 az 
(3.15) 

For an amplitude-gradient light field such as a standing wave, aQjaz = qrQ, and 
this force corresponds to the first term in Eq. 3.9 in the limit of low saturation 
(s « 1). The apparent difference in the dependence on 8 is merely a consequence 
of the expansion of the radical as done in Eqs. 1.17. 

For the case of a standing wave Eq. 3.12 becomes 

2hk8so sin 2kz 
Fd· - -----=------::-

Ip - 1 + 4so cos2 kz + (28jy)2' 
(3.16) 

where So is the saturation parameter of each of the two beams that form the standing 
wave. For 8 < 0 the force drives the atoms to positions where the intensity has 
a maximum, whereas for 8 > 0 the atoms are attracted to the intensity minima. 
The force is conservative and can be written for an atom at rest as the gradient of 
a potential U dip given by 

u. = ~h810 (1 + 4socos2 kz + (28 jy )2). 
dip 2 g 1 + (28jy)2 

(3.17) 

The potential depth can be increased by increasing 8 because of the first factor, but 
when (8jy)2 becomes much larger than So the potential depth decreases because 
ofthe logarithmic term in Eq. 3.17. When (8jy)2 »so the potential Udip reduces 
to the light shift L'1Eg of Eq. 1.17a, corrected for the presence of two beams. 

The force Fdip is called the dipole force, reactive force, gradient force, or redis­
tribution force. It has the same origin as the force of an inhomogeneous dc electric 
field on a classical dipole, but relies on the redistribution of photons from one laser 
beam to the other. The entire Chapter 9 is devoted to dipole forces, and they play 
an important role in both cooling and trapping of atoms, as discussed in Chapters 8 
and 11. 

It needs to be emphasized that the forces of Eqs. 3.14 and 3.16 are two funda­
mentally different kinds of forces. For an atom at rest, the scattering force vanishes 
for a standing wave, whereas the dipole force vanishes for a traveling wave. The 
scattering force is dissipative, and can be used to cool, whereas the dipole force 
is conservative, and can be used to trap. Dipole forces can be made large by us­
ing high intensity light because they do not saturate. However, since the forces 
are conservative, they cannot be used to cool a sample of atoms. Nevertheless, 
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they can be combined with the dissipative scattering force to enhance cooling in 
several different ways, as described in Chapters 8 and 9. By contrast, scattering 
forces are always limited by the rate of spontaneous emission y and cannot be 
made arbitrarily strong, but they are dissipative and are required for cooling. 

3.3 Atoms in Motion 

Laser cooling requires velocity-dependent forces that cannot derive from the gra­
dient of a potential. Instead, it depends upon dissipative forces that are velocity 
dependent. Including the velocity of the atoms in the OBE is possible, but the 
resulting equations are usually too hard to solve analytically. 

Instead, the procedure will be to treat the velocity of the atoms as a small 
perturbation, and make first-order corrections to the solutions of the OBE obtained 
for atoms at rest [27]. It begins by adding drift terms in the expressions for the 
relevant quantities. Thus the Rabi frequency satisfies 

dQ aQ aQ aQ 
- = - +v- = - +v(q +iq·)Q, 
dt at az at r I 

(3.18) 

where Eq. 3.8 has been used to separate the gradient of Q into real and imaginary 
parts. In the same way, differentiating Eq. 2.23a leads to 

dw aw aw aw 2vqrs 
-=-+v-=-- , 
dt at az at (1+s)2 

(3.19a) 

since So = 21Q12/y2 and Q depends on z. Similarly, differentiating Eq. 2.23b 
leads to 

dPeg OPeg aPeg aPeg ivQ [(1- S) . ] 
dt = --at + Vaz = --at + 2(y/2 - i8)(1 + s) qr 1 + s + lqi . 

(3.19b) 
In both of these calculations it must be remembered that Q is complex, so differ­
entiating So results in two terms that give aso/az = 2qrso. In Eqs. 3.19 the value 
of w in ow /az has been taken from its steady-state value given by Eq. 2.23a, and 
similarly for Peg. Since neither w nor Peg is explicitly time dependent, both aw/at 
and aPeg / at vanish. The Eqs. 3.19 are still difficult to solve analytically for a gen­
eral optical field, and the results are not very instructive. However, the solution 
for the two special cases of the standing and traveling waves provide considerable 
insight. 

3.3.1 Traveling Wave 

For a traveling wave qr = 0, and the velocity-dependent force can be found by 
combining Eqs. 3.19 with Eqs. 2.22 to eliminate the time derivatives dw/dt and 
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dPeg / dt. The resulting coupled equations for wand Peg can be separated and 
substituted into Eq. 3.9 for the force to find, after considerable algebra, 

F - Ii . sy /2 (I 28vqi ) = fj - fJv 
- q1l+s + (l+s)(82 +y2/4) - 0 . 

(3.20) 

The first term is the velocity-independent force Fo for an atom at rest given by 
Eq. 3.12. The second term is velocity-dependent and can lead to compression of the 
velocity distribution. For a traveling wave qi = k and thus the damping coefficient 
fJ is given by 

_ -lik2 4so(8/y) 
fJ - (1 + So + (28/y)2)2' 

(3.21) 

Note that such a force would compress the velocity distribution of an atomic 
sample for negative values of 8, i.e., for red detuned light. For small detuning and 
low intensity the damping coefficient fJ is linear in both parameters. However, for 
detunings much larger than y and intensities much larger than Is, fJ saturates and 
even decreases as a result of the dominance of 8 in the denominator of Eq. 3.21. 
This behavior can be seen in Fig. 3.1, where the damping coefficient fJ has been 
plotted as a function of detuning for different saturation parameters. The decrease 
of fJ for large detunings and intensities is caused by saturation of the transition, 
in which case the absorption rate becomes only weakly dependent on the velocity. 
The maximum value of fJ is obtained for 8 = - y /2 and So = 2, and is given by 

fJrnax = Iik2 / 4. (3.22) 

The damping rate r is given by r == fJ / M, and its maximum value is 

Iik2 Wr 
rrnax = - =-, 

4M 2 
(3.23) 

where Wr is the recoil frequency discussed near the end of Sec. 5.1. For the alkalis 
this rate is of the order of 104_105 s-I, indicating that atomic velocity distributions 
can be compressed on the order of 10-100 J..LS. Furthermore, Fo in Eq. 3.20 is always 
present and so the atoms are not damped toward any constant velocity. 

3.3.2 Standing Wave 

For a standing wave qi = 0, and just as above in Sec. 3.3.1, the velocity-dependent 
force can be found by combining Eqs. 3.19 with Eqs. 2.22 to eliminate the time 
derivatives. The resulting coupled equations for w and Peg can again be separated 
and substituted into Eq. 3.9 for the force to find 

_ s8 ( (l-S)y2-2S2(82+y2/4)) 
F--liqr l+s I-vqr (8 2 +y2/4)(l+s)2y , (3.24) 

where qr = -k tan(kz). In the limit of s « 1, this force is 

s08y2 ( Y ) 
F=lik 2(82 +y2/4) sin2kz+kv(82 +y2/4) (l-cos2kz) . (3.25) 
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FIGURE 3.1. The damping coefficient fJ for an atom in a traveling wave as a function of 
the detuning for different values of the saturation parameter so. The damping coefficient is 
maximum for intermediate detunings and intensities. 

Here So is the saturation parameter of each of the two beams that compose the 
standing wave. The first term is the velocity-independent part of Eq. 3.12 and is 
sinusoidal in space, with a period of 'A/2. Thus its spatial average vanishes. The 
force remaining after such averaging is Fav = - fJ v, where the damping coefficient 
fJ is given by 

fJ = -hk2 8so(~/y) . 
(1 + (2~/y)2)2 (3.26) 

In contrast to the traveling-wave case, this is a true damping force because there 
is no Fo, so atoms are slowed toward v = 0 independent of their initial velocities. 
Note that this expression for fJ is valid only for s « 1 because it depends on 
spontaneous emission to return excited atoms to their ground state. By contrast, 
the value of fJ for a traveling wave given in Eq. 3.21 is valid for all values of s 
by virtue of its saturation, as discussed below. The standing-wave value of fJ is 
twice as large as the traveling-wave value, since a standing wave is the sum of two 
traveling waves, and their damping coefficients add constructively. 

There is an appealing description of the mechanism for this kind of cooling in 
a standing wave. With light detuned below resonance, atoms traveling toward one 
laser beam see it Doppler shifted upward, closer to resonance. Since such atoms 
are traveling away from the other laser beam, they see its light Doppler shifted 
further downward, hence further out of resonance. Atoms therefore scatter more 
light from the beam counterpropagating to their velocity, and thus their velocity 
is lowered. This is the damping mechanism called optical molasses, discussed in 
detail in Chapter 7. It is one of the most important tools of laser cooling. 

Needless to say, such a pure damping force would reduce the atomic velocities, 
and hence the absolute temperature, to zero. Since this violates thermodynamics, 
there must be something left out of the description. It is the discreteness of the 
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momentum changes in each case, !:J.p = hk that results in a minimum velocity 
change. The consequences of this discreteness can be described as a diffusion 
of the atomic momenta in momentum space by finite steps, and is discussed in 
Secs. 5.3 and 7.2. 

The damping coefficient f3 for a traveling wave given in Eq. 3.21 can easily in­
clude the effects of high values of s because the momentum change from stimulated 
emission exactly cancels that of absorption, and the saturation of the absorption de­
scribed by Eq. 2.26 accounts for the high-intensity effects. By contrast, the damping 
coefficient f3 for a high-intensity standing wave is more complicated because there 
can be absorption from One beam followed by stimulated emission from the other. 
Since the order of these processes can be random, this constitutes a totally different 
form of momentum diffusion. It is related to the spatially sinusoidal dipole force 
deriving from the light shift, which itself is the result of absorption followed by 
stimulated emission. Thus this "dipole force contribution to the diffusion" may be 
viewed as momentum impulses arising from atoms located at different positions 
On the sinusoidal potential of the light shift in the standing wave, whose amplitude 
increases with intensity. 



4 
Multilevel Atoms 

The discussion up to here has focused on the two-level atom problem where the 
light field couples a single ground and excited state. In practice atoms have many 
levels, and in general the light field couples more than two levels at the same time. 
Two-level atoms are often discussed in the literature because it is straightforward 
to obtain analytical results. Such solutions provide much insight and understanding 
that cannot be obtained from the numerical solutions required for more complicated 
atoms. 

However, in laser cooling one must deal with the coupling of large numbers 
of states by light. This chapter discusses the nature of these states and shows 
their origin for specific atoms (alkali-metal and metastable rare gas atoms). The 
discussion is generally restricted to the ground and first excited states, since these 
are the only ones that playa significant role in laser cooling. 

4.1 Alkali-Metal Atoms 

Alkali-metal atoms were the first ones to be cooled and trapped. Their popular­
ity stems from multiple origins. Most important is that the excitation frequency 
from the lowest to the first excited state is in the visible region, which makes it 
relatively simple to generate light for the optical transitions. Another reason for 
their popularity is that it is easy to generate an atomic beam for the alkalis, which 
have a large vapor pressure at a modest temperature of only a few hundred degrees 
Centigrade. Heating alkali-metals in an oven with a small opening produces an 
effusive beam of atoms that can be readily manipulated by laser light. 
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The ground states of all the alkali-metal atoms have a closed shell with one 
valence electron. For sodium (N a), which is often used in laser cooling experiments, 
the electron configuration is given by 23Na (1s)2 (2s)2 (2p)6 (3s). Since the core 
is a closed shell, it does not contribute to the orbital angular momentum of the 
atom, and there remains only the outer, valence electron. The state of this electron 
is completely determined by its orbital angular momentum e and spin angular 
momentum s. These two momenta couple in the usual way to form the total angular 
momentum j ofthe electron: 

Ie - sl :s j :s e + s. (4.1) 

Since the only contribution to the total angular momentum of the atom comes 
from the valence electron, the total orbital angular momentum is i = e, spin 
angular momentum S = s, and total angular momentum j = J for all electrons. I 
Different values of j lead to different energies of the states, since the spin-orbit 
interaction Vso = Ai . S depends on the orientation of S with respect to i. This 
splitting of the states by the spin-orbit interaction is called the fine structure of the 
atom. The LS-coupling discussed above is therefore only valid if this spin-orbit 
interaction is small compared to the level separation of the states. 

For the alkali-metal atoms the electronic states are fully specified in the Russell­
Saunders notation as n (2S+ I) L J, where n is the principal quantum number of the 
valence electron. The lowest state for Na is the 32S 1/2 state, whereas the first 
excited states are the 32PI/2,3/2 states, where the valence electron is excited to the 
(3p )-state. In this case the angular momentum L = 1 can couple with the total spin 
S = 1/2 to form either Je = 1/2 or Je = 3/2. The fine structure splitting between 
these two states is ~ 515 GHz in Na, and other values for the alkali-metal atoms 
are given in Table C.4 of Appendix C. 

The structure of the alkali-metal atoms becomes somewhat more complicated 
when the interaction of the nuclear spin i with the total angular momentum of the 
electron j is included. These angular momenta couple in the usual way to form 
the total angular momentum as F = i + 1. Different values of F for the same 
values of both i and j are split by the Ai· j interaction between the nuclear spin 
and the electronic angular momentum. The resulting energy structure is called the 
hyperfine structure (hfs). This hfs is generally much smaller than the fine structure 
because of the much smaller size of the nuclear magnetic moment. For Na, with 
a nuclear spin of I = 3/2, the ground state has Fg = 1 and 2, and the hfs is ~ 
1.77 GHz. The excited state has Fe = 0, 1,2, and 3, and the resulting hfs is only 
on the order of 100 MHz. In general, the shift of the energy levels because of the 
hyperfine interaction can be written as [11, 28] 

1 Here the convention is that the angular momentum of one electron is indicated in lower case, 
whereas the angular momentum of the atom is indicated in capitals. 
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FiGURE 4.1. The ground S state and lowest lying P states of atomic Na, showing the hfs 
schematically (see Table C.4 of Appendix C for numerical values). These transitions are 
near A = 590 nm (see Table C.l) in the orange-yellow region of the spectrum, and are 
accessible with dye laser light. 

where K = F (F + 1) -I (I + 1) - 1 (J + 1) and A and B are two parameters, that 
are adjusted using experimental data [28]. The splitting between adjacent levels 
becomes 

F 2 -I(l+I)-1(J+1)+ 1/2 
~Ehfs(F) - ~Ehfs(F - 1) = hAF + 3hBF 2/(2/- 1)1(21 _ 1) , 

(4.3) 
where F denotes the highest value of the total angular momentum of the two 
adjacent levels. A schematic diagram for the fine and hyperfine structure of Na, or 
other alkalis with I = 3/2, is given in Fig. 4.1. More detailed information on specific 
values of the hfs of the alkali-metal atoms is given in Table C.4 of Appendix C. 

Each of these states of alkali-metal atoms is further split into (21 + 1) x (21 + 1) 
Zeeman sublevels. In the case ofNa with I = 3/2, this leads to 8 Zeeman sublevels 
in the ground state (Jg = Ih), 8 sublevels in the first excited state (Je = Ih), and 
16 sublevels in the next excited state (Je = 312). In principle, the light can drive 
all transitions between ground and excited sublevels. However, certain selection 
rules have to be obeyed, and these limit the number of transitions considerably. 
These selection rules are discussed in more detail in Sec. 4.4. 

In the absence of any perturbations, many of these Zeeman sublevels are degen­
erate, but application of an external field lifts the degeneracy. It has already been 
shown in Sec. 1.2.1 that the presence of a light field not only induces transitions, 
but also shifts the energy levels. Later in this chapter in Sec. 4.5 it is shown that 
the transition strengths vary among the Zeeman sublevels, and thus a laser field 
can lift the degeneracy through the different light shifts. In fact, this feature is at 
the heart of the sub-Doppler cooling schemes described in Chapter 8. 
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FIGURE 4.2. Energies of the ground hyperfine states of Na, where the states are numbered 
1-8 and M F is the projection of the total angular momentum of the atom on the magnetic 
field axis. 

An applied magnetic field B can also lift these degeneracies, producing the 
well-known Zeeman effect, as shown in Fig. 4.2. At low fields the energy level 
shifts IlE are proportional to the field strengths according to IlE = gll-BMB, 
where Il-B == eh/2mec is the Bohr magneton, M is the projection of the angUlar 
momentum along B, and g is the Lande g-factor (here me is the electron mass). 
The presence of the nuclear spin changes the g-factor from its usual gJ value given 
by 

J(J + 1) + S(S + 1) - L(L + 1) 
gJ=I+ 2J(J+l) ( 4.4a) 

to 
F(F + 1) + J(J + 1) - /(1 + 1) 

gF = gJ 2F(F + 1) 
(4.4b) 
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Here L, S, and J refer to the electron's angular momenta, I is the nuclear spin, 
and F is the total atomic angular momentum that ranges from F = I J - I I to 
F = J + I in integer steps. Thus the different manifolds of Fig. 4.2 have different 
slopes at small field values. 

4.2 Metastable Noble Gas Atoms 

The metastable noble gases are next in popularity for laser cooling and trapping. 
With the development of metastable noble gas sources, where a discharge is run 
through a supersonic expansion of the noble gas, a beam of metastable noble 
gas atoms can be formed. The efficiency of such sources is low (~ 10-5-10-4 ) 

because electron impact in the discharge is the only way to excite the atoms, 
since the excitation energy of 10-20 e V is much greater than the photon energy 
of ordinary lasers. Some of the low-lying excited states of the noble gases cannot 
decay to the ground state by a dipole transition because of the selection rules, and 
therefore can have lifetimes of more than 100 s and are thus called metastable 
states. Since the noble gas atoms in the ground state are inert, they do not interfere 
with experiments on the metastables in spite of the dominance of ground-state 
atoms. 

One advantage of the metastable noble gases over the alkali metals is that most 
of them do not have a nuclear spin and therefore they do not show any hfs. This 
reduces the number of states by an appreciable amount. Since the outer electron 
is highly excited and the state is close to the ionization level, metastable noble gas 
atoms can be treated effectively as one-electron atoms. One important difference 
between them and the alkali-metal atoms is that the last shell of the core is not 
closed and therefore possesses both orbital and spin angular momentum. Together 
with the orbital and spin angular momentum of the outer electron, these have to 
be coupled to form the total angular momentum of the atom. 

The scheme most often used to couple these four angular momenta, referred 
to as j l coupling,2 is first to couple the momenta L and S of the core to a total 
momentum j of the core, which is subsequently coupled with the orbital angular 
momentum l of the valence electron to form the angular momentum K, which 
is finally coupled to the spin s of the valence electron to form the total angular 
momentum J. The notation for the states is then given by 25+1 L jnl[K1J, with n 
the principal quantum number of the outer electron. However, in order to appreciate 
the correspondence between the alkali-metal atoms and the metastable noble gas 
atoms, the Russell-Saunders notation n 2S'+1 LJ will be used for the metastable 
noble gases as well. Note that here Sf is the total spin of the core plus the valence 
electron and therefore not identical to S. 

2The conventional spectroscopic notation for the rare gases is different from that of the alkalis that 
was introduced earlier. 
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FIGURE 4.3. The n = I and 2 states of He, showing the metastable 23 S state that constitutes 
He* and serves as the ground state for the triplet system. The first excited P state is truly a 
triplet, its J = 0 sublevel lies highest, 29.62 GHz above J = I, which is 2.29 GHz above J = 

2. These transitions are near A = 1.083 tLm in the near infrared (see Table C.I of Appendix C) 
and are accessible with a solid state laser called LNA, Ti:Sapphire, and rather special diode 
lasers. 
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FIGURE 4.4. The low-lying levels of Ne, showing the metastable 33p sublevels that con­
stitute Ne*. The J = I state is not truly metastable. These transitions are near A = 640 nm 
in the red (see Table C.I of Appendix C) and are accessible with dye laser light. Similar 
transitions in the other noble gases Ar and Kr are near A = 810 nm (see Table C.I) and are 
more conveniently accessible with Ti:Sapphire and common diode lasers. 
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Metastable He (He*) is the noble gas with the lowest mass and also with the 
easiest level structure. This arises because the electron excited from the core is an 
s-electron and therefore the total orbital angular momentum of the core is also an 
S-state. The spin of the core and of the valence electron couple to form either singlet 
or triplet states, and since optical transitions between triplet and singlet states are 
forbidden, the triplet states have the longest lifetimes. Thus only the triplet states 
are discussed in connection with laser cooling. The lowest metastable triplet state, 
which for all practical purposes can be considered as another ground state of the 
atom, is the 23SI-state, whereas the first excited triplets are the 23Po, 1,2-states (see 
Fig. 4.3). Note that J = 0 has the highest energy and J = 2 has the lowest. 

The situation is considerably more complicated for the other metastable noble 
gas atoms, of which only neon (Ne*) will be considered in more detail. Since 
the configuration for the lowest, metastable state is 20Ne (1s)2 (2s)2 (2p)5 (3s), 
the core is missing a (2p)-electron and the resulting core state is a 2PI/2,3/2-state, 
depending on how the orbital and spin angular momenta of the core are coupled. 
As in the case of He*, only the triplet system will be discussed, and the lowest 
triplet states are 33Po,I,2, of which only the (J = 0)- and (J = 2)-state are truly 
metastable. For the first excited metastable triplet states, there are total orbital 
angular momentum values of 0, 1, and 2, so there are the following states: 33 S I, 
33Po, 1,2, and 33DI,2,3 (see Fig. 4.4). 

4.3 Polarization and Interference 

In the treatment of the interaction of two-level atoms and a laser field, the discussion 
of the polarization has been deferred. In the case of multilevel atoms, this is no 
longer possible because the orientation of the dipole moment of the atoms with 
respect to the polarization of the light is important. Since the atoms can be in 
different ground states, their coupling to the light field in these states will in general 
be different. Another aspect is that the interference of two laser beams depends on 
their mutual polarization. Since the light field used in laser cooling may consist of 
many laser beams, their polarizations often playa key role. 

A laser beam has a high degree of polarization. Although its polarization is in 
general elliptical, only the extreme cases of linear and circular polarization will be 
considered here. Because of the transverse nature of the electromagnetic field of 
a laser beam, the unit polarization vector B of the field is always perpendicular to 
the propagation direction k. 

Consider the light field of two counterpropagating plane-wave laser beams with 
the same frequency we. If the polarizations of the two laser beams are identical, 
then the polarization of the resulting light field is everywhere the same as that of 
the incoming laser beams. However, the two plane waves interfere and produce a 
standing wave. The resulting electric field for a linear polarization B can be written 
as (see Eq. 3.11) 
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FIGURE 4.5. Polarization gradient field for the lin 1. lin configuration (see also Chapter 8). 

E = Eo e cos(Wtt - kz) + Eo e cos(Wtt + kz) (4.5) 

= 2Eo e cos kz cos wet. 

The intensity of the light field has a cos2 kz spatial dependence with a period of 
A/2. This situation of a standing wave is very common in laser cooling, and it will 
reappear in the discussion of optical traps and lattices. 

If the polarization of the laser beams is not identical, then the situation becomes 
rather complicated. Only the two special cases that play important roles in laser 
cooling will be considered here. The first is where the two counterpropagating 
laser beams are both linearly polarized, but their e vectors are perpendicular (e.g., 
x and y, which is called lin 1. lin or lin-perp-lin). Then the total field is the sum 
of the two counterpropagating beams given by 

E = Eo x cos(Wtt - kz) + Eo Y cos(wet + kz) (4.6) 

= Eo [(x + y) cos wet cos kz + (x - y) sin Wtt sin kz] . 

At the origin, where z = 0, this becomes 

E = Eo(x + y)coswet, (4.7) 

which corresponds to linearly polarized light at an angle +1T /4 to the x-axis. The 
amplitude of this field is ,J"iEo. Similarly, for z = A/4, where kz = 1T /2, the field 
is also linearly polarized but at an angle -1T / 4 to the x -axis. 

Between these two points, at Z = A/8, where kz = 1T /4, the total field is 

E = Eo [x sin(wet + 1T/4) + Y cos(wet + 1T/4)]. (4.8) 

Since the x and y components have sine and cosine dependence, they are 1T /2 
out of phase, and so Eq. 4.8 represents circularly polarized light rotating about 
the z-axis in the negative sense. Similarly, at Z = 3A/8 where kz = 31T /4, the 
polarization is circular but in the positive sense. Thus in this lin 1. lin scheme the 
polarization cycles from linear to circular to orthogonal linear to opposite circular 
in the space of only half a wavelength of light, as shown in Fig. 4.5. It truly has a 
very strong polarization gradient. 
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FIGURE 4.6. Polarization gradient field for the a + -a - configuration (see also Chapter 8). 

The other important polarization configuration is that of counterpropagating, 
oppositely circularly polarized light beams. The total electric field is 

E = Eo [x cos(wet - kz) + y sin(wet - kz)] 

+ Eo [x cos(wet + kz) - y sin(wet + kz) ] 

= 2Eo cos wet [xcoskz+Ysinkz]. 

(4.9) 

Since there is no temporal phase difference between the two polarization directions 
x and y at any position, this represents a linearly polarized field whose e vector 
is fixed in time but rotates uniformly in space along z, rotating through 1800 as z 
changes by A/2 (see Fig. 4.6). This arrangement is called the a+ -a- polarization 
scheme. 

These two cases of lin -.llin and a+ -a- polarization schemes play an important 
role in laser cooling. Since the coupling of the atoms to the light field depends 
on the polarization of the field, atoms moving in a polarization gradient will be 
coupled differently at different positions as discussed in Sec. 4.5. Furthermore, 
since in a multilevel atom different states are coupled differently to the light field 
depending on the polarization, this will have important consequences for the laser 
cooling, as described in Chapter 8. 

4.4 Angular Momentum and Selection Rules 

For optical transitions the coupling between the atomic states is given by the 
dipole moment, and selection rules exist for such transitions. Selection rules can 
be inferred from the equations derived in the next section, but they can also be 
quite simply calculated from the commutation relations [9]. For the z-component 
of the orbital angular momentum L of the atom, the following commutation rules 
apply: 

[Lz, x] = iliy, [L z, y] = -ilix, [Lz' z] = o. (4.10) 
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The eigenfunctions of the atoms are denoted by laLM}, where a represents all 
the other properties of the state besides its orbital angular momentum. The third 
relation of Eqs. 4.10 leads to 

{a' L' M'I [Lz' z] laLM} = (M' - M)h{a' L' M'lzlaLM) = 0, (4.11) 

where the last equality holds because the last commutator in Eq. 4.10 is O. As the 
next section shows, the coupling between two states by linearly polarized light is 
proportional to the matrix element for z, so linearly polarized light can couple two 
states only if ll.M = o. Using the same procedure for x and y leads to 

and 

{a' L' M'I [L z, x] laLM} = (M' - M)h{a' L' M'lxlaLM) 

= ih{a' L' M'lylaLM} 

{a' L' M'I [L z, y] laLM} = (M' - M)h{a' L' M'lylaLM) 

= -i1;{a' L' M'lxlaLM}. 

(4.12) 

(4.13) 

The combination of these two relations requires that either ll.M = ± 1 or that the 
matrix element for x or for y must vanish. Again, the next section shows that for 
circularly polarized light the appropriate matrix element is a combination of x and 
y. The selection rules for circularly polarized light are thus ll.M = ± 1, where the 
(+ )-sign is for right-handed and the (-)-sign for left-handed circular polarization. 

Note that these selection rules reflect the conservation of angular momentum. 
Since each photon carries an angular momentum 1;, the projection of this angular 
momentum on the z-axis can be 0, ± 1. Conservation of angular momentum requires 
that absorption of a photon be accompanied by a corresponding change of the 
projection of the angular momentum of an atom. In the case of fine or hyperfine 
interaction, the orbital angular momentum L can be replaced by the total angular 
momentum J of the electron or F of the atom, respectively. The same selection 
rules thus apply for M J or M F. 

For the selection rules for L, consider the commutation relation 

(4.14) 

which can be obtained from the usual algebra for commutators [9]. (Equation 4.14 
explicitly depends on the fact that i == r x p is the orbital angular momentum of 
the atom, and this relation cannot be generalized for either J or F.) Calculating 
the matrix element for both sides of Eq. 4.14 results in 

{a'L'M'1 [L2, [L2';]] laLM} (4.15) 

= 21;4[L(L + I) + L' (L' + I)]{a' L' M'lrlaLM) 

= 1;4[L'(L' + I) - L(L + 1)]2{a'L'M'lrlaLM}. 
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Thus the coupling between two states is zero for any polarization, unless the two 
factors in front of the matrix elements in Eq. 4.15 are equal. Rearrangement of this 
requirement leads to [9] 

[(L' + L + 1)2 - 1][(L' - L)2 - 1] = 0. (4.16) 

The first term can only be zero if L = - L', e.g., L = L' = 0, but this is prohibited 
since L' is the vector sum of Land L ph = 1 for the photon, and thus cannot be 
zero. The second term is zero only if ilL = ± 1, so this is the selection rule for 
L. Again, this selection rule reflects the conservation of angular momentum for 
absorption of one photon. 

Also for ilL = ° the final state angular momentum L' can be the vector sum 
of Land Lph. But the parity of the state for a one-electron system is given by 
(_I)L and r is antisymmetric, so symmetry demands that the matrix element be 
zero between states where Land L' are both either odd or even. 

The selection rules for J and F are IlJ = 0, ±1 and IlF = 0, ±l. In contrast 
with the case for ilL, IlJ = Oisallowedsince L and S couple to J, so IlJ = Odoes 
not imply ilL = 0. Only for J = J' = ° is ilL = ° a necessary consequence, and 
therefore transitions with J = ° ~ J' = ° are forbidden. The same rule applies 
to F, namely, F = ° ~ F' = ° is also forbidden. 

In laser cooling, selection rules playa very important role. In order to slow atoms 
from their thermal velocity down to zero velocity, a large number of photons have 
to be scattered. Therefore, the coupling strength between the two levels involved 
in the laser cooling has to be sufficiently high. Furthermore, since the atoms have 
to undergo a very large number of cycles, the decay from the excited to the ground 
state must be to only the sublevel coupled by the light. This restricts the number of 
possible cooling transitions. The selection rules can be used to determine whether 
two states are coupled by the laser light without extensive calculations. 

For the alkali-metal atoms, the hfs complicates the level structure and most 
of the optically accessible transitions do not meet these criteria. Since the same 
selection rules for excitation are valid for spontaneous emission, the IlF = 0, ± 1 
selection rule allows the decay of one excited state to many ground states, and some 
of these may not be coupled by the laser to an excited state. This is because the 
laser's spectral width is generally much smaller than the ground-state hfs splitting. 
However, for the states with J = L + 112, the decay from the highest Fe-state can 
only occur to the highest Fg-state, since the other ground state has Fg = Fe - 2 
(see Fig. 4.1). Therefore these two states form a closed two-level system. A similar 
system exists between the lowest Fe and Fg states. However, since the hfs splitting 
between the two lowest excited states is usually very small, exciting the lowest 
Fe state can often also partially excite the next Fe state, which can then decay to 
the other hyperfine ground-state sublevels. Laser cooling in the alkalis is therefore 
usually carried out on the highest Fg and Fe states. 

These complications do not appear in the metastable noble gas atoms where the 
splitting between the states is caused by the spin-orbit interaction instead of the 
hyperfine interaction. For Ne* only the 3PO,2 states are truly metastable. The only 
closed system can be formed by the 3P2 ~ 3D3 transition, which is the one most 
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often used for laser cooling. Similar transitions exist for the other metastable noble 
gases. For He* the situation is very simple since there is only the 3SI-state (see 
Sec. 4.2). 

4.5 Optical Transitions in Multilevel Atoms 

4.5.1 Introduction 

The optical transitions considered in Chapter 1 were restricted to the particularly 
simple case of a two-level atom, and these transitions can be described by a single 
Rabi frequency. Real atoms have more than two levels that can be coupled by the 
optical field, and furthermore, the relative strengths of their multiple transitions 
depend on the orientation of the atomic dipole moment with respect to the po­
larization of the light. The single Rabi frequency of Chapter 1 that describes the 
coupling is given by lin = -/LegEO (see Eq. 1.10), where 

/Leg = e(ele . rig) (4.17) 

and e represents the polarization of the light. The value of the dipole moment of 
Eq. 4.17 depends on the wavefunctions of the ground and excited states, and is 
generally complicated to calculate. 

It is often convenient to introduce the spherical unit vectors [29] given by 

iLl = (x - iy) /,,;2, UO = Z, (4.18) 

and to expand the polarization vector e in terms of these vectors. Note that U±I 

corresponds to circularly polarized light, whereas uo corresponds to linearly po­
larized light. For simplicity, only cases where the polarization of the light field is 
given by just one of these vectors will be considered, and this will be indicated by 
the symbol q (q = 0, ± 1 is the subscript of uq ). In this notation the components 
of the dipole moment can be written as 

( 4.19) 

where the Ylq 's represent the simplest of the spherical harmonic functions. 
The matrix element of Eq. 4.17 can be broken up into two parts, one depending 

on all the various quantum numbers of the coupled states and the other completely 
independent of M, the projection of l on the quantization axis. This separation 
is embodied in the well-known Wigner-Eckart theorem discussed in many quan­
tum mechanics texts [29]. Here, the treatment will be somewhat different, since 
this section treats the simplest case, namely, that fine and hyperfine structure are 
absent. The more general case will be treated in Sec. 4.5.4. Thus the hydrogenic 
wavefunctions for the ground and excited state can be used: 

Ig) = Inlm) = Rnl(r)Ylm(O, 4J) (4.20a) 
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and 
Ie) = In'I'm') = Rn'I,(r)Yl'm'«()' </1). (4.20b) 

Substitution of Eqs. 4.19 and 4.20 into Eq. 4.17 leads to 

/l-eg = e (n'l'm'le . rlnlm) (4.21) 

" , , {4H A = e (n I IIrllnl) (I m IV 3Ylqllm) == e Rn'l',nl l'm'.lm· 

The following sections first treat the radial or physical part Rn'l',nl, also known as 
the reduced or double-bar matrix element, and then the angular or geometric part 

Al'm'.lm' 

4.5.2 Radial Part 

The radial part of the matrix element is generally less important in laser cooling 
because experiments typically use an optical transition joining a set of states that 
all share the same ground- and excited-state radial wavefunctions. Therefore it 
becomes an overall multiplicative factor that determines only the magnitude of the 
coupling (e.g., the overall Rabi frequency). It is given by 

Rn'l',nl = (Rn'l,(r)lrIRnl(r») = 1000 
r 2drRn'l,(r)rRnl(r), (4.22) 

with Rnl the radial wavefunction of the state. Here the r 2dr term in the integral 
originates from the radial part of d3r. 

The radial part can be evaluated if the eigenfunctions are known. For all atoms 
except hydrogen, the eigenfunctions can only be calculated approximately and 
therefore only approximate values for the radial part can be found. However, for 
the hydrogen atom the eigenfunctions of the bound states are known and the radial 
matrix elements can be calculated exactly [30]. For instance, for the first optical 
allowed transition in H, the Is --+ 2p transition, the radial wavefunctions involved 

are Rls(r) = 2exp( -r/ao)/a~/2 and R2p(r) = (r/ao) exp( -r/2ao)/..;3(2ao)3/2. 
Thus the integral becomes 

R2p,Is = 1000 
R2p(r) r Rls(r) r 2dr = 27 J6ao/35 ~ 1.290 ao. (4.23) 

For other transitions in hydrogen similar integrals can be evaluated. 
The hydro genic wavefunctions Rnl (r) are given by [30] 

Rne{r) = Nnlplexp(-p/2)L;~~~I(P), (4.24) 

where p = 2r / nao, L':( (r) are the Laguerre polynomials, and Nnl is a normaliza­
tion constant. These Laguerre polynomials can be expanded in a power series: 

n 

L': = LCkrk , 
k=O 

(4.25) 
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nt 2(t + 1) 3(t + 1) 4(t + 1) 5(t + 1) 

Is 1.2902 0.5166 0.3045 0.2087 

2s -5.1961 3.0648 1.2822 0.7739 

2p 4.7479 1.7097 0.9750 

3s 0.9384 -12.7279 5.4693 2.25957 

3p -10.0623 7.5654 2.9683 

3d 10.2303 3.3186 

4s 0.3823 2.4435 -23.2379 8.5178 

4p 1.3022 -20.7846 11.0389 

4d -15.8745 14.0652 

4f 17.7206 

5s 0.2280 0.9696 4.6002 -36.7423 

5p 0.4827 3.0453 -34.3693 

5d 1.6613 -30.0000 

5f -22.5000 

TABLE 4.1. Radial matrix elements R nf ,n'f+l in units of ao for hydrogen for a transition 
ne ~ n'Ce + I). Note that Rnf,n'f' is symmetric with respect to interchange of nand e, 
i.e., Rnf,n'f' = Rn'f',nf' 

where Ck are the coefficients, for which a simple recurrence relation exists [30,31]. 
Substitution of Eq. 4.24 into Eq. 4.22 and integrating over r with the help of 
standard integrals, the matrix element for any transition can be found. The results 
for n :s 5 are given in Table 4.1. Note that the radial matrix elements increase with 
increasing n, since the radius of the electron orbit increases with n. 

For all other atoms, the situation is more complicated. In the case of alkali-metal 
atoms with only one active electron, the matrix elements can be quite accurately 
expressed in terms of the effective principal quantum number n~ = n - 8£ of the 
valence electron, where 8£ is called the quantum defect and depends on the orbital 
quantum number t [6]. The same analysis as in the hydrogen case can be applied 
for the alkali-metal atoms; however, in the summation n is now replaced by n* [32]. 
Table 4.2 shows the matrix elements for the first optically allowed transition for 
the alkali-metal atoms. As the table shows, the agreement between the calculated 
elements and the values derived from experiments is reasonable. 

4.5.3 Angular Part of the Dipole Matrix Element 

The angular part Al'm'.lm of the dipole moment for atoms with S = 0 = I is 
defined by Eq. 4.21: 

(4.26) 
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EI. Transition Theory Experiment 

n* s n* p f.L (a.u.) r (MHz) r (MHz) 

H Is~ 2p 1.000 2.000 0.745 99.52 99.47 

He* 2s~ 2p 1.689 1.938 2.540 1.64 1.62 

Li 2s~ 2p 1.589 1.959 2.352 5.93 5.92 

Na 3s~ 3p 1.627 2.117 2.445 9.43 10.01 

K 4s~ 4p 1.770 2.235 2.842 5.78 6.09 

Rb 5s~ 5p 1.805 2.293 2.917 5.78 5.56 

Cs 6s~ 6p 1.869 2.362 3.093 4.99 5.18 

TABLE 4.2. Matrix element (nsJrJnp) for the first optically allowed transition in the al­
kali-metal atoms. The theoretical value is calculated using the procedure of Bates and 
Damgaard [32], whereas the experimental value is derived from the lifetimes of the n p-states 
(see Table C.I in Appendix C). 

where the integration limits are over 4n. The integral can be expressed in terms of 
the 3j-symbols as 

e' m' / ( i' At'm',lm = (-1) - y max(i, i') -m' q 
(4.27) 

The 3 j -symbols are related to the Clebsch-Gordan coefficients and are tabulated 
in [33] (see Eq. 4.30). The symmetry of the 3j-symbols dictates that they are 
only nonzero when the sum of the entries in the bottom row is zero, which means 
m + q = m'. Thus circularly polarized light only couples states that differ in m by 
± 1, whereas linearly polarized light only couples states that have equal m's. This 
result is thus identical to the result obtained in Sec. 4.4. Table 4.3 shows tabulated 
the values of Al'm',lm for optical transitions. 

4.5.4 Fine and Hyperfine Interactions 

In case of fine and hyperfine interaction the situation changes considerably . .for 
the fine structure, the energy levels are split by the spin-orbit interaction and L is 
no longer a good quantum number. Here i is replaced with i to be more general. 
The states are now specified by], the vector sum of i and S. However, the optical 
electric field still couples only to the orbital angular momentum i = r x p of 
the states. In this situation the Wigner-Eckart theorem could also be applied to 
calculate the transition strength [29], but again this section will follow a different 
route that provides more insight in the problem. Although the formulas below may 
appear rather complicated, the principle is simple. 
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i' q = ±1 q=O 

i+l 
[(i ± m')(i ± m' + I)] 1/2 

2(2i + I)(U + 3) 

[(i - m' + l)(i + m' + 1)] 1/2 

(2i + I)(U + 3) 

i-I _ [(i =f m')(i =f m' + 1)] 1/2 [(i - m')(i + m')] 1/2 

2(U - I)(U + I) (U - I)(U + 1) 

TABLE 4.3. The angular part A for optical transitions (l, m) ---+ (e, m') with the polariza­
tion of the light indicated by q, with q = 0 for linear and q = ± I for right- and left-circular 
polarized light. Because of the selection rules, l' = l ± I and m' = m + q. 

He* 

FIGURE 4.7. Transition strength for the D-lines in He*. The strength is normalized to the 
weakest allowed transition. 

The atomic eigenstates are denoted by la J M J) in the J -basis, and M J explicitly 
indicates for which angular momentum the magnetic quantum number M is the 
projection. In most cases, this is obvious from the notation, but in this section it is 
not. The dipole transition matrix element is therefore given by 

(4.28) 

Since the optical electric field only couples the l component of these J states, these 
eigenfunctions must be first expanded in terms of the Land S wavefunctions: 

(4.29) 
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where i represents an appropriate set of angular momentum quantum numbers. 
The Cj 's are Clebsch-Gordan coefficients that can also be expressed in terms of 
the more symmetrical 3 j symbols as 

Cj = (LML; SMsIJMj) = (_l)-L+S-MJ.j21 + 1 (!;L ~s _~j). 
(4.30) 

The fact that Eq. 4.27 for the integral of the product of three spherical harmonics 
and Eq. 4.30 both contain the 3j symbols is a result of the important connection 
between the Ylm 's and atomic angular momenta. 

Substitution of Eq. 4.29 in Eq. 4.28 twice leads to a double summation, which 
contains matrix elements in the (L, S) basis of the form 

(a'L' M~ I(S' M~lrlaLMdISMs) = (a' L' M~lrlaLMd8ssI8MsM'. (4.31) , s 

The first term on the right-hand side is the matrix element that has been evaluated 
before (see Eq. 4.21). The 8-functions reflect the notion that the light couples the 
orbital angular momenta of the states, and not the spin. The spin and its projection 
are not changed by the transition. Substitution ofEq. 4.31 into Eq. 4.28, expansion 
of the matrix elements in the L-basis, and recoupling of all the Clebsch-Gordan 
coefficients leads to 

J.teg = e(-I)L'+s-M~J(2J + 1)(21' + 1) (4.32) 

{ L' J' S } (J 1 J' ) 
x J L 1 Mj q -M~ (a'L'llrllaL). 

The array of quantum numbers in the curly braces is not a 3 j symbol, but is called 
a 6j symbol. It summarizes the recoupling of six angular momenta. Values for the 
6j symbols are also tabulated in Ref. 33. 

Note that the radial part of the dipole moment has remained unchanged, and 
so the results of the previous section can still be used. For metastable helium the 
transition strengths for the triplet system are shown in Fig. 4.7. Triplet metastable 
helium only has one "ground" state, so that decay out ofthe excited states is always 
to this state. 

In case of hyperfine interactions the situation becomes even more complicated. 
However, the procedure is the same. First the eigenfunctions in the F -basis are 
expanded in the (J, I)-basis, where I is the nuclear spin, and a 6j symbol involving 
I, J, and F appears. Then the eigenfunctions of the J -basis are further reduced 
into the (L, S)-basis. Since the procedure is similar to the procedure for the fine 
structure interaction, only the result is shown: 

J.teg = e(-l)I+L'+S+J+jl+I-M~(a'L'llrllaL) (4.33) 

x J(21 + 1)(21' + 1)(2F + 1)(2F' + 1) 

{ L' J' S } { J' F' I } ( F 1 F' ) 
x J L 1 F J 1 MF q -M~ . 
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-2 -1 " 

F= l 

FIGURE 4.8. Transition strength for the first optical transition in an alkali system with a 
nuclear spin of '/2, for example, H. The strength is normalized to the weakest transition. 
For the D, lines see Appendix D. 

The hyperfine interaction is important for the alkalis. For a system with nuclear 
spin '/2, such as H, the result is given in Fig. 4.8. Since S can be parallel or 
anti-parallel to L, J' = '/2, 3/2 and the fine-structure interaction is usually large 
compared to the hyperfine interaction. Results for transitions important for the 
alkalis are given in Appendix D. 



5 
General Properties Concerning Laser 
Cooling 

This chapter presents some of the general ideas regarding laser cooling. One of the 
characteristics of optical control of atomic motion is that the speed of atoms can 
be reduced by a considerable amount. Since the spread of velocities of a sample 
of atoms is directly related to its temperature, the field has been dubbed laser 
cooling, and this name has persisted throughout the years. Laser cooling has much 
in common with the field of optics. In laser cooling, light is used to manipulate 
atoms, whereas in optics matter is used to manipulate light. The more proper 
identification for the field would therefore be "atom optics" or "optical control of 
atomic motion". The similarities between atom optics and electromagnetic optics 
will be pointed out. 

These experiments almost always involve the use of nearly resonant light, which 
can populate the atomic excited state and hence result in spontaneous emission. 
As discussed in Chapter 2, such events produce unpredictable changes in atomic 
momenta. Hence, the discussion here begins with a "random walk" model, which 
provides the background on a microscopic scale for how the rapid exchange of mo­
menta between the light field and the atoms influences their velocity distribution. 
This leads to the Fokker-Planck equation, which can be used for a more formal 
treatment of the laser cooling process. Solutions of the Fokker-Planck equation 
in a limiting case can ultimately be used to relate the velocity distribution of the 
atoms with their temperature. 
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5.1 Temperature and Thermodynamics in Laser 
Cooling 

The idea of "temperature" in laser cooling requires some careful discussion and 
disclaimers. In thermodynamics, temperature is carefully defined as a parameter 
of the state of a closed system in thermal eqUilibrium with its surroundings. This, 
of course, requires that there be thermal contact, i.e. heat exchange, with the envi­
ronment. In laser cooling this is clearly not the case because a sample of atoms is 
always absorbing and scattering light, making major changes to its environment. 
Furthermore, there is essentially no heat exchange (the light cannot be considered 
as heat even though it is indeed a form of energy). Thus the system may very well 
be in a steady-state situation, but certainly not in thermal equilibrium, so that the 
assignment of a thermodynamic "temperature" is completely inappropriate. 

Nevertheless, it is convenient to use the label of temperature to describe an 
atomic sample whose average kinetic energy (Ek) in one dimension has been 
reduced by the laser light, and this is written simply as 

(5.1) 

where kB is Boltzmann's constant. It must be remembered that this temperature 
assignment is absolutely inadequate for atomic samples that do not have a well­
defined velocity distribution, whether or not they are in thermal eqUilibrium: there 
are infinitely many velocity distributions that have the same value of (Ek) but are 
so different from one another that characterizing them by the same "temperature" 
is a severe error. 

With these ideas in mind, it is useful to define a few rather special values of 
temperatures associated with laser cooling. Each of these quantities appear else­
where in this book in connection with the special domain of their applications. 
Their place on the energy scale is shown in Fig. 5.l. 

The highest of these temperatures corresponds to the energy associated with 
atoms whose speed and concomitant Doppler shift puts them just at the boundary 
of absorption of light. This velocity is Vc == y / k ~ 1 mis, and the corresponding 
temperature is 

(5.2) 

and is typically several mK. 
The next characteristic temperature corresponds to the energy associated with 

the natural width of atomic transitions, and is called the Doppler temperature. It is 
given by 

(5.3) 

Because it corresponds to the limit of certain laser cooling processes, it is often 
called the Doppler limit, and is typically several hundred JLK (see Sec. 7.2). Asso­
ciated with this temperature is the one-dimensional velocity VD = JkBTD/M ~ 
30 cmls. 
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FIGURE 5.1. Temperature scale. 

The last of these three characteristic temperatures corresponds to the energy 
associated with a single photon recoil. In the absorption or emission process of a 
single photon, the atoms obtain a recoil velocity Vr = lik 1M. The corresponding 
energy change can be related to a temperature, the recoil limit, defined as 

1i2k2 

kBTr ==-;;t, (5.4) 

and is generally regarded as the lower limit for optical cooling processes, although 
there are a few clever schemes that cool below it. It is typically a few ILK, and 
corresponds to speeds of Vr '" 1 cm/s. 

These three temperatures are related to one another through a single parameter 
e that is ubiquitous in describing laser cooling. It corresponds to the ratio of the 
recoil frequency Wr == Iik2/2M to the natural width y, and as such embodies most 
of the important information that characterize laser cooling on a particular atomic 
transition. Typically e '" 10-3 - 10-2 , and is given by 

From this it is clear that 

Iik2 
e ==wrly = --. 

2My 
(5.5) 

(5.6) 

It is instructive to put these temperatures on a scale to compare with others as 
shown in Fig. 5.1. Clearly laser cooling is in a temperature domain far below any 
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other previous techniques. Whereas ordinary cryogenic methods span the range 
from a few K down to around 100 mK, laser cooling turns on well below this 
range. At sufficiently low temperatures the energy associated with thermal motion 
becomes dominated by gravitation. For example, the height d of a sample whose 
temperature could be considered "uniform" to within 10% in a gravitational field 
is given by 10 d ~ k B T / M g, and thus is ~ 1 mm for temperatures near the 
Doppler limit of Na (240 JLK). Such temperatures are relatively high for laser 
cooling as discussed in Chapter 7, and much lower values can be routinely achieved 
as described in Chapter 8. Temperatures 104 times lower can be achieved with 
other techniques such as the evaporative cooling described in Chapter 12, and this 
corresponds to d < A, with A the optical wavelength. 

Another thermodynamic variable of state is the entropy. As with temperature, 
entropy in laser cooling cannot be rigorously defined because it is also a state 
parameter of a system that is in thermal equilibrium with its surroundings. An 
even more important consideration arises because the system is not closed, and 
as laser light enters and fluorescent light leaves a sample of atoms, there is an 
entropy flow. Of course, thermodynamics requires that, as the system of atoms 
cools down, more entropy must flow out than flows in. This must be carried away 
by the fluorescent light. 

There is considerable interest in calculating the entropy exchange in laser cool­
ing, but there are serious difficulties in doing so. Part of the problem arises be­
cause it's much more difficult to achieve a working definition for entropy in a 
non-equilibrium situation than the "average kinetic energy" definition used for 
temperature earlier in this section. In fact, there is little agreement among the ex­
perts in statistical mechanics about a usable definition: every one of the several 
choices presents some difficulty. Another part of the problem arises because the 
energy change of the light field is a small fraction of its total energy because the 
total number of photons is conserved, and the frequency shift of the fluoresced 
photons is small. By contrast, the relative entropy change of the light is huge be­
cause the light in the incoming, well-defined laser beams of very low entropy is 
converted into disorganized fluorescence having very high entropy. Unlike the en­
ergy exchange between the atoms and the light field, the entropy exchange cannot 
be treated as a small perturbation. 

Probably the simplest way to begin is to count the number of states accessible 
to the system, and use the von Neumann "maximum entropy" approach. For an in­
coming single-mode laser beam, this can only be applied in a quantum mechanical 
description of the light field (coherent state) because a classical description would 
lead to a contradiction. Needless to say, the emitted fluorescence can occupy states 
of various frequencies, polarizations, and directions, so the outgoing entropy flow 
is huge. In general, the outflow calculated this way is orders of magnitude larger 
than the entropy lost by cooling the atomic sample, so laser cooling is really a 
quite poor refrigerator [34]. 

In spite of these difficulties, it is both interesting and challenging to think about 
the entropy flow in the various laser cooling schemes that are described in Part II of 
this book. In every case, spontaneous emission is the necessary dissipative process 
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that provides for the increase of entropy of the light field. In several examples where 
optical forces based on stimulated emission can lower the average kinetic energy, it 
must always be remembered that this is not the only criterion for cooling. The width 
ofthe velocity distribution must be narrowed for cooling, and any scheme purported 
to accomplish this without spontaneous emission violates thermodynamics. 

5.2 Kinetic Theory and the Maxwell-Boltzmann 
Distribution 

The modem era of kinetic theory began with Bernoulli, Clausius, Maxwell, and 
Boltzmann, who showed that the experimental "laws" of Boyle, Charles, and Gay­
Lussac could be derived from considerations of molecular motion. The underlying 
assumptions are that a gas is composed of a large number of small particles having 
no intrinsic properties other than their mass. They undergo collisions that redis­
tribute their kinetic energies and momenta without dissipation or bias toward any 
particular energy or direction. They occupy negligible volume, although there are 
simple approximate corrections for small volume, and their density is sufficiently 
low that all collisions are binary because three-body collisions are too improbable. 

From these assumptions it is straightforward to calculate the equation of state of 
a confined gas, and the perfect gas law follows directly from it as PV = NkBT, 
where P, V, and T are the pressure, volume, and temperature of the gas of N 
particles, and k B is Boltzmann's constant. It is readily shown that all sets of particles 
in the sample have the same average kinetic energy, even if there are different kinds 
of particles (i.e., a mixture of different masses). This is not to say that they all have 
the same energy, but only that the energy distribution of those particles of one 
mass is the same as those of another mass if they are mixed, so that collisional 
redistribution occurs. 

The system can approach true thermal equilibrium at a defined rate, which is 
generally quite fast on the human scale, and the laws of thermodynamics are readily 
applied. At eqUilibrium the velocity, or momentum, distribution is the most likely 
one of the infinitely many possibilities, and this is the Maxwell-Boltmann (MB) 
distribution derived in many standard texts. The MB distribution is characterized 
by a Gaussian shape and is given by 

I (V2 ) f(v) = --exp --_- , 
./2iiv 2v2 

(5.7) 

where v == ,JkB T / M. The distribution only depends on the speed of the atoms, 
and therefore it is spherically symmetric. Although the MB distribution ofEq. 5.7 
is remarkably simple, its use in atomic physics can easily lead to confusion if no 
proper distinction is made between different cases. 

Theoretical descriptions of laser cooling are often done in only ID. In order to 
test the outcome of such models, experiments are carried out in ID as well. In 
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Distribution f (v) Range 

Gas (10) 1 (V2 ) --exp __ x_ 

,J2iiiJ 2iJ2 
(-00,00) 

Gas (3D) f£ ~2 exp (_ v~ ) V -; v3 2v2 
(0,00) 

Beam (0,00) 

vmp 

° 

vave 

° 
is­

VJiv 

[9;­
vsv 

vrms 

2iJ 

TABLE 5.1. Quantities appropriate for a gas of particles (lD and 3D) and a thermal beam. 
Note that the rms velocity is not the same as the average velocity for the distribution. Here 
vrnp is the most probable velocity and Vave is the average velocity. For a 3D gas the velocity 
v == Vrms is defined as the velocity characteristic for the temperature. 

both cases the results can be related to a "temperature", although strictly speak­
ing temperature is not defined when only one velocity component is considered. 
Furthermore, laser cooling experiments are often done in atomic beams, and it is 
important to point out that the various averages and distributions of particles in a 
confined gas are not the same as those in a beam formed by letting that confined gas 
expand into a vacuum. The detailed nature of the expansion, ranging from thermal 
to highly supersonic, can result in a wide variety of distributions. The simplest 
case is thermal expansion, and occurs when the size of the aperture between the 
source volume (for example, an oven for metals) and the vacuum system is small 
compared with the mean free path of the particles in the oven. 

The first case to consider is the distribution of velocities in 10, for instance, 
the x-direction. Using v2 = v; + v; + v~, d3v = dvxdvydvz, and integration 
of Eq. 5.7 over Vy and Vz yields the result shown in the first row of Table 5.1. 
The distribution is Gaussian with a maximum at Vx = 0, and has a width iJ. 
The second case is the distribution of speeds in a gas in 3D, where d3 v can be 
replaced by v2sinO dvdOdc/J. Since the MB distribution is spherically symmetric, 
the integration over the angles can easily be performed and the result is shown in 
the second row of Table 5.1. This distribution is only defined for positive values of 
the speed v. Finally, consider the case of a thermal beam in the z-direction. Since 
the flux of atoms is proportional to vz, the distribution is peaked toward higher v 
compared to that of a thermal gas. The result is shown in the last row of Table 5.1 
(see Ref. 11 for a detailed derivation, where ex == ,J2iJ). 

Various moments of the velocity distributions are readily calculated from 

(5.8) 
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The lowest moments of the distribution are the average velocity Vave (n = I) and 

the root mean square (rms) velocity Vnns = IfJi} (n = 2). The various moments 
can easily be found by solving the definite integral by using standard integrals (see 
e.g., Eqs. 2 and 3 in Sec. 3.461 of Ref. 35). The results for n = 1,2 are sho'Yn in 
Table 5.1 together with the most probable velocity vrnp, for which the distribution 
has its maximum. Since the primary characteristic denoting the temperature of a 
3D gas is the mean kinetic energy, the appropriate choice from Table 5.1 is the rms 
velocity jj given by 

jj = J3 jj = J 3k;/ . (5.9) 

For both the ID and 3D cases the average kinetic energy Mjj2/2 is given by 
k8T /2 times the number of degrees of freedom for the system, as required by 
thermodynamics. 

5.3 Random Walks 

In laser cooling and related aspects of optical control of atomic motion, the forces 
arise because of the exchange of momentum between the atoms and the laser field. 
Since the energy and momentum exchange is necessarily in discrete quanta rather 
than continuous, the interaction is characterized by finite momentum "kicks". This 
is often described in terms of "steps" in a fictitious space whose axes are momentum 
rather than position. These steps in momentum space are of size lik and thus are 
generally small compared to the magnitude of the atomic momenta at thermal 
velocities. This is easily seen by comparing lik with M jj, 

~= [i;«l. 
Mjj 'IT (5.10) 

Thus the scattering of a single photon has a negligibly small effect on the motion 
of thermal atoms, but repeated cycles of absorption and emission can cause a large 
change of the atomic momenta and velocities. 

Before delving into the details ofthese processes, it is helpful to discuss a simple 
model to provide some background. Consider an atom that is confined to motion 
in ID and the effect of a ID light field such as a traveling or standing plane wave. 
The atomic motion would be related to a "random walk" in aID momentum space 
whose step sizes are equal to the momentum of a photon, lik. The randomness 
arises from spontaneous emission from the excited state, and uncertainty of the 
absorption direction in the case of a standing wave. At a certain instant t, an atom 
with momentum p has a probability E+(p) to make a step lik and a probability 
c(p) to make a step -lik. The dependence of E+(p) and c(p) on momentum p 
can be understood by remembering that the force on an atom may depend on its 
velocity. 

Figure 5.2 shows a simulation of this process. This simulation uses a pseudo­
random number generator that produces numbers ex uniformly distributed between 
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FIGURE 5.2. Random walk process for ao=0.42, where a step in the positive direction is 
taken if the random number is larger than ao and in the opposite direction otherwise. This 
leads to a drift in the positive direction indicated by the dotted line. The fluctuations around 
this line is caused by the randomness of the process. 

o and 1. When a is below a certain value ao, the step is negative, and otherwise it 
is positive. From Fig. 5.2 it is apparent that there is a drift in the positive direction 
indicated by a dotted line, because in this case ao has been chosen to be smaller 
than 0.5. In addition, the trajectory of the atom does not follow the dotted line 
exactly since there is randomness involved in this process, and at each instant the 
atom might undergo a large number of steps in one direction only (see for instance 
around 14 and 38 steps). 

If this simulation were to be repeated under the same initial conditions for a large 
number of atoms, each trajectory would be different, but there would still be the 
same drift. Such random walks form the basis of many processes in physics, such 
as the Brownian motion of particles in a liquid, the current through an electrical 
circuit, and the electric field in a laser. Several techniques have been developed over 
the last century to model these kinds of processes, one of which, the Fokker-Planck 
equation, will be discussed in the next section. 

The distribution of the momenta of the atoms is described by a function W(p, t). 
As a result of the random walk process, this distribution is changed in time ac­
cording to 

W(p, t + M) - W(p, t) = - [E+(p) + E_(p)] W(p, 1) (5.11) 

+ E+(p -lik)W(p -12k, t) + c(p + Iik)W(p + 12k, t). 

The first term on the right-hand side is the probability E± to jump away from the 
momentum p in the + or - direction, multiplied by W(p, t), and this product is 
the rate. The second and third terms give the rates of jumping toward momentum 
p. These last two terms can each be Taylor expanded as 
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E±(p =f hk)W(p =f hk, t) = E±(p)W(p, t) (5.12) 

a (hk)2 a2 ( hk )3 
=f hk ap [E±(p) W(p, t)] + -2- ap2 [E±(p) W(p, t)] + 0 Mv ' 

where the expansion is truncated after the term of the order (hk/Mv)2. When 
Eq. 5.12 is inserted into Eq. 5.11, the first term E±(p)W(p, t) is cancelled by its 
negative in Eq. 5.11. As long as Eq. 5.10 is satisfied, so that higher-order terms in 
Eq. 5.12 can be safely neglected, combining Eqs. 5.11 and 5.12 leads directly to 

aw(p, t) a [MJ W(p, t)) 1 a2 [M2 W(p, t)] 
at = - ap + 2 ap2 + ... , (5.13) 

with 

(5. 14a) 

and 

(5. 14b) 

The expressions on the right-hand side ofEq. 5.13 are called the drift and diffusion 
terms respectively. 

For the case of Doppler cooling as discussed in Chapter 7, the absorption param­
eters E+(p) and E_(p) of the two laser beams coming from the right and the left 
depend on the Doppler shift kv. Since the linewidth for absorption is of the order 
of y, the difference in absorption [E + (p) - L (p)] depends on the ratio kv / y . 
Since the scattering rate of one beam is proportional to sy for low intensity, MJ 
and M2 can be written as 

(5.15a) 

and 

M2 = sy(hk)2 = 2D (5.l5b) 

with fJ the damping coefficient and D the diffusion coefficient. 
The stationary-state distribution W(p) is found by setting aW(p, t)/at = 0 in 

Eq. 5.13, and using MJ and M2 as defined as in Eqs. 5.15. Then the simplified 
partial differential equation can be directly integrated twice to give 

(5.16) 

This is a Maxwell-Boltzmann distribution with a characteristic temperature of 
k8T = D/fJ. Using the values of fJ and D in Eqs. 5.15 gives k8T = hy /2, which 
is the usual Doppler cooling limit given in Eq. 5.3, and is derived more carefully 
in Sec. 7.2. 
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5.4 The Fokker-Planck Equation and Cooling Limits 

The random walk process discussed above is simply a particular case for the more 
general case of a force on an atom when the force can be written in two parts: 

F(p, t) = Fc(p) + Fv(p, t), (5.17) 

where Fc(p) is a continuous force that damps the atomic motion and Fv(p, t) is a 
random force that fluctuates in time and has an ensemble time average of zero: 

(Fv(p, t)} = O. (5.18) 

Now the ensemble averages for the moments Mi of such a force can be calculated 
as before for the ID random walk. The first and second moments are given by 

(5. 19a) 

and 
(5.19b) 

where the second equality with the !'i-function holds if Fv (p, t) is Markovian. Note 
that M 1 is determined by the continuous force, whereas M2 is determined by the 
fluctuating force. When the correlation time of the force vanishes (Eq. 5.19b), it 
can be shown that all higher-order moments also vanish [36]. Using only these 
first two moments results in the Fokker-Planck equation [36]: 

aw(p, t) a [F(p, t)W(p, t)] a2 [D(p, t)W(p, t)] --"----'- = - + -'----"----'-:;----"--
at ap ap2 

(5.20) 

For the special case when both the force and the diffusion are independent of 
time, the formal stationary solution is 

- c ( [p F(p') ') 
W(p) = D(p) exp 10 D(p') dp , (5.21) 

where C is an integration constant. Once the force and diffusion are known, the 
stationary solution of the Fokker-Planck equation emerges easily. The fact that this 
discussion closely parallels that in Sec. 5.3 shows that the random walk picture in 
ID is not only appealing, but is also a close approximation to atomic behavior. 

In the simplest and most common case in laser cooling the force is proportional to 
the velocity (a true damping force as in Chapter 7) and the diffusion is independent 
of velocity: 

F(v) = -fiv (5.22a) 

and 
D(v) = Do. (5.22b) 

Then the stationary solution of Eq. 5.20 for W(v) is 
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This distribution is the Maxwell-Boltzmann distribution with a characteristic tem­
perature of kB T = Dol fJ. The fact that the conditions ofEqs. 5.22 for the force and 
diffusion are often approximately correct explains why the notion of temperature 
often appears as a description of a laser-cooled sample. 

In kinetic theory, a Maxwell-Boltzmann distribution is the result of elastic col­
lision of molecules of a gas with the walls of the container that holds the gas 
(see Sec. 5.2). After a while the gas is in thermal equilibrium with the walls and 
its temperature equals that of the walls. In laser cooling quite the opposite is the 
case, because the atoms have no interaction with the walls. Their only contact 
with the exterior is through the light field, and it has no definable temperature for 
the atoms to equilibrate with. Instead there is a competition between cooling and 
heating effects described by the damping force and the diffusion in momentum 
space. Thus the conditions of Eq. 5.22 are fulfilled, so the stationary distribution 
is also a Maxwell-Boltzmann distribution. It should be emphasized as in Sec. 5.2, 
however, that this stationary state is not an equilibrium state, and thus there is no 
thermodynamically definable temperature. 

In general, laser cooling forces can act over only a limited range of velocity 
±vc « ii for atoms at room temperature. This happens because the frequency 
of the laser light in the rest frame of a moving atom is modified by the Doppler 
effect, so the absorption only takes place for a small range of velocities. This can 
be described by introducing a capture velocity Vc that characterizes the velocity 
range where an appreciable force can be generated by writing 

F(v) _ -fJv 
- 1 + (vlvc)2· 

(5.24) 

In this case the stationary distribution can also be calculated directly from Eq. 5.20: 

( 2) (-MfJ vz-/2Do) 
W(p) ()( 1 + (~) 

Mvc 
(5.25) 

This is a not a Maxwell-Boltzmann distribution. Figure 5.3 shows plots of the 
distribution function for a constant ratio of Dol fJ but different values of Vc. The 
spread of the distribution becomes large when Vc « .j Dol MfJ, and it does not 
make sense to define (Ek) or a temperature. However, using Vnns as the velocity 
for which W (p) has decreased by a factor 1 I ..;e with respect to its maximum, and 
taking M v~s = k B T, then the temperature can be written as 

(5.26) 

For the case Dol MfJ « v; this reduces to a Maxwell-Boltzmann distribution with 
a temperature given by Eq. 5.23. For Dol MfJ » v; the temperature increases 
exponentially with Dol fJ. 
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FIGURE 5.3. Stationary velocity distribution of the atoms for a constant value of Dol/3, 
but different values of the capture velocity Vc. The value of Vc is indicated with arrows. 

5.5 Phase Space and Liouville's Theorem 

One of the most important properties of laser cooling is its ability to change the 
phase space density of an atomic sample. Changing the phase space density pro­
vides a most important distinction between light optics and atom optics (see Chap­
ters 13 and 15). 

The phase space density per, p, t) can be defined in terms of the probability 
that a single particle is at position r and has a momentum p at time t. In classical 
mechanics it is possible to know position and momentum of a particle with absolute 
certainty, and p (r, p, t) is peaked for just these values. Then the phase space density 
for a system of N particles is the sum divided by N of the single-particle phase 
space densities of all the particles in the system, and the position and momentum 
of the ensemble are of interest. 

Since p(r, p, t) is a probability, it is always positive and normalized according 
to 

(5.27) 

Integrating p(r, p, t) only over position yields the velocity distribution function 
f(v), which becomes the Maxwell-Boltzmann function for a gas in free space 
as discussed in Sec. 5.2. Integrating p(r, p, t) only over momentum yields the 
density n (r) divided by the total number of atoms N. However, the aim of laser 
cooling is to increase the phase space density, not just the density in one or the 
other parameter. 

For the discussion of the phase space density, which is defined in a six-dimen­
sional space of rand p, it is convenient to introduce the 6D vector q = (r, p). 
The probability P(V) to find one particle in a subspace V is then simply 
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This probability can change only if probability "flows" out of the subspace V 
through its surface S, and the rate of change is given by 

dP(V) a i ~ 6 i ~ !, ~ -- = - p(q,t)d q = - p(q,t) q ·dS. 
dt at v S 

(5.29) 

Here the 6D flux is given by q == (dr/dt, dp/dt), having three components of; 
and three components of p, and dS is a differential surface element of S. This is 
similar to fluid mechanics, where the change of fluid in a volume is just the flow 
of fluid through the surface out of the volume. Using Gauss' theorem, the surface 
integral of Eq. 5.29 can be converted in a volume integral, and this leads to 

:t Iv p(q, t)d6q = - Iv Vq (P(q, t) q ) d6q, (5.30) 

where the 6D gradient operator is defined by V q = (a / a r, a/a p). Because the 
volume V can be defined arbitrarily, the integrands in Eq. 5.30 must be equal, and 
this leads to 

ap(q,t) ~ (~ !,) 
at + Vq p(q, t) q = O. (5.31) 

The motion of an ensemble of classical particles in phase space can be described 
by Hamilton's equations. It is sufficient to describe only a single particle because 
the interaction between the particles does not play an important role in laser cool­
ing. The classical Hamiltonian is H(r, p), and Hamilton's equations for the time 
dependence are 

dp 

dt 
= 

aH 
ar 

and 
dr aH 
dt = ap' 

(5.32) 

Here the Hamiltonian is chosen to be time-independent so the total energy of the 
system is conserved, and this leads to the total energy H (r, p) == E. 

The gradient operator in Eq. 5.31 acts on both p and q. However, for the q part, 
the equations of motion 5.32 demand that 

Note that the order of differentiation can be changed, since r and p are independent 
coordinates. Using this result in Eq. 5.31 leads to 

ap(q, t) + !, . V ( (~ )) = dp(q, t) _ 0 
at q q p q, t - dt -. (5.34) 

Equation 5.34 is the key result of this section, and is called the Liouville theorem. 
It requires that the phase space density cannot be changed. However, it does not 
mean that the phase space density cannot be distributed differently over the degrees 
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of freedom. Or, to put it into the context of fluid dynamics, the shape of a volume 
of flowing fluid can change in time, but the fluid volume is fixed. Traveling with 
the flow of the fluid, the density does not change. 

The Liouville theorem depends on the fact that the motion of the particles can be 
described by a Hamiltonian. This is not the case when the forces depend not only 
on position, but also on velocity. Then a Hamiltonian description for the system 
can no longer be used and Eq. 5.32 no longer applies. For instance, consider the 
system in Sec. 5.4, where the force is directly proportional to the momentum, 
namely, F = - r p, with r = f3 / M. Inserting this force in Eq. 5.33 leads to 

dp(ij, t) _ 3r (~ t) 
dt - p q, , (5.35) 

where the factorof3 stems from the compression in 3D. This leads to an exponential 
gain in the phase space density with a time constant 1/3r, so using velocity 
dependent forces allows phase space compression to be obtained. 

The Hamiltonian description of geometrical optics leads to a similar theorem to 
that of Eq. 5.34, called the brightness theorem, that can be found in many optics 
books. Thus bundles of light rays obey a similar phase space density conservation. 
But there is a fundamental difference between light and atom optics. In the first 
case, the "forces" that determine the behavior of bundles of rays are "conservative" 
and phase space density is conserved. For instance, a lens can be used to focus a 
light beam to a small spot; however, at the same time the divergence of the beam 
must be increased, thus conserving phase space density. By contrast, in atom optics 
dissipative forces that are velocity dependent can be used, and thus phase space 
density is no longer conserved. Optical elements corresponding to such forces can 
not exist for light, but in addition to the atom optic elements of lenses, collimators 
and others described in Chapter 13, phase space compressors can also be built. 
Such compression is essential in a large number of cases, but most importantly for 
the achievement of Bose-Einstein condensation. 
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Cooling & Trapping 



6 
Deceleration of an Atomic Beam 

6.1 Introduction 

The origin of optical forces on atoms has been discussed in Chapter 3, and here a 
specific application is introduced. The use of electromagnetic forces to influence 
the motion of neutral atoms has been a subject of interest for some years, and several 
review articles and books on the subject are listed in Appendix B. The force caused 
by radiation, particularly by light at or near the resonance frequencies of atomic 
transitions, originates from the momentum associated with light. In addition to 
energy E = hw, each photon carries momentum hk and angular momentum h. 
When an atom absorbs light, it stores the energy by going into an excited state; 
it stores the momentum by recoiling from the light source with a momentum Ilk; 
and it stores the angular momentum in the form of internal motion of its electrons. 
The converse applies for emission, whether it is stimulated or spontaneous. It 
is the velocity change of the atoms, Vr = hkj M ::::: few cm/s, that is of special 
interest here, and although it is very small compared with thermal velocity, multiple 
absorptions can be used to produce a large total velocity change. Proper control 
of this velocity change constitutes a radiative force that can be used to decelerate 
and/or to cool free atoms. 

Although there are many ways to decelerate and cool atoms from room tem­
perature or higher, the one that has received the most attention by far depends on 
the scattering force that uses this momentum transfer between the atoms and a 
radiation field resonant with an atomic transition. By making a careful choice of 
geometry and of the light frequency one can exploit the Doppler shift to make the 
momentum exchange (hence the force) velocity dependent. Because the force is 
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velocity dependent, it can not only be used for deceleration, but also for cooling 
that results in increased phase space density (see Sec. 5.5). 

6.2 Techniques of Beam Deceleration 

The idea that the radiation scattering force on free atoms could be velocity de­
pendent and therefore be used for cooling a gas was suggested by Wineland and 
Dehmelt [37], Hansch and Schawlow [38], and Wineland and Itano [39], although 
Kastler, Landau, and others had made allusions to it in earlier years. The possibility 
for cooling stems from the fact that atomic absorption of light near a resonance 
is strongly frequency dependent, and is therefore velocity dependent because of 
the Doppler shift of the laser frequency seen by the atoms moving relative to the 
laboratory-fixed laser. Of course, a velocity-dependent dissipative force is needed 
for cooling. 

The simplest form of this force to study, that from a low-intensity single plane 
wave of light, has been exploited for cooling of an atomic beam. Early experiments 
in several laboratories [40-43] have used this force, along with a variety of methods 
to overcome technical problems [44-46], to decelerate and cool thermal atomic 
beams to only a few hundredths of a Kelvin. 

One very obvious implementation of radiative deceleration and cooling is to 
direct a laser beam opposite to an atomic beam as shown in Fig. 6.1 [42,43]. In 
this case each atom can absorb light very many times along its path through the 
apparatus. Of course, excited-state atoms cannot absorb light efficiently from the 
laser that excited them, so between absorptions they must return to the ground 
state by spontaneous decay, accompanied by emission of fluorescent light. The 
emitted fluorescent light will also change the momentum of the atoms, but its 
spatial symmetry results in an average of zero net momentum transfer after many 
such fluorescence events. So the net deceleration of the atoms is in the direction 
of the laser beam, and the maximum deceleration is limited by the spontaneous 
fluorescence rate. 

The maximum attainable deceleration is obtained for very high light intensities, 
and is limited because the atom must then divide its time equally between ground 
and excited states. High-intensity light can produce faster absorption, but it also 
causes equally fast stimulated emission; the combination produces neither decel­
eration nor cooling because the momentum transfer to the atom in emission is then 
in the opposite direction to what it was in absorption. The deceleration therefore 
saturates at a value amax = hky /2M, where the factor of 2 arises because the 
atoms spend half of their time in each state (see the discussion on page 25). 

The Doppler shifted laser frequency in the moving atoms' reference frame 
should match that of the atomic transition to maximize the light absorption and 
scattering rate. This rate Yp is given by the Lorentzian (see Eq. 2.26) 

soy/2 
Yp = 2' 

1 + So + [2(8 + WD)/Y] 
(6.1) 
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FIGURE 6.1. Schematic diagram of apparatus for beam slowing. The tapered magnetic field 
is produced by layers of varying length on the solenoid. A plot of Bz vs. z is also shown. 

where So = 1/ Is is the ratio of the light intensity I to the saturation intensity 
Is, which is a few mW/cm2 for typical atomic transitions (see Table C.2). Also 
8 = we - Wa is the laser detuning from resonance, We is the laser frequency and Wa 

is the atomic resonance frequency. The Doppler shift seen by the moving atoms 
is WD = -k . v (note that k opposite to v produces a positive Doppler shift). 
Maximum deceleration requires (8 + WD) « y, so that the laser light is nearly 
resonant with the atoms in their rest frame. The net force F on the atoms is (see 
Eq.3.14) 

(6.2) 

which saturates at large So to Mamax = Fmax == hky /2. 
In Table 6.1 are some of the parameters for slowing a few atomic species of 

interest from the peak of the thermal velocity distribution. Since the maximum 
deceleration amax is fixed by atomic parameters, it is straightforward to calculate 
the minimum stopping length Lmin and time tmin for the rms velocity of atoms 
ii = 2../kB T / M at the chosen temperature. The result is 

Lmin = iP /2amax (6.3a) 

and 

tmin = Ii/amax. (6.3b) 

It is comforting to note that I Fmax ILmin is just the atomic kinetic energy and that 
Lmin is just tmin Ii /2. 

If the light source is spectrally narrow, then as the atoms in the beam slow down, 
their changing Doppler shift will take them out of resonance. They will eventually 
cease deceleration after their Doppler shift has been decreased by a few times the 
power-broadened width y' = y../l + So as given in Eq. 2.27b, corresponding to 
~V of a few times y / k. Although this ~V of a few m/s is considerably larger 
than the typical atomic recoil velocity Vr of a few cm/s, it is still only a small 
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atom Toven V Lmin tmin 
(K) (mls) (m) (ms) 

H 1000 5000 0.012 0.005 
He* 4 158 0.03 0.34 
He* 650 2013 4.4 4.4 
Li 1017 2051 1.15 1.12 
Na 712 876 0.42 0.96 
K 617 626 0.77 2.45 
Rb 568 402 0.75 3.72 
Cs 544 319 0.93 5.82 

TABLE 6.1. Parameters of interest for slowing various atoms. The stopping length Lmin 

and time tmin are minimum values. The oven temperature Toven that determines the peak 
velocity is chosen to give a vapor pressure of 1 Torr. Special cases are H at 1000 K and 
He in the metastable triplet state, for which two rows are shown: one for a 4 K source and 
another for the typical discharge temperature. 

fraction of the atoms' average thermal velocity, so that significant further cooling 
or deceleration cannot be accomplished. 

In order to accomplish deceleration that changes the atomic speeds by hundreds 
of mis, it is necessary to maintain (<5 + WD) « y by compensating such changes 
of the Doppler sh~ft. This can be done by changing WD, or <5 via either we or Wa. 

The two most common methods for overcoming this problem are sweeping the 
laser frequency Wi to keep it in resonance with the decelerating atoms [47-49], 
and spatially varying the atomic resonance frequency with an inhomogeneous dc 
magnetic field to keep the decelerating atoms in resonance with the fixed frequency 
laser [42,50]. Other methods that have also worked are discussed below. 

6.2.1 Laser Frequency Sweep 

In the method of changing Wi, the laser frequency is swept upward at rate Wi 

to compensate the decreasing Doppler shift as the atoms slow down. Of course, 
(<5 + WD) must be kept« y in order to maintain atomic resonance, and a < amax 

must always be satisfied. This requires that -Wi ~ WD = k·a < Itk2y 12M = Wr y. 
This method of Doppler compensation has several distinct advantages and dis­

advantages, and choosing it depends on the ultimate purpose for slowing the atoms. 
Although it was first implemented using a dye laser for Na [47], it is especially easy 
to use with semiconductor laser diodes [49] because of their fast and simple elec­
tronic tunability. A few rnA sweep changes their frequency by several GHz, and 
this is easily enough to compensate for a Doppler shift corresponding to v = WD I k 
of a few kmls. The most obvious disadvantage is the time structure it imposes on 
the production of slow atoms. They arrive in pulses separated by a few times tmin 

given in Eq. 6.3b. This may be desired, of no importance, or undesired, depending 
on the nature of the experiments. 
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6.2.2 Varying the Atomic Frequency: Magnetic Field Case 

The use of a spatially varying magnetic field to tune the atomic levels along the 
beam path was the first method to succeed in slowing atoms [42]. It works as 
long as the Zeeman shifts of the ground and excited states are different so that the 
resonant frequency is shifted (see p. 42). The field can be tailored to provide the 
appropriate Doppler shift along the moving atom's path. For uniform deceleration 
a == 1/amax from initial velocity vo, the appropriate field profile is 

B(z) = BoJI - z/zo, (6.4) 

where zo == MV5/1/hky is the length ofthe magnet, Bo = hkvo/ IL', IL' == (geMe­
ggMg)ILB, subscripts g and e refer to ground and excited states, gg,e is the Lande 
g-factor, ILB is the Bohrmagneton, and Mg,e is the magnetic quantum number. The 
design parameter 1/ < 1 determines the length of the magnet Zoo A solenoid that 
can produce such a spatially varying field has layers of decreasing lengths as shown 
schematically in Fig. 6.1. The technical problem of extracting the beam of slow 
atoms from the end of the solenoid can be simplified by reversing the field gradient 
and choosing a transition whose frequency decreases with increasing field [44]. 

The equation of motion of an atom in the magnet cannot be easily solved in gen­
eral because of the velocity-dependent force, but by transforming to a decelerating 
frame n [51] the problem can be addressed. For the special case of uniform decel­
eration the velocity of this frame in the lab is VN- = voJI - z/zo, and the Doppler 
shift associated with this velocity is compensated by the position-dependent Zee­
man shift in the magnet. The resulting equation of motion for the velocity of atoms 
Vi == V - VN- relative to this frame is given by 

where Fmax = hky /2. For dv'/dt = 0 the steady-state velocity v~s is given by 

I y~-1/ kv = 8 ± - so-- - 1. ss 2 1/ 
(6.6) 

There are two values of v~s but the one with the (+) sign is unstable. The magnitude 
of v~s is typically of order 8/ k. This velocity is approximately constant as atoms 
decelerate along their paths through the magnet so the decreasing Doppler shift is 
compensated by the decreasing Zeeman shifts. 

6.2.3 Varying the Atomic Frequency: Electric Field Case 

The changing Doppler shift can also be compensated by a Stark shift using an 
inhomogeneous dc electric field, and this has been demonstrated in both Na [52] 
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and Cs [53]. There are special problems with this technique that arise because 
adequate deceleration requires excited states with y = IjT ~ 107/s or larger. 
However, only low-lying atomic states have such large values of y, and the Stark 
shifts of such states are relatively small. Thus the method requires rather large 
electric fields. 

The field profile for the Zeeman-compensated method has the form of Eq. 6.4 
because the Zeeman shift is linear in field, but Stark shifts of eigenstates of parity 
(usual low-lying atomic states) are not linear. Their Stark shifts IlEs are typically 
quadratic in field, given by 

1 2 
IlEs = lal£1 , (6.7) 

where a is the atomic polarizability and £ is the applied dc electric field. Typical 
values of the Stark shift difference between ground and excited states are about 
100 kHz x 1£1 2 , where £ is given in kV/cm. Thus compensation of typical Doppler 
shifts of about 700 MHz requires £ ~ 80 kV/cm. Unlike the Zeeman-compensation 
method where the g-factors are nearly the same for many atoms, a can vary by 
factors of 3 - 5 among the alkalis. In order to achieve constant acceleration, the 
resulting field profile is 

£(z) = £oJl - ~h - zjzo, (6.8) 

where zo is the length of the field region. Needless to say, the condition a < amax 

must be maintained, and so zo must still conform to Eq. 6.3a. 
The geometry for this experiment has two quite long, oppositely charged plates, 

typically made of highly polished stainless steel, separated by a tapered gap ranging 
from one to a few cm, and charged to a few tens of kV. Since the z-dependence 
of £ is much weaker than that for B(z) in Eq. 6.4, a linearly tapered gap provides 
an adequate approximation to Eq. 6.8. Like the Zeeman-compensating method, a 
slowing laser opposes the atomic velocity. However, unlike the Zeeman method, 
the open geometry allows lateral access to the beam because it's not enclosed in 
a solenoid, and transverse cooling and/or collimation can easily be applied in one 
direction [53]. 

6.2.4 Varying the Doppler Shift: Diffuse Light 

It is also possible to compensate the changing Doppler shift of decelerating atoms 
by exploiting the angular dependence embodied in WD = -k· v [54-56]. Atoms 
moving through diffuse monochromatic light see a range of frequencies that vary 
with the angle between the velocity and the light direction. The resonance fre­
quency Wa of an atom moving at a velocity v will be matched by the Doppler­
shifted laser frequency when the angle () between the wavevector k of the light and 
the atomic velocity v satisfies 

/) = We - Wa = kvcos(} = -WD, (6.9) 
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corresponding to 8 + WD = O. For red detuned light (8 < 0) this resonance 
condition requires e > 7r /2, meaning that the recoil caused by absorbing light 
opposes the atomic motion and slows the atoms. As in the other cases, subsequent 
spontaneous emission does not exert a force on the atoms on average, but does 
provide the dissipative process needed for cooling. As the atoms are decelerated 
(v decreases), they absorb light from an increasingly forward angle e until the 
maximum value of e = 7r is reached. 

When the light is tuned below resonance in the lab frame by an amount 8, 
then the Doppler shift will be toward the blue, closer to resonance, as long as a 
component of the light's propagation direction is anti parallel to the atomic velocity. 
(Light propagating nearly parallel to the atomic velocity is shifted further to the 
red, further out of resonance.) 

Atoms can be efficiently slowed by scattering the counterpropagating light if the 
incident angle required for the Doppler effect to shift it close to atomic resonance 
is not too close to 7r /2 so that there remains a considerable component of the 
momentum vector hk antiparallel to ii. Of course, as the atoms slow down, 8 
doesn't change, but the smaller ii requires a larger contribution from the angular 
part of k . ii. Thus atoms will interact with counterpropagating light from a cone 
of decreasing angle, closer to opposing the velocity direction, until they have 
decelerated to nearly v = 8/ k. Below this velocity, there is no angle for which the 
Doppler effect can shift the light into resonance, and so the deceleration ends. 

Because the light is isotropic, the atomic motion in any direction is directly 
opposed. This is in contrast to the methods described above in Secs. 6.2.1, 6.2.2, 
and 6.2.3 where only the longitudinal velocity component of the atomic motion is 
opposed by the light because the force is determined by the k-vector of the single 
laser beam. This major advantage helps to prevent the atomic beam from being 
transversely expanded (apart from spontaneous emissions). 

6.2.5 Broadband Light 

Still another method of deceleration uses light that is not spectrally narrow, but is 
white over a spectral region from Wa to (wa - k. iio). Then Doppler compensation 
is not necessary because atoms of any velocity below Vo will find resonant light in 
a counterpropagating beam. Such white light slowing has been considered in the 
past [57,58] and has also been demonstrated [59-62]. One important disadvantage 
is that saturation of the atomic transition for all velocities below Vo requires much 
more light power because the spectral density must be at least Is / y , and since k . iio 
is typically lOOy, the overall power must be at least 100 times larger than in the 
other Doppler-compensation techniques discussed above. 

6.2.6 Rydberg Atoms 

A quite different slowing scheme using the large Stark shifts of Rydberg states 
was proposed in 1981 [63]. In this method, the force on the atoms does not come 
from the momentum of the light but from the energy gradient associated with their 
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Stark shifts in an inhomogeneous dc electric field. Atoms are optically excited to a 
Rydberg state whose Stark-shifted energy is downward-going in a region of strong 
dc electric field. If the field is very inhomogeneous, produced, for example, by a 
pair of small electrodes of few mm size and separation, then atoms gain potential 
energy and thus must lose kinetic energy as they leave the region between the 
electrodes and travel to a region of zero field. When they entered such a region 
of strong field in the ground state, they did not gain as much energy as they lose 
when they leave it in an excited state. 

The lifetime of the selected Rydberg state is chosen so that the atoms will decay 
to the ground state outside the field region. Thus the size scale of the experiment 
is determined by the Rydberg state lifetime and the atomic speed. Travel through 
regions of alternately small and large fields, coupled with proper excitation by 
well-focused laser beams, causes repeated kinetic energy loss. The atoms always 
climb up bigger hills than they fall down, and radiate higher frequency light from 
the tops of those hills than they absorb at the bottoms. Thus their kinetic energy is 
converted into potential energy and then radiated away. 

This method has the advantage that the slowing distance depends on the proper­
ties of the Rydberg states, not on the atoms' kinetic energy or speed. Therefore the 
slowing distance can be much less than Lmin for optical forces as given in Eq. 6.3a, 
and possibly more useful for fast, light atoms such as He* at discharge tempera­
tures. Such large forces might also be used to control and deflect atomic velocities, 
and possibly even reverse them, thereby making a Rydberg atom mirror [64]. 

6.3 Measurements and Results 

This section presents some results of experiments that used the Zeeman-tuning 
technique to compensate the changing Doppler shift. The most common way to 
measure the slowed velocity distribution is to detect the fluorescence from atoms 
excited by a second laser beam propagating at a small angle to the atomic beam [42]. 
Because of the Doppler shift, the frequency dependence of this fluorescence pro­
vides a measure of the atomic velocity distribution. In this method, the velocity 
resolution fl v is limited by the natural width of the excited state to fl v = y / k 
(~ 6 mls for Na). 

In 1997 a new time-of-flight (TOF) method to accomplish the same result was 
reported, however, with a much improved resolution [65]. In addition, it provided a 
much more powerful diagnostic of the deceleration process. The TOF method has 
the capability to map out the velocity distribution for both hyperfine ground states 
of alkali atoms along their entire path through the solenoid. The experimental 
arrangement is shown in Fig. 6.2. The atoms emerge through an aperture of 1 
mm2 from an effusive Na source heated to approximately 300°C. During their 
subsequent flight through a solenoid, they are slowed by the counterpropagating 
laser light from laser 2, and the changing Doppler shift is compensated with a field 
that is well described by Eq. 6.4. 
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FIGURE 6.2. The TOF apparatus, showing the solenoid magnet and the location of the 
two laser beams used as the pump and probe. The resolution of the technique is ultimately 
determined by the flight path zp (figure from Ref. 65). 
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FIGURE 6.3. The velocity distribution measured with the TOF method. The experimental 
width of approximately i (y / k) is shown by the dashed vertical lines between the arrows. 
The Gaussian fit through the data yields a FWHM of 2.97 mls (figure from Ref. 65). 
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For the TOF technique there are two additional beams labeled pump and probe 
from laser 1 as shown in Fig. 6.2. Because these beams cross the atomic beam at 
90°, k . ii = 0 and they excite atoms at all velocities. The pump beam is tuned to 
excite and empty a selected ground hyperfine state (hfs), and it transfers more than 
98% of the population as the atoms pass through its 0.5 mm width. To measure the 
velocity distribution of atoms in the selected hfs, this pump laser beam is interrupted 
for a period ll.t = 10- 50 ILS with an acoustic optical modulator (AOM). A pulse of 
atoms in the selected hfs passes the pump region and travels to the probe beam. The 
time dependence of the fluorescence induced by the probe laser, tuned to excite 
the selected hfs, gives the time of arrival, and this signal is readily converted to a 
velocity distribution. Figure 6.3 shows the measured velocity distribution of the 
atoms slowed by laser 2. 

With this TOF technique, the resolution is limited by the duration of the pump 
laser gate ll.t and the diameter d of the probe laser beam (d ::s: 1.0 mm) to 
ll.v = v(vll.t + d)/zp, typically less than 1 mls. This provides the capability 
of measuring the shape of the velocity distribution with resolution ~ lO times bet­
ter than y I k as compared with the Doppler method. Furthermore, the resolution 
improves for decreasing velocity v; ll.v is smaller than the Doppler cooling limit 
of .jhy 12M ~ 30 cmls for v ~ 80 mls and Na atoms. Figure 6.3 shows the 
final velocity distribution for such a measurement giving a FWHM of 3.0 mls at a 
central velocity of 138 mls. The width is about one half of y I k. 

The method of shutting off the slowing laser beam a variable time l'off before 
the short shut-off of the pump beam offers a much more informative scheme of 
data acquisition. The atoms that pass through the pump region during the short 
time when the pump beam is off have already traveled a distance ll.z = V(Z)l'off (at 
constant velocity v(z) because the slowing laser was off), and their time of arrival at 
the probe laser is zplv(z) = zpl'offl ll.z. Thus theTOF signal contains information 
not only about the velocity of the detected atoms, but also about their position z 
in the magnet at the time the slowing laser light was shut off. Since the spatial 
dependence of the magnetic field is known (Fig. 6.1), both the field and atomic 
velocity at that position can be determined, and the TOF signal is proportional to 
the number of atoms in that particular region of phase space. This new technique 
therefore gives a mapping of the atomic population in the z-direction of the phase 
space, z and v(z), within the solenoid. 

Such mapping of the velocity distribution within the solenoid is a powerful diag­
nostic tool. The contours of Figs. 6.4a and b represent the strength of the TOF signal 
for each of the two hfs levels, and thus the density of atoms, at each velocity and po­
sition in the magnet. The dashed line shows the velocity v(z) = (IL' B(z)/h -lJ)1 k 
forwhichthemagneticfieldtunestheatomictransition(F, MF) = (2, 2) ~ (3,3) 
into resonance with the decelerating beam. The most obvious new information in 
Fig. 6.4a is that atoms are strongly concentrated at velocities just below that of the 
resonance condition. This corresponds to the strong peak of slow atoms shown in 
Fig. 6.3. Additional information about optical pumping among the hfs sublevels 
is also present, and discussed in Sec. 6.4. 
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FIGURE 6.4. Contour map of the measured velocity and position of atoms in the solenoid, 
(a) for Fg = 2 atoms and (b) for Fg = I atoms. The dashed line indicates the resonance 
frequency for the (F, M F)= (2, 2) --+ (3,3) cycling transition. The density of atoms per unit 
phase space area b. v b.z has been indicated with different gray levels (figure from Ref. 65). 

6.4 Further Considerations 

6.4.1 Cooling During Deceleration 

It is important to stress that deceleration is not the same as cooling: cooling requires 
a compression of the velocity distribution in phase space as shown in Figs. 6.3 
and 6.4. To see how this notion applies to laser deceleration of an atomic beam, 
consider again the example of Zeeman compensation of the Doppler shift [65]. 

Some atoms emerging from the oven are moving too fast to be decelerated at all 
because, for them, the laser frequency is Doppler shifted too far out of resonance 
to absorb light, even where the magnetic field is strongest at the solenoid entrance. 
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These are shown in Fig. 6.4a near the top. Others have velocities whose Doppler 
shift causes the laser frequency to match the Zeeman shift and begin slowing down 
as soon as they enter the solenoid. Still others are moving so slowly that they do 
not absorb light until they have traveled to a point where the static but spatially 
varying magnetic field has decreased to the appropriate value to match their smaller 
Doppler shift and produce resonance. These begin accumulating just below the 
curve of the resonance condition along the length of the solenoid, also shown in 
Fig. 6.4a. Thus all atoms with velocity lower than Vo can be decelerated by the laser 
beam to some smaller velocity at the end of the solenoid leading to an increase 
in phase space density. This final velocity is determined by the atomic resonance 
condition at the chosen laser frequency in the field at the end of the solenoid. 
Thus all atoms with velocities below Vo are swept into a narrow velocity group 
around this final velocity. The result is that the originally wide thermal velocity 
distribution is compressed and shifted to lower velocities as shown in Fig. 6.3: this 
process is called laser cooling of an atomic beam, because it increases the phase 
space density p (see Sec. 5.5). 

This can be viewed in more detail by expanding the velocity in the reference 
frame n around v~s. Then Eq. 6.5 can be rewritten as 

where 

dv' " - = -rD(V - v ) dt ss ' 

r D = 4w,112 I (l - 11 )so _ 1 
So V 11 

(6. lOa) 

(6. lOb) 

when only the lowest-order term in (v' - v~s) is retained. The damping rate r Dis 
maximum at r D = hk2 / 4M = w, /2 for 11 = 0.5 and So = 2. The damping time 
1/ r D is typically 10 f..Ls, which is much smaller than the time atoms spend in the 
magnet. Thus atoms are not only decelerated in the lab frame, but cooled toward 
this velocity. With f3 = MrD = hk2/4 and D = sy(h)2/2 as given in Eq. 5.15b, 
it is straightforward to show that the final temperature is related to the Doppler 
temperature 1'D. 

6.4.2 Non-Uniformity of Deceleration 

It is important to realize that even the ideal magnetic field profile does not produce a 
constant deceleration [44,65]. This is easily seen by differentiating the resonance 
condition found from Eq. 6.4 to find the deceleration satisfying the resonance 
condition: 

( 1 -M/f..L' BO) 
a = -l1amax I + ,JZ , (6.11 ) 

wherez == (l-z/zo),usingd,JZ/dt = v d,JZ/dz. In the usual operating condition 
to extract slow atoms from the solenoid, M / f..L' Bo < 1. Only for M = f..L' Bo is the 
deceleration constant. 
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Furthermore, it is clear that as the atoms progress through the solenoid, z even­
tually becomes small enough that maintaining the resonance condition requires 
the magnitude of the deceleration to exceed amax . The atoms then drop out of the 
deceleration process and emerge from the solenoid as desired. 

6.4.3 Transverse Motion During Deceleration 

As the longitudinal motion of atoms in a beam is slowed by counterpropagating 
laser light, their transverse motion becomes more important if it, too, is not com­
pensated. For example, if an atomic beam of mean longitudinal velocity of 1000 
mls and angular spread 0.01 radian is decelerated to 50 mis, its angular divergence 
expands to 0.2 radian at the end of the slowing region. It is hardly recognizable 
as a beam! In order to compensate this effect, the decelerating laser beam is cho­
sen not to be parallel, but is focused so that it converges toward the atomic beam 
oven. Thus there is a small transverse component of the optical force that opposes 
the transverse velocity just enough to maintain the angular spread of the original 
atomic beam [42,43]. Note that for the case of diffuse light slowing described in 
Sec. 6.2.4 such considerations are not necessary because the optical force is always 
directly opposite to the atomic velocity [54,55]. 

There is another source of transverse motion that is not as easily controlled. Each 
time an atom spontaneously decays to the ground state, it receives an impulse lik in 
a random direction. Although the average value of these impulses is zero, the rms 
value is not. Thus the atoms diffuse transversely as they move along their paths. The 
resulting distance from the axis !!.x as a result of this diffusion is !!.X = f v(t)dt, 
where v(t) = lik.;y;;t / M (Ypt is the number of photons scattered). Integrating 

from t = 0 to VO/1/amax gives!!.x = (2Iik/3M)JYp(VO/1/amax )3, which is several 

mm for typical experiments. Thus the focused laser beam must be about 1 cm 
in diameter at the end of the deceleration region if too many atoms are not to 
escape out the sides as a result of this transverse diffusion. In the case of Stark 
compensation discussed in Sec. 6.2.3, the transverse motion in one of the two 
directions can be largely compensated with additional laser beams. 

As atoms move down the magnet, their velocities are determined by SQ, l), and 
B(z) as discussed above. However the light intensity distribution across the coun­
terpropagating laser beam is not uniform, but is given by 1 (x, z) = loe-2x2 /w 2(z), 
where w(z) is the Gaussian beam width. If the beam is focused, w(z) is given 
by the usual expression for Gaussian beam propagation. Thus atoms in a plane 
perpendicular to the laser beam axis have different velocities, and the shape of 
the surface containing atoms of the same velocity is determined by the Gaussian 
intensity profile. Using vn. = .jvQ - 2az and Eq. 6.2 with the Gaussian spatial 

profile in Yp, this surface has the form z(x) = z\e2x2 / w2 (z) for small x, and is 
undefined where x is large enough for the intensity to fall below 1/10, the minimum 
intensity required to maintain deceleration. Furthermore, fluctuations of the light 
intensity can cause instabilities on this surface [66] . 



86 6. Deceleration of an Atomic Beam 

6.4.4 Optical Pumping During Deceleration 

In Sec. 6.1 it was pointed out that very many absorptions and emissions are re­
quired to have a significant effect on the velocity of a thermal atom because vr « ii 
(see Table 6.1). Since alkali atoms have two well-separated hfs ground states, op­
tical pumping can readily populate the one not in resonance with the slowing laser 
beam. Even in the first beam-slowing experiment [42], this was taken into account 
by choosing the laser beam's polarization to operate on a cycling transition that 
connects the state (Fg = 2, Mg = 2) with (Fe = 3, Me = 3) of Na (see Fig. 4.1). 
However, even this could be insufficient unless the polarization is very pure. As 
an added precaution, the authors of Ref. 42 therefore applied a large homoge­
neous magnetic field in addition to the tapered one that compensated the changing 
Doppler shift. This homogeneous field altered the coupling among the hyperfine 
sublevels of the excited state to inhibit the undesired spontaneous decay channel. 

The TOF diagnostic technique described in Sec. 6.3 has the capability of mea­
suring such optical pumping processes along the entire length of the solenoid. 
Figure 6.4a shows a strong buildup of Fg = 2 atoms over a wide velocity range 
centered near 700 m/s at the entrance of the solenoid, along with a corresponding 
depletion of Fg = 1 atoms (Fig. 6.4b). This strong optical pumping occurs between 
the oven and the magnet where the slowing laser light is very intense because it is 
focused on the oven. For typical values of 30 m W laser power and a focal spot size 
of ~ 100 ILm, the intensity of 3 x 105 m W/cm2 broadens the absorption line from 
its natural width of 10 MHz to about 2 GHz (see Eq. 2.27), more than enough to 
compensate the Doppler shift of the entire velocity distribution. Since the detuning 
is close to the resonance for the Fg = 2 -+ Fe = 3 transition, the optical pumping 
is most effective on Fg = 1 atoms because they are strongly Doppler-shifted by 
their velocities near 1000 m/s and not far from the peak of the distribution at 700 
m/s. Of course, atoms in Fg = 2 can also be excited, but they are Doppler shifted 
further from resonance, so that the net transfer of population is from Fg = 1 -+ Fg 
=2. 

As the atoms enter the solenoid, this effect is partially reversed. Figure 6.4a 
shows a decrease of the Fg = 2 population near 700 m/s in the rising edge of the 
magnetic field, while Fig. 6.4b shows a corresponding increase of Fg = 1 atoms. 
In this field region, the excitatio~s from the Fg = 2, M g = -1, 0, and + 1 levels 
to the states appropriate for circularly polarized light come into resonance with 
the laser [65]. Various other optical pumping schemes can be used to explain the 
appearance and disappearance of other population islands in Fig. 6.4. 
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Optical Molasses 

7.1 Introduction 

Chapter 6 presented a discussion of the radiative force on atoms moving in a single 
laser beam. Here this notion is extended to include the radiative force from more 
than just one beam. For example, if two low-intensity laser beams of the same 
frequency, intensity, and polarization are directed opposite to one another (e.g., by 
retroreflection of a single beam from a mirror), the net force found by adding the 
radiative forces given in Eq. 6.2 from each of the two beams obviously vanishes 
for atoms at rest because k is opposite for the two beams. However, atoms moving 
slowly along the light beams experience a net force proportional to their velocity 
whose sign depends on the laser frequency. If the laser is tuned below atomic 
resonance, the frequency of the light in the beam opposing the atomic motion is 
Doppler shifted toward the blue in the atomic rest frame, and is therefore closer 
to resonance; similarly, the light in the beam moving parallel to the atom will be 
shifted toward the red, further out of resonance. Atoms will therefore interact more 
strongly with the laser beam that opposes their velocity and they will slow down. 
This is illustrated in Fig. 7.l. 

The slowing force is proportional to velocity for small enough velocities, re­
sulting in viscous damping [67,68] as shown in Fig. 3.1 on p. 36 that gives this 
technique the name "optical molasses"(OM). By using three intersecting orthogo­
nal pairs of oppositely directed beams, the movement of atoms in the intersection 
region can be severely restricted in all three dimensions, and many atoms can 
thereby be collected and cooled in a small volume. OM has been demonstrated at 
several laboratories [69], often with the use of low cost diode lasers [70]. 
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FIGURE 7.1. Velocity dependence of the optical damping forces for one-dimensional optical 
molasses. The two dotted traces show the force from each beam, and the solid curve is their 
sum. The straight line shows how this force mimics a pure damping force over a restricted 
velocity range. These are calculated for So = 2 and B = -y so there is some power 
broadening evident (see Sec. 2.4). 

Note that OM is not a trap for neutral atoms because there is no restoring force 
on atoms that have been displaced from the center. Still, the detainment times of 
atoms caught in OM of several mm diameter can be remarkably long. 

7.2 Low-Intensity Theory for a Two-Level Atom in 
One Dimension 

It is straightforward to estimate the force on atoms in OM from Eq. 3.14. The 
discussion here is limited to the case where the light intensity is low enough so that 
stimulated emission is not important. This eliminates consideration of excitation 
of an atom by light from one beam and stimulated emission by light from the other, 
a sequence that can lead to very large, velocity-independent changes in the atom's 
speed. In this low intensity case the forces from the two light beams are simply 
added to give FOM = F+ + F_, where 

~ hky So 
F±=±- 2. 

2 1 + So + [2(~ =f IWDI)/y] 
(7.1) 

Then the sum of the two forces is 

~ '" 8hk2~sov II.~ 
FOM = == -"'v, 

y(1 + So + (2~/y)2)2 (7.2) 

where terms of order (kv/y)4 and higher have been neglected (see Eq. 3.26). 
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For 8 < 0, this force opposes the velocity and therefore viscously damps the 
atomic motion. POM has maxima near v = ±(y'12k)(XI.../3) and decreases 
rapidly for larger velocities. Here y' == y JSO+1 is the power broadened linewidth 

(see Eq. 2.27b), X is the numerical factor given by J x-I + 2J x 2 + x + 1, and 
x == (28 I y ') 2• For x » 1 these maxima appear at v = ±8 I k as expected, but 
for the usual realm of OM, x '" 1 and X '" .../3. Since POM is nearly linear with 
velocity for Ivl < y I k when x '" 1 (i.e., So .::: 1 and 8 = -y 12), it is convenient to 
define a capture velocity Vc = Y I k. However, the range of this damping force can 
be increased considerably beyond Vc by using curved wavefronts [71], a properly 
arranged inhomogeneous magnetic field [72], high light intensity [73], or a variety 
of other tricks [74,75], some of which are discussed in Sec. 13.5. 

If there were no other influence on the atomic motion, all atoms would quickly 
decelerate to v = ° and the sample would reach T = 0, a clearly unphysical result. 
There is also some heating caused by the light beams that must be considered, and it 
derives from the discrete size of the momentum steps the atoms undergo with each 
emission or absorption. Since the atomic momentum changes by hk, their kinetic 
energy changes on the average by at least the recoil energy Er = h2k2/2M = hwr . 

This means that the average frequency of each absorption is Wabs = Wa + Wr and 
the average frequency of each emission is Wemit = Wa - W r • Thus the light field 
loses an average energy of h(Wabs - wemid = 2hwr for each scattering. This loss 
occurs at a rate 2yp (two beams), and the energy becomes atomic kinetic energy 
because the atoms recoil from each event. The atomic sample is thereby heated 
because these recoils are in random directions, as discussed on p. 37. 

The competition between this heating with the damping force ofEq. 7.2, results 
in a nonzero kinetic energy in steady state. At steady state, the rates of heating and 
cooling for atoms in OM are equal. Equating the cooling rate, p. ii, to the heat­
ing rate, 4hwr yp, the steady-state kinetic energy is found to be (hy 18)(2181/Y + 
y 12181). This result is dependent on 181, and it has a minimum at 2181/Y = 1, 
whence 8 = -y 12. The temperature found from the kinetic energy is then To = 
hy 12k8, where k8 is Boltzmann's constant and To is called the Doppler tempera­
ture or the Doppler cooling limit (see p. 58). For ordinary atomic transitions To is 
below 1 mK, and several typical values are given in Table C.3 (see Appendix C). 

Another instructive way to determine To is to note that the average momentum 
transfer of many spontaneous emissions is zero, but the rms scatter of these about 
zero is finite. One can imagine these decays as causing a random walk in momentum 
space with step size hk and step frequency 2yp, where the factor of 2 arises 
because of the two beams. The random walk results in diffusion in momentum 
space with diffusion coefficient Do == 2(f).p)2 l!lt = 4yp(hk)2. Then Brownian 
motion theory (see Sec. 5.3) gives the steady-state temperature in terms of the 
damping coefficient {J to be k8 T = Dol {J. This turns out to be hy 12 as above 
for the case So « 1 when 8 = -y 12. There are many other independent ways to 
derive this remarkable result that predicts that the final temperature of atoms in 
OM is independent of the optical wavelength, atomic mass, and laser intensity (as 
long as it is not too large). 
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FIGURE 7.2. Overall schematic of the apparatus used for one-dimensional transverse cool­
ing (figure from Ref. 76). 

7.3 Atomic Beam Collimation 

When an atomic beam crosses a one-dimensional OM as shown in Fig. 7.2, the 
transverse motion of the atoms is quickly damped while the longitudinal compo­
nent is essentially unchanged. This transverse cooling of an atomic beam is an 
example of a method that can actually increase its brightness (atoms/sec-sr-cm2 ) 

because such active collimation uses dissipative forces to compress the phase space 
volume occupied by the atoms. By contrast, the usual realm of beam focusing or 
collimation techniques for light beams and most particle beams, is restricted to 
selection by apertures or conservative forces that preserve the phase space density 
of atoms in the beam (see Sec. 5.5). 

7.3.1 Low-Intensity Case 

At low intensity the velocity dependence of the optical force that collimates atomic 
beams using transverse OM derives from the Doppler shift of the transverse ve­
locity Vt == v sin (), where typically v = v '" 500 mls. The damping coefficient fJ 
is maximum for /) = -y 12 and So = 2, and for Vx < Vc the damping force is ap­
proximately lik2vx l2 (see Eq. 7.2 and Fig. 7.1). For Vx > vc , this force decreases 
approximately as I/vx from its maximum value oftypically liky 14,just as in OM. 
By contrast, for faster atoms the force from one of the beams dominates because 
of the Doppler shift, and for high enough speeds (vx a few times larger than vc ) 

the Doppler shift can take an atom almost completely out of resonance with both 
beams. 

This velocity compression at low intensity in one dimension can be estimated for 
two-level atoms as follows. The narrowest momentum distribution after cooling 
has an energy half width determined by the Doppler limit M vbl2 = Ii y 14, corre­
sponding to v D = JIi Y 12M. The relevant transverse velocity width before optical 
collimation is about twice the capture range Vc. Therefore the one-dimensional mo-



OP.TICA\II 

-.=~ 

7.3 Atomic Beam Collimation 91 

OPTICA~II 
MOL'SSE~ 

LASER OR 
MAGNETIC LENS 

VERY BRIGHT 
ATOMIC BEAM 

FIGURE 7.3. Scheme for optical brightening of an atomic beam. First the transverse velocity 
components of the atoms are damped out by an optical molasses, then the atoms are focused 
to a spot, and finally the atoms are recollimated in a second optical molasses (figure from 
Ref. 76). 

mentum space compression is about VclVD = ,Jy IWr = "ffTi, with 8 as defined 
in Eq. 5.5. For an atomic beam, this compression can be done in the two trans­
verse directions, reducing the occupied volume of transverse momentum space by 
y I Wr = 1 18. Furthermore, longitudinal cooling of an atomic beam as described 
in Chapter 6 can compress the width of the longitudinal velocity distribution from 
its original thermal value of ii to about the same VD. For Rb VD = 12 cmls, Vc ~ 

4.6 mis, Wr ~ 2rr x 3.8 kHz, and 1/8 ~ 1600. Thus the decrease in phase space 
volume from the momentum contribution alone for laser cooling of a Rb atomic 
beam can exceed 106 . 

Contributions to increasing the brightness of an atomic beam are not limited to 
momentum space compression. One must also consider the spatial expansion of 
the atomic beam in the transverse direction as it crosses the beam of collimating 
laser light. The minimal transverse expansion !l.x for atoms emitted from a point 
source is of the order of the minimum stopping distance of atoms with transverse 
velocity Vc. This yields !l.x = v~/2amax = y 18kwr ~ 100/Lm for Rb. Since this 
is typically smaller than the oven hole, this expansion is not of great consequence. 
In fact, spatial compression using atomic beam focusing as shown in Fig. 7.3, 
coupled with longitudinal cooling and further collimation, could compress the 
spatial extent of the beam to ~ Jy Iwri k, several/Lm for Rb. Since the oven hole 
for typical atomic beams may be a few hundred /Lm, this may be a factor of 50 in 
each direction, thus leading to total phase space compression of more than 109 . 

Clearly optical techniques can create atomic beams 106 or more times intense 
than ordinary thermal beams, and also many orders of magnitude brighter. Further­
more, this number could be increased several orders of magnitude if the transverse 
cooling could produce temperatures below the Doppler temperature (see Chap-
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FIGURE 7.4. Schematic diagram of the neutral-atom camera showing the repeller grid, the 
hot grid, the multichannel plates, and the phosphor screen. Atoms are ionized at the hot 
grid, directed toward the MCP's by the field between it and the repeller, and accelerated 
toward the MCP's by the voltage between them and the hot grid. The output electrons excite 
the phosphor, which is viewed by the TV camera. PC is a personal computer (figure from 
Ref. 77). 

ter 8). For atoms cooled to the recoil temperature of Eq. 5.4, Tr = hWr / kB where 
IIp = hk and llx = }../7r, the brightness increase could be 1017 . 

7.3.2 Experiments in One and Two Dimensions 

Some of the earliest optical collimation experiments were done in a thermal beam 
of natural Rb that was produced by an oven at T :::::: 150a C with aperture:::::: 330 JLm 
diameter [76,77]. The beam was mechanically collimated by a defining aperture 
of diameter:::::: 330JLm about 24 cm away (see Fig. 7.2). The laser light ().. = 780 
nm) was tuned to select either of the stable Rb isotopes, and experiments were 
done with each of them. The atomic beam profile was measured with a scanning 
hot tungsten wire, 25 JLm in diameter, 1.3 m away from the region of interaction 
with the laser beam. 

For two-dimensional collimation a single hot wire scan would not provide 
enough information. Instead of scanning both a vertical and a horizontal hot wire, a 
new method was devised for observing the spatial distribution of atoms [76,77]. A 
heated mesh was placed in the plane perpendicular to the beam (see Fig. 7.4). Ions 
emitted from the hot grid were accelerated into a pair of multichannel plate elec­
tron multipliers whose output electrons were accelerated onto a phosphor-coated 
screen. The screen was viewed by a standard TV camera whose output was fed to 
a frame grabber in a computer where the image could be analyzed. 

This device has been used for viewing the atomic beam with both one- and 
two-dimensional collimation. With about half of the molasses laser beam split off 
to produce a vertically oriented molasses in addition to the horizontal one, full 
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FIGURE 7.5. Image formed by the neutral atom camera of Fig. 7.4 with two-dimensional 
molasses acting on the atomic beam. The outline of the circular beam spot represents a 6 
mm diameter image nn the phnsphor. The 7 mW molasses laser beam was nearly uniformly 
intense and rectangular, about 8 x 20 IHm. Its detuning was about - 30 MHz for (a) and about 
+30 MHz for (b). Note the collimation for the red dduning and the divergence for the blue 
detuning. Again the recording lime was l/JO s and no image averaging was p,~rfonned (figure 
from Ref. 76), 
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FIGURE 7.6. Schematic diagram ofthe arrangement oflaser beams for 3D optical molasses. 
Three mutually perpendicular standing waves are formed by reflecting three laser beams 
from mirrors. Because of the red-detuned laser light, atoms experience a friction force in 
all directions and are therefore confined in a viscous medium, the optical molasses. 

two-dimensional collimation of the atomic beam was achieved. Figure 7.5 shows 
the results of this experiment. Here the intensity of each beam was only about half 
of that for the ID collimation, both light beams were linearly polarized normal to 
the atomic beam direction, and about 0.4 Gauss was applied along that direction. 
(The B-field and both polarization vectors were mutually orthogonal.) 

The collimated atomic beam spot size shown in Fig. 7.5 of about 1.25 mm diam­
eter has been reduced from its original 6 mm diameter (with the lasers blocked). 
This corresponds to an increase of both brightness and intensity by a factor of 
more than 20. Furthermore, this increase may well be hundreds of times larger, but 
limitations imposed by the resolution of the imaging system may have prevented 
its measurement [76]. 

More recent experiments have imaged the fluorescence of atoms as they pass 
through a sheet oflight to determine the spatial cross section of an atomic beam [78]. 
It is done by focusing a nearly resonant beam of laser light into a thin sheet using 
a cylindrical lens (or telescope). The thickness of the sheet is d, determined by 
the standard Gaussian beam equations and the optics that form it, and the plane of 
the sheet is oriented perpendicular to the atomic beam. Atoms having longitudinal 
velocity v pass through it in time tpass = dlv. Typical values are d = 30 /Lm and 
v = 300 mls so tpass ~ 100 ns. For ordinary laser parameters, this means each atom 
scatters several photons. 

The interaction region between the sheet of light and the atomic beam is imaged 
onto a camera (typically a CCD) using optics with aperture typically around f/4 
so that the collection efficiency is a few percent, and the quantum efficiency of 
the CCD results in a total efficiency around 1 %. For an atomic beam of flux 109 

atoms/s through the laser beam, the image information is therefore collected at a 
rate of 107 counts/s, so good images of 105 pixels are collected in a few seconds. 
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FIGURE 7.7. Photograph of optical molasses in Na taken under ordinary snapshot conditions 
in the lab at NIST. The upper horizontal streak is from the slowing laser while the three 
beams that cross at the center are on mutually orthogonal axes viewed from the (III) 
direction. Atoms in the optical molasses glow brightly at the center (figure from Ref. 81). 

7.4 Experiments in Three-Dimensional Optical 
Molasses 

Optical molasses experiments can also work in three dimensions at the intersec­
tion of three mutually orthogonal pairs of opposing laser beams (see Ref. 41 and 
Fig. 7.6). Even though atoms can be collected and cooled in the intersection re­
gion, it is important to stress again that this is not a trap. That is, atoms that 
wander away from the center experience no force directing them back. They are 
allowed to diffuse freely and even escape, as long as there is enough time for their 
very slow diffusive movement to allow them to reach the edge of the region of 
the intersection of the laser beams. Because the atomic velocities are randomized 
during the damping time l/wr , atoms execute a random walk with a step size of 
VD/Wr = "A.j2n.J2i ~ few /Lm. To diffuse a distance of 1 cm requires about 107 

steps or about 30 s [79,80]. 
Three-dimensional OM was first observed in 1985 [68]. Preliminary measure­

ments of the average kinetic energy of the atoms were done by blinking off the 
laser beams for a fixed interval. Comparison of the brightness of the fluorescence 
before and after the turnoff was used to calculate the fraction of atoms that left the 
region while it was in the dark. The dependence of this fraction on the duration of 
the dark interval was used to estimate the velocity distribution and hence the tem-
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FIGURE 7.8. Data from dropping atoms out of optical molasses into a probe beam about 
18 mm below. The calculated time-of-Hight spectra are for 240 ilK and 40 ilK. The shaded 
area indicates the range of error in the 40 ilK calculation from geometric uncertainties. The 
width of the data is slightly larger than the calculation, presumably because of shot-to-shot 
instabilities (figure from Ref. 82). 

perature. The result was not inconsistent with the two level atom theory described 
in Sec. 7.2. 

Soon other laboratories had produced 3D OM. The photograph in Fig. 7.7 shows 
OM in Na at the laboratory in the National Bureau of Standards (now NIST) 
in Gaithersburg. The phenomenon is readily visible to the unaided eye, and the 
photograph was made under ordinary snapshot conditions. The three mutually 
perpendicular pairs of laser beams appear as a star because they are viewed along 
a diagonal. 

This NIST group developed a more accurate ballistic method to measure the 
velocity distribution of atoms in OM [82]. The limitation of the first measurements 
was determined by the size of the OM region and the unknown spatial distribution of 
atoms [68]. The new method at NIST used a separate measuring region composed 
of a ID OM about 2 cm below the 3D region, thereby reducing the effect of this 
limitation. When the laser beams forming the 3D OM were shut off, the atoms 
dropped because of gravity into the ID region, and the time-of-arrival distribution 
was measured. This was compared with calculated distributions for T D and 40 JLK 
as shown in Fig. 7.8. Using a series of plots like Fig. 7.8 it was possible to determine 
the dependence of temperature on detuning, and that is shown in Fig. 7.9, along 
with the theoretical calculations for a two-level atom, as given in Sec. 7.2. 

It was an enormous surprise to observe that the ballistically measured temper­
ature of the Na atoms was as much as 10 times lower than TD = 240 JLK [82], the 
temperature minimum calculated from the theory. This breaching of the Doppler 
limit forced the development of an entirely new picture of OM that accounts for the 
fact that in 3D, a two-level picture of atomic structure is inadequate. The multilevel 
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FIGURE 7.9. Temperature vs. detuning determined from time-of-flight data for various 
separations d between the optical molasses and the probe laser (data points). The solid 
curve represents the measured molasses decay rate; it is not a fit to the temperature data 
points, but its scale (shown at right) was chosen to emphasize its proportionality to the 
temperature data. The dashed line shows the temperature expected on the basis of the 
two-level atom theory of Sec. 7.2 (figure from Ref. 82). 

structure of atomic states, and optical pumping among these sublevels, must be 
considered in the description of 3D OM, as discussed in Chapter 8. 

These experiments also found that OM was less sensitive to perturbations and 
more tolerant of alignment errors than was predicted by the ID, two-level atom 
theory. For example, if the intensities of the two counterpropagating laser beams 
forming an OM were unequal, then the force on atoms at rest would not vanish, 
but the force on atoms with some nonzero drift velocity would vanish. This drift 
velocity can be easily calculated by using Eq. 7.1 with unequal intensities so+ and 
so-, and following the derivation of Eq. 7.2. Thus atoms would drift out of an 
OM, and the calculated rate would be much faster than observed by deliberately 
unbalancing the beams in the experiments [69]. 

Chapter 8 describes the startling new view of OM that emerged in the late 
1980s as a result of these surprising measurements. The need for a new theoretical 
description resulting from incontrovertible measurements provides an excellent 
pedagogical example of how physics is truly an experimental science, depending 
on the interactions between observations and theory, and always prepared to discard 
oversimplified descriptions as soon as it is shown that they are inadequate. 



8 
Cooling Below the Doppler Limit 

8.1 Introduction 

In response to the surprising measurements of temperatures below T D, two groups 
developed a model of laser cooling that could explain the lower temperatures [83, 
84]. The key feature of this model that distinguishes it from the earlier picture was 
the inclusion of the multiplicity of sublevels that make up an atomic state (e.g., 
Zeeman and hfs). The dynamics of optically pumping atoms among these sublevels 
provides the new mechanism for producing the ultra-low temperatures [81]. 

The dominant feature of these models is the non-adiabatic response of mov­
ing atoms to the light field. Atoms at rest in a steady state have ground-state 
orientations caused by optical pumping processes that distribute the populations 
over the different ground-state sublevels. In the presence of polarization gradients, 
these orientations reflect the local light field. In the low-light-intensity regime, 
the orientation of stationary atoms is completely determined by the ground-state 
distribution: the optical coherences and the excited-state population follow the 
ground-state distribution adiabatically. 

For atoms moving in a light field that varies in space, optical pumping acts 
to adjust the atomic orientation to the changing conditions of the light field. In 
a weak pumping process, the orientation of moving atoms always lags behind 
the orientation that would exist for stationary atoms. It is this phenomenon of 
non-adiabatic following that is the essential feature of the new cooling process. 

Production of spatially dependent optical pumping processes can be achieved 
in several different ways. As an example consider two counterpropagating laser 
beams that have orthogonal polarizations, as discussed in Sec. 4.3. The superpo-
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sition of the two beams results in a light field having a polarization that varies on 
the wavelength scale along the direction of the laser beams. Laser cooling by such 
a light field is called polarization gradient cooling. In a three-dimensional optical 
molasses, the transverse wave character of light requires that the light field always 
has polarization gradients. 

Another way to make optical pumping spatially dependent is to use a standing 
wave of constant polarization and an additional field such as a uniform dc magnetic 
field. Since the standing wave light field has nodes and anti-nodes, the rate of 
the optical pumping compared with the rate of Larmor precession of atoms in 
the magnetic field changes dramatically over a wavelength. The resulting cooling 
process is called magnetically induced laser cooling [85] or magnetic orientational 
cooling [86]. 

The cooling process that derives from this non-adiabatic following is effective 
over a limited range of atomic velocities. The force is maximum for atoms that 
travel a distance >../4 during one optical pumping process. If atoms travel at a 
lower velocity, they will not have reached a very different part of the optical field 
before a spontaneous emission causes the pumping process to occur; if atoms 
travel faster, they will already go beyond the largest change in the field before 
being pumped toward another sublevel [27]. Of course the velocity where this 
force is effective scales with the characteristic distance over which the optical 
field changes. Although this is typically >../4, it can be much larger for two light 
waves with oblique k vectors. 

The nature of this cooling process is fundamentally different from the Doppler 
laser cooling process discussed in the previous chapter. In that case, the differential 
absorption from the laser beams was caused by the Doppler shift of the laser 
frequency, and the process is therefore known as Doppler cooling. In the cooling 
process described in this chapter, the force is still caused by differential absorption 
oflight from the two laser beams, but the velocity-dependent differential rates, and 
hence the cooling, relies on the non-adiabaticity of the optical pumping process. 
Since lower temperatures can usually be obtained with this cooling process, it is 
called sub-Doppler laser cooling [81,82,85]. 

8.2 Linear 1- Linear Polarization Gradient Cooling 

One of the most instructive models for discussion of sub-Doppler laser cooling 
was introduced by Dalibard and Cohen-Tannoud ji [83] and their work serves as the 
basis for this section. They considered the case of orthogonal linear polarization of 
two counterpropagating laser beams that damps atomic motion in one dimension 
(see the discussion of polarization gradients in Sec. 4.3). The polarization of this 
light field varies over half of a wavelength from linear at 45° to the polarization 
of the two beams, to a+, to linear but perpendicular to the first direction, to a-, 
and then it cycles (see Fig. 4.5). To study the effects of this polarization gradient 
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on the cooling process, they considered a Jg = 1/2 to Je = 3/2 trartsition. This-is 
one of the simplest transitions that shows sub-Doppler cooling. 

In the place where the light field is purely a+, the pumping process drives 
the ground-state population to the Mg = + 1/2 sublevel. This optical pumping 
occurs because absorption always produces I:lM = + 1 trartsitions, whereas the 
subsequent spontaneous emission produces I:lM = ± 1, 0 (see Sec. 4.4). Thus 
the average I:lM ~ 0 for each scattering event. For a- -light the population will 
be pumped toward the Mg = _1/2 sublevel. Thus in traveling through a half 
wavelength in the light field, atoms have to readjust their population completely 
from Mg = + 1/2 to Mg = _1/2 artd back again. 

8.2.1 Light Shifts 

The interaction between nearly resonartt light artd atoms not only drives trartsitions 
between atomic energy levels, but also shifts their energies as given in Eq. 1.16. 
These shifts are essentially caused by the Stark effect from the electric field of the 
light as discussed in Sec. 1.2.1. This light shift of the atomic energy levels plays a 
crucial role in this scheme of sub-Doppler cooling, artd the changing polarization 
has a strong influence on the light shifts. In the low-intensity limit of two laser 
beams each of intensity sols, the light shifts I:lE g of the ground magnetic substates 
are given by (see Eq. 1.17a) 

(8.1) 

where C ge is the Clebsch-Gordart coefficient that describes the coupling between 
the atom artd the light field (see Sec. 4.5.3). This relation has to be compared with 
the result obtained in Eq. l.17a for a two-level atom in a traveling wave. First, 
the light shift is twice as large, since there are two traveling waves. Second, the 
coupling has been modified because of the multiplicity of the ground-state, which 
is expressed by the coefficients C;g. Finally, the semiclassical artalysis of Sec. 1.2.1 
did not take into account the spontarteous emission process, and a more careful 
artalysis [83] leads to the result of Eq. 8.1. The C;e's are given in Appendix D 
for a"variety of trartsition schemes. Since Cge depends on the magnetic quarttum 
numbers and on the polarization of the light field, the light shifts are different for 
different magnetic sublevels. The ground-state light shift is negative for a laser 
tuning below resonartce (0 < 0) artd positive for 0 > 0 (see Eq. 1.17a). 

In the present case of orthogonal linear polarizations artd J = 1/2 ---+ 3/2, the 
light shift for the magnetic substate Mg = 1/2 is three times larger thart that of 
the Mg = - 1/2 substate when the light field is completely a+. On the other hand, 
when the light field becomes a-, the shift of Mg = _1/2 is three times larger. 
So in this case the optical pumping discussed above causes there to be a larger 
population in the state with the larger light shift. This is generally true for any 
trartsition Jg to Je = Jg + 1. A schematic diagram showing the populations and 
light shifts for this particular case of negative detuning is shown in Fig. 8.1. 
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FIGURE 8.1. The spatial dependence of the light shifts of the ground-state sublevels of 
the J = 1/2 {} 3/2 transition for the case of the lin 1- lin polarization configuration. The 
arrows show the path followed by atoms being cooled in this arrangement. Atoms starting 
at z = 0 in the Mg = + 1/2 sublevel must climb the potential hill as they approach the 
z = ),./4 point where the light becomes a- polarized, and there they are optically pumped 
to the M g = - 1/2 sublevel. Then they must begin climbing another hill toward the z = ),./2 
point where the light is a+ polarized and they are optically pumped back to the Mg = + 1/2 

sublevel. The process repeats until the atomic kinetic energy is too small to climb the next 
hill. Each optical pumping event results in absorption of light at a lower frequency than 
emission, thus dissipating energy to the radiation field. 

8.2.2 Origin of the Damping Force 

To discuss the origin of the cooling process in this polarization gradient scheme, 
consider atoms with a velocity v at a position where the light is a+ -polarized, as 
shown at the lower left of Fig. 8.1. The light optically pumps such atoms to the 
strongly negative light-shifted Mg = + 1/2 state. In moving through the light field, 
atoms must increase their potential energy (climb a hill) because the polarization 
of the light is changing and the state Mg = 1/2 becomes less strongly coupled 
to the light field. After traveling a distance >../4, atoms arrive at a position where 
the light field is a- -polarized, and are optically pumped to Mg = _1/2, which 
is now lower than the Mg = 1/2 state. Again the moving atoms are at the bottom 
of a hill and start to climb. In climbing the hills, the kinetic energy is converted 
to potential energy, and in the optical pumping process, the potential energy is 
radiated away because the spontaneous emission is at a higher frequency than the 
absorption (see Fig. 8.1). Thus atoms seem to be always climbing hills and losing 
energy in the process. This process brings to mind a Greek myth, and is thus called 
"Sisyphus laser cooling". In this sense it is similar to the Stark cooling discussed in 
Sec. 6.2.6 [63] and the high intensity "blue cooling" discussed in Sec. 9.3 [87,88]. 

The cooling process described above is effective over a limited range of atomic 
velocities. The damping is maximum for atoms that undergo one optical pumping 
process while traveling over a distance>.. / 4. Slower atoms will not reach the hilltop 
before the pumping process occurs and faster atoms will already be descending 
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FIGURE 8.2. The force as a function of velocity for an atom in a lin ..L lin polarization 
gradient cooling configuration with So = 0.5 and /) = 1.5y. The solid line is the combined 
force of Doppler and sub-Doppler cooling, whereas the dashed line represents the force for 
Doppler cooling only. The inset shows an enlargement of the curve around v = O. Note, 
the strong increase in the damping rate over a very narrow velocity range that arises from 
the sub-Doppler process. 

the hill before being pumped toward the other sublevel. In both cases the energy 
loss is smaller and therefore the cooling process less efficient. 

The damping force F = -f3v can be estimated from the distance dependence 
of the energy loss. Denote the optical pumping time by rp == l/yp and then the 
optimum speed is Ve ~ ypl k. The force at this velocity Ve is F = b. WI b.z ~ 
b.E k == -f3ve • To find the order of magnitude of the friction coefficient 13, both 
the light shift b.E and the pumping rate yp need to be estimated. For a detuning 
181» y, Eq. 2.26 yields the pumping rate yp = soy3/482 (the 4 instead of an 8 
accounts for the presence of two laser beams), and then choosing C;e = 1 in Eq. 8.1 

yields b.E = liy2so148. Then the damping rate 131M = Iik2812My = wr 8lY. 
The velocity-dependent force has the same order of magnitude as the Doppler force, 
but its velocity range is ypl k. The best result are often obtained with 181 » y 12, 
so usually this is much smaller than y / k and therefore 13 is much larger. Figure 8.2 
shows the scale of the forces. It is interesting that 13 becomes larger when the 
optical pumping rate Yp becomes smaller. Although this seems counterintuitive, it 
happens because Vc becomes smaller when YP becomes smaller. 

This result is of particular significance because it shows that the friction coeffi­
cient for this sub-Doppler process is larger by a factor (2181/y) than the maximum 
friction coefficient for Doppler laser cooling. It can be shown that the momentum 
diffusion coefficient of this process is of the same order of magnitude as that of 
Doppler cooling, so that the temperature will be smaller than the Doppler tem­
perature by the same factor. Furthermore, it shows that the friction coefficient for 
this case is independent of intensity, since both b. E and YP are proportional to the 
intensity. 
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FIGURE 8.3. The spatial dependence of the light shifts of the ground-state sublevels of the 
J = 1/2 * 3/2 transition for the case of a purely a+ standing wave that has no polarization 
gradient, and is appropriate for magnetically induced laser cooling. The arrows show the 
path followed by atoms being cooled in this arrangement. Atoms starting at z = 0 in the 
strongly light-shifted Mg = + 1/2 sublevel must climb the potential hill as they approach the 
node at z = 1../4. There they undergo Zeeman mixing in the absence of any light and may 
emerge in the Mg = _1/2 sublevel. They will then gain less energy as they approach the 
antinode at z = 1../2 than they lost climbing into the node. Then they are optically pumped 
back to the M g = + 1/2 sublevel in the strong light of the antinode, and the process repeats 
until the atomic kinetic energy is too small to climb the next hill. Each optical pumping 
event results in absorption of light at a lower frequency than emission, thus dissipating 
energy to the radiation field. 

8.3 Magnetically Induced Laser Cooling 

Although the first models that described sub-Doppler cooling relied on the polar­
ization gradient of the light field as above, it was soon realized that a light field 
of constant polarization in combination with a magnetic field could also produce 
sub-Doppler cooling [89]. In this process, the atoms are cooled in a standing wave 
of circularly polarized light. 

There is a simple model using the Jg = 1/2 to Je = 3/2 transition to describe 
this phenomenon [85]. In the absence of a magnetic field, the a+ light field drives 
the population to the Mg = + 1/2 sublevel. Since the Mg = + 1/2 sublevel is more 
strongly coupled to the light field than Mg = - 1/2, the light shift of this state is 
larger. Thus atoms traveling through this standing wave will descend and climb 
the same potential hills corresponding to Mg = 1/2 and will experience no average 
force. 

The situation changes if a small transverse magnetic field is applied. Optical 
pumping processes determine the atomic states in the antinodes of the standing 
wave light field where the light is strong. But in the nodes, where the intensity of 
the light field is zero, the small transverse magnetic field precesses the population 
from Mg = 1/2 toward Mg = _1/2. Atoms that leave the nodes with Mg = _1/2 
are returned to Mg = + 1/2 in the antinodes by optical pumping in the a+ light. 
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FIGURE 8.4. Typical data of atomic beam collimation using circularly polarized light and a 
weak magnetic field on a beam of 85Rb atoms (see Fig. 7.2). The scanning hot wire was 1.3 
m downstream from the interaction region. The laser parameters are defined as in Eq. 8.1 
and Sec. 2.4 (figure from Ref. 90). 

This cooling process is depicted in Fig. 8.3 for negative detuning 8 < O. Potential 
energy is radiated away in the optical pumping process as before, and kinetic energy 
is converted to potential energy when the atoms climb the hills again into the nodes. 
The whole process is repeated when the atoms travel through the next node of the 
light field. Again the cooling process is caused by a "Sisyphus" effect, similar to 
the case oflin 1. lin. Since this damping force is absent without the magnetic field, 
it is called magnetically induced laser cooling (MILC). 

Efficient cooling by MILe depends critically on the relation between the Zeeman 
precession frequency Wz and the optical pumping rate Yp in the antinodes. It is 
clearly necessary that Yp » Wz in the antinodes where the light is strong. But as 
in any cooling process that depends on non-adiabatic processes, there is a limited 
velocity range where the force is effective. For efficient cooling by MILe, the 
velocity can not be too small compared to wzl k or atoms will undergo many 
precession cycles near the nodes and no effective cooling will result. On the other 
hand, if the velocity is large compared to Ypl k, then atoms will pass through the 
antinodes in a time too short to be optically pumped to Mg = + 1/2 and no cooling 
will result either. Thus, in addition to the requirement 8 < 0, there are two other 
conditions on the experimental parameters that can be combined to give 

Wz < kv < Yp. (8.2) 

Sub-Doppler cooling has been observed for MILe as shown in Fig. 8.4 for Rb 
atoms cooled on the A = 780 nm transition in one dimension [85]. The width of 
the velocity distribution near v = 0 is as low as 2 cmls, much lower than the 
one-dimensional Doppler limit VD = .J7hy 120M ~ 10 cmls for Rb. 
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8.4 (1+-(1- Polarization Gradient Cooling 

Dalibard and Cohen-Tannoudji [83] also discussed another model for sub-Doppler 
cooling where the polarization vectors of the two laser beams are also orthogonal, 
but in this case circularly polarized. As discussed in Sec. 4.3 the resulting optical 
electric field has a constant magnitude and is linearly polarized everywhere, but 
the direction rotates through an angle 21f over one optical wavelength [91]. In the 
basis where the quantization axis rotates in space so that it is always along the 
direction of the optical electric field, the light shifts are independent of position, 
and only 1f transitions are produced, since there is no component of the optical field 
perpendicular to the quantization axis. In contrast to the lin ..1 lin case discussed 
earlier, this type of sub-Doppler cooling requires ground-state orientation rather 
than alignment, and so the simplest model for it must have Jg = 1. 

The laser cooling models discussed in Secs. 8.2 and 8.3 both relied on optical 
pumping among states that have spatially varying light shifts. Since the pumping 
process always preferentially pumps the atoms toward states with larger light shift 
for a Jg to Je = Jg + 1 transition, a negative detuning will always pump the atoms 
to states with the lowest energy and therefore cool the atoms by dissipating energy. 
However, it is clear that the sub-Doppler force in this a+ -a- case cannot rely on 
a "Sisyphus" effect because the spatially uniform light shifts preclude "hills" and 
"valleys" . 

Nevertheless, the non-adiabaticity required for cooling derives from the atomic 
motion through a region of rotation of the quantization axis. For atoms at rest in 
the light field, optical pumping tends to redistribute the populations among the 
magnetic substates according to the local direction of the linearly polarized light, 
so the Mg = 0 sublevel will be populated most strongly and the sublevels with 
M g = ± 1 will be populated less. By contrast, moving atoms experience a rotation 
of the quantization axis, and must be optically pumped in order to follow it. Thus 
the population of the ground magnetic substates always lags behind the steady 
state-distribution appropriate to the local field, i.e., the polarization direction. 

The authors of Ref. 83 showed that this non-adiabatic following populates the 
state with Mg = + 1 more than the state with Mg = -1 for atoms traveling toward 
the laser beam with a+ polarization, and vice versa for atoms traveling in the 
opposite direction. Even a small imbalance in the population can produce a very 
large damping force. This is because the Mg = 1 sublevel scatters the a+ light six 
times more efficiently than the a - light because of the different Clebsch-Gordan 
coefficients (see Appendix D). Since the atoms remain in the Mg = 1 sublevel after 
absorption of a + light followed by spontaneous emission, atoms traveling toward 
the a+ beam scatter much more light from it and experience a large momentum 
change in the direction opposite to their motion. Atoms traveling toward the a­
beam are preferentially pumped toward the Mg = -1 sublevel from which they 
strongly scatter light from the a - -beam and also recoil in the opposite direction. 

The atomic motion is clearly damped, and in this case the cooling mechanism 
also relies on a differential scattering of light from the two laser beams. However, 
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in this case the differential scattering is not caused by the difference in Doppler 
shifts of the two laser beams as in Doppler cooling, but by the imbalance in the 
populations caused by the time lag in the following of the atomic orientation to 
the local field. 

From the discussion above it is difficult to assess the size of the friction coef­
ficient and the diffusion coefficient for this a+ -a- cooling process. In Ref. 83 it 
is shown that both coefficients remain smaller by approximately the same factor 
compared to the lin 1- lin configuration, so comparable final temperatures are to be 
expected for the two cases [83]. However, the reduction of the friction coefficient 
can be important in experiments, because cooling times become longer and the 
effect of perturbations to the cooling process will have a larger impact. 

8.5 Theory of Sub-Doppler Laser Cooling 

The models discussed in the preceding sections apply to cases where the small 
J values result in a small number of evolution equations for the density matrix 
elements. Real atoms have a much richer structure than these simple cases. For 
example, cooling of the alkalis Na, Rb, and Cs is achieved on the F = 2 {:} 3, 
F = 3 {:} 4, and F = 4 {:} 5 transitions respectively. It is commonly accepted 
that the principles of sub-Doppler laser cooling discussed for the simple cases 
are applicable to these more complicated transitions. An operator description of 
sub-Doppler laser cooling for any given transition for any given polarization of 
the laser beams in the presence of external fields has been given in Ref. 92. 

The theory considers the case of atoms moving through a monochromatic radi­
ation field of frequency Wf. In principle the theory is applicable to laser cooling in 
three dimensions, but only the case of one-dimensional cooling will be described 
here, where the velocity v is in the direction of the laser beams. The electric field 
is assumed to be classical and is given by 

(8.3) 

The atom-field coupling is given by the Rabi operator R = ileg . E+/Ii, which has 
the magnitude of the Rabi frequency. Also, the force operator j in the radiation 
field can then be written as (see also Sec. 3.1) 

j = V (il· E) = Ii (VR + vRt). (8.4) 

In the low-intensity limit, where the lowest temperatures for sub-Doppler cool­
ing are observed, the optical coherences and the excited state can be eliminated 
from the evolution equations of the atomic density matrix because they follow 
the ground-state adiabatically. The force in the steady state can then be written in 
terms of the ground-state density matrix agg(t) 

(8.5) 
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with 
~ -iii t ~ iii ~ t 

Feff(t) == y /2 + io n vn + y /2 _ io (vn )n. (8.6) 

After solving the evolution equations for the ground-state density matrix, Eq. 8.5 
can then be used to calculate the force. 

It is instructive to split the Rabi operator in two parts nCR) = e(R) x I(R) with 
I(R) the Rabi frequency operator containing the position-dependent strength of 
the electric field and e(R) the coupling of the atom to the field. This can also be 
position dependent because of the 5hanging polarizati~n vec!or of the local field. 
Then Eq. 8.6 can be expanded as Feff = F) + F2 + F3 + F4 with 

(8.7a) 

~ 2Fooete(~* *~) F2 = -----2 (VI)I + I VI , 
Y ky 

(8.7b) 

~ 1 I 12 ( ~ t t ~ ) 
F3 = i Fo ky2 (Ve)e - e ve , (8.7c) 

and 

14 = Fo 1 ~~2 ((vet)() + etve) . (8.7d) 

Here the factor Fo in front is given by 

Iiky/2 
Fo = -1-+-(-'-20'--/-y)-=-2' (8.8) 

which is the force on a two-level atom with So = 1. The force operator I) depends 
on the gradient of the Rabi frequency and is the well-known radiation pressure, 
proportional to the phase of the field. The operator 12 is the dipole force operator, 
determined by the amplitude gradient of the field. Both of these are discussed 
in Sec. 3.2. The force operators 13 and 14 both arise from a gradient in the 
polarization direction, and they are related to the forces discussed in the preceding 
sections describing polarization gradient cooling. Note, that 13 d~pends on the 
phase gradient of e, corresponding to a radiative force, whereas F4 depends on 
the amplitude gradient of e, corresponding to a redistribution force. 

All force operators it have a common prefactor given by 

~ lik 1 Q e y/2 
:F.'ex: = 

I (y /2)2 + 02 
(8.9) 

where the vector k derives from the gradient operator V on the right-hand side 
of Eqs. 8.7a-d. This factor is identical to the radiation force in the limit of low 
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FIGURE 8.5. The calculated force vs. velocity curve for the lin ..tHn configuration adapted 
from Ref. 92. 

intensity for the case of Doppler laser cooling of a two-level atom in Sec. 3.2. Since 
the remaining factor is of the order I, the force in sub-Doppler cooling can never 
exceed the Doppler force. This is to be expected, since the force still derives from 
the scattering of light from the two laser beams that form the optical molasses_ 
However, the velocity dependence of the force for the sub-Doppler case, which 
derives from taking the trace over the density matrix in Eq. 8_5, is much stronger 
in this case than for the case of Doppler cooling. This leads to an increase in the 
damping coefficient and, since the momentum diffusion coefficient in the two cases 
are comparable, leads to lower temperatures as observed in experiments. 

After finding the ground-state density matrix by solving the evolution equation, 
Eq. 8.5 can be used for calculation of the force on an atom. Nienhuis et al. [92] 
studied the case where the atomic velocities are assumed to vary slowly over an 
optical wavelength. This corresponds to atomic kinetic energies large compared 
to the potential energy variations caused by the light shift The periodicity of the 
problem suggests expansion of the density matrix elements in a Fourier series, 
and the resulting linear relations for the Fourier coefficients can then be solved 
numerically_ The force is obtained by substitution of the Fourier series in Eq. 8.5, 
and then averaging over a wavelength. 

In Fig. 8.5 the force is plotted for the case of orthogonal linear polarization for 
transitions from Jg to Je = Jg + 1 for different Jg's. There is an increase of the 
damping coefficient when Jg is increased that can easily be understood because, 
for atoms with larger values of Jg, the states with Mg = ±Jg are less strongly 
coupled to the light field_ For these atoms the optical pumping toward the other 
states proceeds at a lower rate. For the optimum in the force, the atomic velocity 
should therefore be lower, whereas the energy loss (the difference in the light shift) 
remains the same. Since the damping coefficient depends on the ratio ofthe energy 
loss to the velocity, it will increase. 
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FIGURE 8.6. The calculated force vs. velocity curve for the u+ -u- polarization configu­
ration for the case of B = 0, and B '" 0 [93]. When B '" 0, the force has a dispersion shape 
centered at a finite Vvsr = wz/ k where it vanishes. Atoms are cooled to this velocity. 

This operator formalism [92] has been extended to the case of laser cooling in 
stronger magnetic fields by finding operators and calculating forces for the cases 
described in Secs. 8.9 and 8.10 [94]. An example of the results of such a calculation 
for the 0'+ -0'- configuration described in Sec. 8.10 is shown in Fig. 8.6. For B = 0 
there is strong damping to v = 0, but for larger B the atoms are damped to a non­
zero velocity, in this case wz/ k, corresponding to the 0'+ -0'- velocity selective 
resonance (VSR) illustrated in Fig. 8.l2a. Reference 94 shows good agreement 
between the calculations and the data for all cases, thus putting the VSR view of 
sub-Doppler laser cooling on firm theoretical grounds. 

The momentum diffusion of the atoms can also be obtained using this semiclas­
sical model [92]. It is calculated from the time correlation of the force operator and 
consists of three terms: (1) the contribution from the random direction of spon­
taneous emission; (2) the contribution from stimulated processes on a fast time 
scale caused by the decay of the optical coherences; and (3) the contribution from 
stimulated processes on a slow time scale caused by the optical pumping among 
ground states. The first two terms can easily be evaluated at each instant from the 
local steady-state density matrix. The third term depends on the evolution matrix 
of the ground-state density matrix and involves an integration over time. 

Substitution of both the force and diffusion as a function of velocity in the 
Fokker-Planck equation (see Sec. 5.4) allows calculation the temporal evolution 
of the velocity distribution. The results must be cautiously interpreted however, 
because both the force and the diffusion calculated with the procedure described 
above assumes that the atoms are in a steady state, i.e., the interaction time is long 
compared to the optical pumping time. 

The operator description can be used to show that lower light intensity results 
in lower diffusion, but not in a lower damping coefficient. The temperature in the 
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steady state is given by the ratio ofthe diffusion to the damping coefficient so lower 
light intensity (or proportionally lower external field) lowers the final temperature. 
Of course, lowering the intensity also lowers the range for which the semiclassical 
theory is valid. Furthermore, at very low temperatures, where the recoil of the atom 
by one photon absorption is comparable to the atomic velocity, the Fokker-Planck 
equation Eq. 5.20 is no longer valid and a quantum theory is necessary. 

8.6 Optical Molasses in Three Dimensions 

The theoretical models and experimental results discussed so far in this chapter are 
all for the case of one dimension. The theoretical models are not easily extended 
to more dimensions and do not provide the same kind of analytical solutions as 
does lD. To enable direct comparison with theory, lD experiments are required, 
and these experiments are discussed in Secs. 8.9 and 8.10. One of the limitations 
of 3D experiments is that they are not able to study cooling schemes without 
polarization gradients, since the transverse nature of electromagnetic radiation 
prevents the construction of 3D radiation fields with all polarizations parallel. 

One of the outcomes of the models presented in Secs. 8.2 and 8.4 is that the 
final temperature llim in polarization gradient cooling scales with the light shift 
!1Eg of the ground-states, i.e., 

(8.10) 

where !1Eg is given by Eq. 8.1. The value of the coefficient b depends on the 
polarization scheme used and is 0.125 for Iin..L lin and 0.097 for u+-u-. Note 
that lowering the temperature can easily be achieved by lowering the light shift, 
either by increasing the detuning 8 or decreasing the intensity So (see Eq. 8.1). 
Since this is a result of the semiclassical theory, the temperature will always be 
limited by the recoil temperature, as discussed at the end of Sec. 8.5 and in Sec. 8.7. 

In the experiments reported by Salomon et al. [95], the temperature was mea­
sured in a 3D molasses under various configurations of the polarization. All beams 
were linearly polarized, but in one configuration the polarization of two coun­
terpropagating beams was chosen to be parallel to one another and in another 
configuration they were chosen to be perpendicular. Temperatures were measured 
by a ballistic technique, where the flight time of the released atoms was measured 
as they fell through a probe a few cm below the molasses region. The sensitivity 
of the technique was increased by using a specially tailored laser beam to push 
all but a thin horizontal slice of the atoms out of the molasses just before they 
were released. In this way the initial vertical position of the remaining atoms was 
determined more accurately and therefore the fall time was a better measure of 
their initial vertical velocity. 

Results of their measurements are shown in Fig. 8.7a, where the measured 
temperature is plotted for different detunings as a function of the intensity. For each 
detuning, the data lie on a straight line through the origin. The lowest temperature 
obtained is 3 JLK, which is a factor 40 below the Doppler temperature and a factor 
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FIGURE 8.7. Temperature as a function of laser intensity and detuning for Cs atoms in an 
optical molasses from Ref. 95. a) Temperature as a function of the detuning for various 
intensities. b) Temperature as a function of the light shift. All the data points are on a 
universal straight line. 

15 above the recoil temperature of Cs. If the temperature is plotted as a function 
of the light shift (see Fig. 8.7b), all the data are on a single universal straight 
line. The slope of the line is 0.45 for the parallel configuration and 0.35 for the 
perpendicular configuration. Both slopes are a factor of about 3 higher than the 
theoretical estimates of I D and the authors ascri be this discrepancy to the three-fold 
increase of the number of laser beams. 

However, there are a number of differences between the theoretical and experi­
mental situations studied. First, the theory is ID, whereas the experiments are 3D. 
Second, the level scheme used in the theory is 19 = 1/2 <=> le = 3/2 (for lin -1 
lin) or 19 = I <=> le = 2 (for a+ -a-), whereas the cooling transition in Cs is a 
Fg = 4 <=> Fe = 5 transition. Third, the polarization gradient in the ID theory 
is well-defined, whereas in the 3D experiment atoms see different gradients in 
different directions and the gradients could change dramatically during the atoms' 
diffusive movement in the molasses. 

In an experiment by Gerz et al. [96] the effect of the angular momentum of 
the transition on the temperature was studied by exploiting the two isotopes of 
Rb. In 85Rb the cycling transition is a Fg = 3 <=> Fe = 4 transition, whereas in 
87Rb the Fg = 2 <=> Fe = 3 transition is used. The authors then studied the final 
temperature as a function of the light shift and found a small effect of the slope on 
the isotope used. The temperatures for 85Rb are 10% lower under the same laser 
parameters compared to 87Rb, indicating an increased damping for higher F as 
predicted by theoretical results [92]. 

Simulations of the behavior of alkali atoms in an optical molasses were per­
formed by both Molmer [97] and Javanainen [98]. Both authors found that in 
most cases relation 8.10 holds even in two and three dimensions. However, Ja-
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vanainen [98] showed that in 3D the temperature is not just given as the ratio of 
the diffusion averaged over a wavelength and the damping averaged over a wave­
length, since the trajectories of the atom are not straight, but severely altered by 
the cooling process. These aspects have led to the departure from the semiclassical 
treatments and toward quantum treatments, which are discussed in Chapters 15 
and 16. 

8.7 The Limits of Laser Cooling 

8.7.1 The Recoil Limit 

In Sec. 7.2 it was shown that there is a lower limit to Doppler laser cooling that 
arises from the competition with heating. This heating is caused by the randomness 
of spontaneous emission, which itself is the irreversible process that is required for 
laser cooling. It is therefore unavoidable, although its magnitude can be controlled. 

This cooling limit is also described there as a random walk in momentum space 
whose steps are of size lik and whose rate is the scattering rate, Yp = SOY 12 for 
zero detuning and So « 1. As long as the force can be accurately described as a 
damping force, then the Fokker-Planck equation of Eq. 5.20 is applicable, and the 
outcome is a lower limit to the temperature of laser cooling given by the Doppler 
temperature k8TD == IiYI2. A similar argument is used in Sec. 6.4.1 on beam 
deceleration. 

The extension of this kind of thinking to the sub-Doppler processes described 
in this chapter must be done with some care. In Sec. 8.2.2 it was shown that the 
damping constant fJ for polarization gradient cooling is larger than for Doppler 
laser cooling by the factor 2181/y, and a naive application of the consequences of 
the Fokker-Planck equation would lead to an arbitrarily low final temperature as 
a result of an arbitrarily large value of fJ brought about by increasing 181. In order 
to see why this is not true, some careful thinking is needed. 

First, the notion that the ratio of D 1 fJ gives the final temperature comes from the 
Fokker-Planck equation, and is only valid for D 1 fJ constant, or in particular when 
D is constant and the force is truly a damping force, that is, F = -fJv. Clearly, 
this is not true for velocities outside the capture range given by Vc = Ypl k as 
discussed in Sec. 8.2.2 and shown in Figs. 7.1, 8.5, and 8.6. The difficulty appears 
because Vc decreases as Yp ()( 1/82 for 8 » y, and Vc quickly becomes very 
small, resulting in a very narrow remaining linear region of the force curve (for 
example, see Fig. 5.3 and its discussion). If the velocity distribution has atoms 
with v > vc , then these may be still subject to a decelerating force, but not one 
that is proportional to v [73]. 

Second, in the derivation of the Fokker-Planckequation in Sec. 5.4, it is explicitly 
assumed that each scattering event changes the atomic momentum p by an amount 
that is a small fraction of p as embodied in Eq. 5.10, and this clearly fails when 
the velocity is reduced to the region of Vr == likl M. Thus the Fokker-Planck 
equation is not a valid description of the evolution of the velocity distribution in 
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the neighborhood of v '" Vr , and the argument that the final temperature can be 
arbitrarily reduced by increasing 101 is invalid. 

This limitation of the minimum steady-state value of the average kinetic energy 
to a few times Er == kB Tr = (hk)2/2M is intuitively comforting for two reasons. 
First, one might expect that the last spontaneous emission in a cooling process 
would leave atoms with a residual momentum of the order of hk, since there is no 
control over its direction. Thus the randomness associated with this would put a 
lower limit on such cooling of Vrnin '" Vr • Second, the polarization gradient cooling 
mechanism described above in Sec. 8.2.2 requires that atoms be localizable within 
the scale of '" "A/27r in order to be subject to only a single polarization in the 
spatially inhomogeneous light field. The uncertainty principle then requires that 
these atoms have a momentum spread of at least hk. 

These arguments have been put on firmer ground in a well-studied paper [99]. 
Its authors provide some analytical and numerical calculations that support these 
conclusions. They show that the steady-state velocity distribution can be character­
ized by a single dimensionless parameter U 0 IE r, where U 0 is the light shift of the 
ground-state. They carefully distinguish the cases where Vc is less than the width 
of the steady-state distribution at low Uo resulting, for example, from large o. This 
causes the distribution to deviate from Gaussian in the wings so that its width does 
not correspond to the average value ofthe kinetic energy (see Fig. 5.3). Figure 8.8 
shows their plot of both the average kinetic energy (corresponding to the rms value 
of momentum) and the width of the velocity distribution at its 1 l.;e height. As 
shown, the narrowest velocity distribution has a width of a few Vr , corresponding 
to temperatures T '" 1 0 Tr • In this case, the average kinetic energy is much higher 
because the wings of the velocity distribution contain more fast ~toms than would 
a Gaussian distribution. 

8.7.2 Cooling Below the Recoil Limit 

The recoil limit discussed in the previous section has been surpassed by two differ­
ent cooling methods, neither of which can be based in the simple optical notions 
discussed there. One of these uses optical pumping into a velocity-selective dark 
state and is described in Chapter 18. The other one uses carefully chosen, coun­
terpropagating laser pulses to induce velocity-selective Raman transitions, and is 
called Raman cooling [100]. The Raman pulses connect the two hfs sublevels of 
the ground state of an alkali (in the case of Ref. 100 it was Na), and the two 
light beams are tuned well away from the atomic resonance to limit spontaneous 
emission. Since both initial and final states are ground states, their lifetimes are 
very long and the transitions are correspondingly very narrow, limited only by the 
adjustable duration of the pulses. 

In Ref. 100, Na atoms in a thermal beam are first decelerated using the frequency 
chirp method of Sec. 6.2.1, then accumulated in a magneto-optical trap as described 
in Sec. 11.4, and then cooled in a 3D polarization gradient molasses as described 
in Sec. 8.6 (after the trapping fields were turned off). The cold vapor of atoms 
was then subjected to a sequence of carefully tailored laser pulses. First there was 
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FIGURE 8.8. Plot of the rms momentum (corresponding to the average kinetic energy) and 
the width at the 1/..re height of the steady state momentum distribution vs. rz / y for Cs 
atoms cooled with light detuned by Ii = -15y. These curves would coincide for Gaussian 
distributions. The heavy dots show the result of the Monte Carlo simulations, whereas the 
lines are from numerical integration of the optical Bloch Eqs. (figure adapted from Ref. 99). 

a pulse of a single frequency that excited all atoms within a velocity range y / k 
out of the hfs sublevel Fg = 1, and therefore populated Fg = 2 by spontaneous 
emission. Since the atoms had been cooled well below the Doppler limit, almost 
all the atoms were optically pumped this way. 

Then there was a short pulse of counterpropagating beams containing frequen­
cies tuned far from atomic resonance, but whose difference ll.w was only slightly 
less than hfs splitting Wbfs. Therefore atoms travelling toward the higher frequency 
laser were Doppler-shifted into resonance for the Raman transition from Fg = 2 
to Fg = 1. The resonance condition for the Raman transition is 2kv = ClJbfs - ll.w, 
and for atoms cooled to a few times the recoil velocity Vr , it would be necessary 
to have ll.w '" 250 kHz below ClJbfs' Atoms therefore underwent a momentum 
change of2hk opposite to their motion, and were transferred to sublevel Fg = 1. 
Then another optical pumping pulse returned them to Fg = 2, and they suffered 
a random momentum change of magnitude hk. Atoms travelling in the opposite 
direction were unaffected because the Raman transition was Doppler-shifted fur­
ther from resonance. This process was repeated several times, and each time the 
frequency difference between the beams was brought closer to the hfs splitting 
so that atoms were swept toward zero velocity. Then the entire sequence was re­
peated, but now with the counterpropagating beams' directions reversed, so that 
atoms with opposite velocity were also swept toward zero velocity. 

In each sequence, the slowing was compromised by the randomness of the 
recoil from spontaneous emission, but the well-defined momentum change of 2hk 
opposite to the atomic velocity from the Raman pulses dominated, and on average 
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the atoms were slowed. Of course, the spontaneous emission is the necessary 
dissipative interaction for cooling (see Secs. 5.5 and 8.7). 

The authors of Ref. 100 employed several very clever schemes to optimize their 
results. For example, the Raman laser pulses were not square, but had shapes care­
fully chosen to minimize spurious frequency components that would arise from the 
Fourier transform of a sharp envelope and might compromise the desired sequence 
of atomic transitions. Also, the pulses were short when the frequency difference 
was far from the hfs splitting to slow fast atoms in order that their resulting broad 
spectral width would encompass a wider range of velocities, but were lengthened 
to narrow the spectral resolution (velocity selectivity) as the difference frequency 
shifted toward decelerating the slower atoms. 

The outcome of the experiment was measured by a subsequent series of similarly 
velocity-selective excitations to sublevel Fg = 1, and the fluorescence induced by 
additional optical pumping light as a function of the frequency difference of the 
counterpropagating beams displayed the sub-recoil width velocity distribution. 

8.8 Sisyphus Cooling 

The reader may note that there are several apparently different cooling schemes 
described in Secs. 6.2.6, 8.2.2, 8.3, and 9.3 that all share a similar energy loss mech­
anism. This section summarizes the similarities of these schemes, and discusses 
the underlying physical principles. 

The motion of atoms in a spatially varying potential causes an exchange between 
kinetic and potential energy. If the potential is periodic in space, so is this exchange. 
The simplest and most dramatic example is for the light shift of a two-level atom in a 
standing wave detuned from atomic resonance. In this case, the sinusoidal potential 
for the ground-state is exactly out of phase with that of the excited state because 
their light shifts have opposite signs as shown in Fig. 9.2. For multilevel atoms, 
different sublevels may be subject to different potentials as shown in Figs. 8.1 
and 8.3. 

The presence of multiple potentials enables a velocity-dependent energy loss 
mechanism when the populations of the states of moving atoms can be manipulated 
in some appropriate way. In general, if atoms can be in states that give up large 
amounts of kinetic energy as they move up the potential, and then be switched 
to states that gain back a smaller amount of kinetic energy as they move down 
the potential, the net effect of multiple cycles is to extract energy from the atoms. 
In some cases when the multiple potentials are out of phase with one another, 
the switching can be arranged in such a way that atoms are always moving up 
a potential hill. Of course, that energy must be accounted for, and it is easily 
seen that if the switching is done by optical pumping, then the fluoresced light 
is bluer than the absorbed light, and the energy is radiated away. Thus there is a 
cyclic refrigeration process that converts kinetic energy into potential energy, and 
eventually radiates away the potential energy. 
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Any cooling process must be both dissipative and irreversible in order to satisfy 
thermodynamics. In the examples discussed above the dissipative aspect is appar­
ent in the velocity dependence of the force. Atoms moving through a light field 
are driven to adjust their internal state to the changing conditions. However, this 
adjustment cannot be instantaneous and a certain time lag in their internal state 
arises. Of course, this non-adiabatic character depends on the atomic velocity. For 
low velocities the time lag is small and small energy losses result. For higher ve­
locities the time lag increases and higher losses occur, until the velocity is too high 
for atoms to have a significant response to the light field changes. Thus there is a 
range of velocities where atoms experience a damping force that is proportional 
but opposite to their velocities. 

The irreversible aspect is the optical pumping process. As long as there are 
spontaneous emission events, light is radiated into the unoccupied modes of the 
radiation field and lost from the atom-laser system. Since this radiation is generally 
of higher frequency than the laser light, energy is taken out of the atom-laser system 
and the atoms are cooled. Since the phase of the spontaneously emitted light is 
random, information from the atomic system is lost and the process is therefore 
irreversible. By contrast, stimulated emission puts light back into the radiation 
field that is driving the atoms, and leaves the atomic wavefunction with a fixed 
phase relation to the optical field. This process is responsible for the light shift that 
produces the spatially varying potential in many of the examples discussed below. 

The major differences between the cooling schemes of the four sections cited 
above are in the way the optical pumping is tailored to obtain the desired effect. 
In the case of atoms excited into Rydberg states described in Sec. 6.2.6, excitation 
occurs in the small region of strong electric field where the laser beams are focused 
between a pair of small electrodes. Moving atoms gain potential energy climbing 
out of the field region, and when they undergo spontaneous decay outside this 
region where the atomic potential energy is higher, they radiatively dissipate the 
potential energy they gained. Slow atoms decay before they travel very far, so they 
lose little kinetic energy, but fast ones go further uphill and thus lose more energy. 
By contrast, ground-state atoms moving into the field have much smaller Stark 
shifts, and undergo negligible kinetic energy gains. Thus the atoms move along a 
level potential until they are excited in the field, then they climb a hill until they 
decay, which may not be until they reach the flat region at the top of the hill, and 
then they move along a level potential and repeat the process. 

In the second case, described in Sec. 8.2.2, a given pair of atomic ground­
state magnetic sublevels experiences a spatially varying light shift as atoms move 
through a polarization gradient. Atoms are optically pumped between sublevels as 
they move through the regions of varying polarization in just the right way to keep 
them always moving uphill. The third case is described in Sec. 8.3 where there 
is a low intensity standing wave and a weak B field perpendicular to its k vector. 
Atoms are shifted among their ground-state sublevels by Larmor precession at the 
nodes, and by optical pumping at the antinodes, in just the right way to produce a 
cyclic energy loss as they move through the light field. The Larmor precession is 
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not irreversible, but the optical pumping is, thus satisfying thermodynamic criteria 
(see Sec. 5.1). 

In the fourth case, discussed in Sec. 9.2, the atoms literally lose their mechanical 
energy to the Earth's gravity, just like Sisyphus. They fall into the evanescent wave 
field in a hfs state that undergoes a large light shift so that their kinetic energy is 
stored as optical potential energy. Then they are optically pumped into a hfs state 
with a much smaller light shift so the stored potential energy is sharply reduced 
and they cannot bounce back to their original height when they are ejected upward 
by the field. At their upper turning point they are optically pumped back to their 
original hfs state with little exchange of mechanical energy. In the fifth case, the 
high-intensity standing wave of Sec. 9.3, atoms can only decay from a point where 
the excited-state component of their wavefunctions is significant, and this is at the 
top of potential hills for blue-tuned light. Thus they also dissipate their potential 
energy into the radiation field. 

The physical notions described in these five examples are often categorized 
as "Sisyphus" cooling because of the obvious connection with an ancient Greek 
myth [81,83]. Furthermore, the concept can be extended to include magneto­
optical cooling effects to a finite velocity as described in Secs. 8.9 and 8.10. 
Velocity selective resonances are also closely related to Sisyphus cooling in a 
moving reference frame. 

8.9 Cooling in a Strong Magnetic Field 

The sub-Doppler cooling model called MILe discussed in Sec. 8.3 was restricted 
to the condition of Eq. 8.2 where Wz < Yp in the antinodes. Thus the perturbation 
of the transverse magnetic field on the magnetic substates could be neglected and 
the precession causes only a redistribution of the population at the nodes of the 
light field. At larger magnetic fields this picture breaks down and there are new 
phenomena in sub-Doppler laser cooling. 

With Wz > Yp it is convenient to choose the quantization axis along the magnetic 
field direction and describe the optical pumping as a small perturbation to the 
Zeeman effect. The optical Bloch equations (OBE) for the atomic density matrix 
given in Sec. 2.3 can then be solved by transforming to a frame rotating with 
a frequency Wz around the magnetic field direction [93]. Neglecting terms that 
oscillate at twice the rotation frequency, an approximate solution to the OBE 
can be found that shows resonances for the particular velocity Vvsr defined by 
if· vvsr == ±wz [93]. The nature of these velocity selective resonances (VSR) can 
be inferred from Fig. 8.9. By choosing the quantization axis along the magnetic 
field direction, the ground-states are split by an amount liwz and the light field 
can now induce both a and 7r transitions. The Raman transitions between two 
ground-states become resonant when the opposite Doppler shifts of the two laser 
beams combine to match the difference in ground-state energies. The condition 
for this resonance is (kl - k2) . vvsr = wz. 

The force for this case can be written as 
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FIGURE 8.9. Optical excitation for a J = 1/2 <=? 3/2 transition for VSR in 0'+ polarized 
light with a strong jj -field perpendicular to the k vectors. In this case jj is the appropriate 
choice for the quantization axis. The energy levels are split by the Zeeman interaction. The 
dark arrows indicate absorption from one laser beam, light arrows from the other. Stimulated 
emission processes follow the same arrows downward, but are not shown. The resonance 
condition is satisfied for both sets of arrows (each set has one dark and one light), but for 
one set 11: absorption is from one laser beam and 0' stimulated emission is into the other, 
and vice versa for the other set. 

-fJ(v - vysr) 
F= 2' 

1 + «v - vYsr>lvC> 
(8.11) 

where both the friction coefficient fJ and capture velocity Vc are comparable to 
the corresponding parameters for other sub-Doppler processes [83]. However, the 
cooling no longer drives the atoms toward v = 0, but to v = Vysr = lIJz/2k, 
and this resonance velocity depends only on the magnetic field strength. Since the 
cooling process relies on the velocity of the atoms to shift the Raman transition into 
resonance, the model is called velocity selective resonance (VSR). Note that the 
laser frequency can be detuned far from atomic resonance and thus the Doppler shift 
of the laser light does not produce any appreciable difference in the absorption rate 
of the two beams. However, the Doppler shift is important for the Raman resonance 
of the transition between the two ground-states, which can be much narrower than 
the natural width y [100]. 

Measurements in a one-dimensional molasses of Rb atoms have verified this 
model [93]. Figure 8.10 shows the result when the magnetic field is increased 
from small values up to 1 Gauss. There is cooling toward zero velocity at small 
magnetic field, as discussed in Sec. 8.3. However, at larger magnetic field the central 
peak starts to split into two peaks, symmetric around the center of the profile. The 
splitting of the two peaks fl.vp is plotted in Fig. 8.11 as a function of the magnetic 
field for various values of the detuning and the laser intensity for the two isotopes 
of Rb. The straight lines are given by the condition fl. v p = 2 Vysr = lIJz / k with 
the appropriate g F-factor for each isotope (see Eq. 4.4b). There is good agreement 
between the data and the VSR model. 

Figure 8.10 also shows the results for blue detuning of the laser in the lower 
traces. Since the force vs. velocity curve is reversed when the detuning is changed 
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FIGURE 8.10. The spatial distribution of an atomic-beam of 85Rb 1.3 m downstream from 
the molasses as measured by scanning a hot wire for negative (top) and positive (bottom) 
detuning (see Fig. 7.2). The laser parameters are So = 0.25 and;; = ±0.67y and the 
magnetic field is (a) 0.057 G, (b) 0.114 G, (c) 0.23 G, (d) 0.40 G, (e) 0.57 G, and (f) 1.14 
G. The solid lines are experimental data and the dashed lines are the results from the model 
(figure from Ref. 93). 

from negative to positive, there is heating for positive detuning at small B field. 
However, at large B field there is also clearly sub-Doppler cooling at zero ve­
locity. This is related to the cooling by blue-tuned optical molasses discussed in 
Sec. 9.3, where a coherence is established between the ground and excited states 
of a two-level atom [87,88,101,102]. In the present case, however, the coherence 
is established between two magnetic sublevels by the strong magnetic field, and 
the laser intensity is always very low. 

8.10 VSR and Polarization Gradients 

The VSR picture can be extended to include the effects of polarization gradient 
cooling processes [103], and Fig. 8.12 shows some of the most interesting cases. 
To establish the Raman resonance condition, the possible two-photon couplings 
between different states need to be examined carefully. In the case of a strong 
magnetic field these rely solely on the direction of the magnetic field and of the 
polarization vectors of the two laser beams. From the energy difference in the 
splitting of the coupled ground-states the resonance velocities can then be obtained. 
Since the light can drive only transitions with I':!.M = 0, ± 1, the total number of 
resonances in each case is limited to five, namely, I':!.Mg = 0, ±1, and ±2. 

One of the simplest examples of the VSR picture is the case of one-dimensional 
laser cooling with the a+ -a- polarization gradient scheme in a strong magnetic 
field pointing along the a - laser beam direction. The resonance condition can 
then only be fulfilled between two ground-state levels with I':!.Mg = +2 (see 
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FIGURE 8.11. The separation between the peaks for many data sets, including those of 
Fig. 8.10, vs. magnetic field strength for the F = 3 ¢> 4 transition in 85Rb and the 
F = 2 ¢> 3 transition in 87Rb. Symbols denote experimental points for various intensities 
(0.25 :'5 so :'5 10) and detunings (1 :'5 181 :'5 lOy), where the average longitudinal velocity 
(v ~ 350 mls) was used to convert the deflection angle into a transverse velocity. The solid 
lines are for the resonance condition. The laser parameters are defined as in Eq. 8.1 and 
Sec. 2.4 (figure from Ref. 93). 

Fig. 8.12a). Since one laser beam has a a+ -polarization and the other beam has 
a a- -polarization, there is no cooling toward the opposite resonance velocity 
Vysr = -wz I k because the Raman transition is Doppler tuned out of resonance 
at this velocity. Cooling in this scheme will be toward Vysr = +wz I k, which is 
twice the resonance velocity in the case of MILC (see Sec. 8.3). The experimental 
results clearly show cooling to one velocity Vysr = Wz I k. The atoms are not 
simply deflected, but also cooled toward this resonance velocity, and the width of 
the peaks in all cases is below the Doppler limit. 

Another interesting example of VSR is the case of orthogonal linear polariza­
tions, where the magnetic field is directed along the polarization vector of one 
of the laser beams. This beam therefore induces flM = 0 transitions, whereas 
the other beam induces flM = ±1 transitions (Fig. 8.12b). Thus the selection 
rules can only be satisfied for flM g = ± 1, or equivalently Vysr = ±wz 12k. Since 
the problem is not symmetric with respect to reversing the atomic velocity, cool­
ing toward Vysr = +wz/2k is different from cooling toward Vysr = -wz/2k. 
Experiments corroborate this model in great detail. 
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FIGURE 8.12. Schematic diagram of atomic transitions at the resonance condition in VSR. 
(a) The u+ -u- case where the ground-state energies are split by a magnetic field. VSR 
between them requires the light frequencies to be different, and in the rest frame of a 
moving atom this is provided by the Doppler shift. The energy splitting could be much 
larger (e.g., hyperfine structure) and the light have different laboratory-frame frequencies. 
(b) The scheme for the lin ..L lin case. (c) The case for Vysr = 0 when a magnetic field is 
applied that splits the sublevels by more than Yp. Different polarizations at different places 
cause either 11M F = ± 1 or 11M F = 0 VSR. 

There is one more case where the atoms are cooled in the lin ..ilin polarization 
gradient configuration, but now with the magnetic field direction at an angle of 45° 
with respect to both polarization vectors. Each laser beam can induce transitions 
AM = 0, ±l in a quantization frame along ii, so all five resonance conditions 
can be fulfilled. The resonance condition for Vysr = 0 is particularly interesting 
(see Fig. 8.12c). The force in this case derives from a redistribution process that 
transfers photons from one laser beam to the other in stimulated processes that 
returns atoms to their original ground-state. In all three of these VSR cases, the 
measurements of Refs. 93 and 103 confirm these models in considerable detail. 



9 
The Dipole Force 

9.1 Introduction 

Atoms in an inhomogeneous light field, such as a standing wave, experience a force 
that derives from the spatial gradient of their light shifts called the dipole force 
(see p. 10). The simple case of the dipole force on atoms in a standing wave can 
also be viewed as absorption from one beam followed by stimulated emission into 
the other of the two counterpropagating beams that constitute the standing wave. 
The ordering of these sequential events determines the direction of the force, and 
is itself determined by the relative phase of the counterpropagating beams at the 
position of the atom. This relative phase, of course, determines the slope of the 
envelope of the standing wave. These forces can be very much larger than the 
maximum value of the dissipative force Fmax = hky /2 (see Eq. 3.14) because 
the dipole force is not limited by the requirement for spontaneous decay from 
the excited state. Since the slope of the potential associated with the light shift 
increases with light intensity without limit, the force can be arbitrarily large. 

A simple appeal to symmetry shows that the dipole force on atoms in a monochro­
matic standing wave vanishes when averaged over a wavelength. Various asym­
metric processes can interfere with such averaging, resulting in a net average force 
that can either be conservative or not. For velocity-dependent forces, the symmetry 
breaking caused by spontaneous emission also provides the irreversibility, and the 
most well-studied case is optical molasses at high intensity (see Sec. 9.3). 

For other inhomogeneous light fields, such as the optical trap at the focus of a 
Gaussian beam discussed in Sec. 11.2.1, absorption followed by stimulated emis-
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sion from beams with different k-vectors causes the net force. Similar ideas apply, 
but are not so easily visualized. 

9.2 Evanescent Waves 

One particularly important example of the dipole force occurs near the boundary 
between two dielectric media. For the particular case of glass and vacuum, a 
light beam that is totally internally reflected at the interface leaves an evanescent 
wave penetrating into the vacuum. The evanescent intensity decays exponentially, 
perpendicular to the surface, with characteristic length 'A./2rr. The sharp intensity 
gradient can produce a large force [104] that can reflect atoms incident on the 
surface, and constitutes a very appealing mirror for atoms. A very thorough review 
of this topic has been given in an excellent article [105]. 

The maximum atomic kinetic energy that can be reflected in such a scheme is 
comparable to the light shift at the surface of the dielectric, and this is largest for 
Q » 8, given by hQ/2 (see p. 8). Thus atoms incident on a surface with velocity 
v and a component normal to the surface of v sin () can be reflected by a light shift 
of hQ/2 = M v2 sin2 () /2. Because this scales as (}2 for small angles, and the light 
intensity scales as Q2, the maximum incident angle that can be reflected scales 
with the fourth root of the light intensity. Thus evanescent wave reflection is indeed 
a very weak process for thermal velocity atoms. 

Even with much more powerful lasers, the domain where Q » 8 is subject to 
spontaneous emission at the maximum possible rate y /2, and since the atomic 
reflection time is very many times 1/ y, there are many scattering events. These 
lead to diffuse reflection through random heating, as well as atomic decoherence, 
both quite undesirable for an atomic mirror. Therefore evanescent wave mirrors 
must work in the region where Q « 8 and the light shifts are considerably smaller, 
given by hQ2/48, in order to ensure elastic reflection. 

Grazing incidence reflection from such evanescent waves was demonstrated as 
early as 1987 [106,107], and falling atoms were even bounced from such an atomic 
trampoline [108]. However, the use of such a scheme for a general atomic mirror 
is severely limited by the power requirements. 

The reflection of two-level atoms from an evanescent wave is purel y conservative 
because the force derives purely from the light shift. Even spontaneous emission 
cannot change the nature of the force on a two-level atom. However, a multilevel 
atom can undergo optical pumping among different ground-states, and a scheme 
can be arranged to cause energy loss of bouncing atoms. The simplest example 
comprises the two ground hfs states of an alkali atom, along with one of the 
excited states as shown in Fig. 9.1. The evanescent wave must be tuned blue of 
both transitions, and the detuning from each of them differs by the hfs splitting. 
If the detuning from the higher-frequency transition 81 that excites the lower hfs 
state is chosen to be a small fraction of the hfs splitting, then the detuning 82 from 
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FIGURE 9.1. The gravitational Sisyphus cooling mechanism for Cs atoms bouncing on an 
evanescent wave. The left side shows the increasing energy of both ground hfs states as 
atoms approach the blue-detuned evanescent field. If they approach in the lower hfs sublevel 
and bounce back in the upper one as a result of optical pumping near their turning point 
(transitions shown nearest z = 0), they gain internal energy but lose mechanical energy 
because they don't bounce back to their original height. They are returned to the lower hfs 
sublevel by the weak repumping laser (transitions shown far from z = 0) during their long, 
slow upward flight and thus radiate away the internal energy gained close to z = O. The 
cooling cycle does not happen in the reverse direction because the large light shifts caused 
by the evanescent wave tune the repumper too far from resonance. The right side shows the 
relative laser frequencies. 

the lower-energy transition that excites the upper hfs state is 82 = 8) + CiJhfs, and 
this could be considerably larger than 8) as shown in Fig. 9.1. 

Atoms bouncing from a horizontal evanescent wave mirror spend most of their 
time where their velocity is minimum near their turning points. If they are dropped 
in their lower hfs state, but are excited by the evanescent light because of its rel­
atively small detuning, and undergo spontaneous emission to the upper hfs state, 
they will experience a much smaller light shift on the way back up and, conse­
quently, will not bounce back to their original height. Hence they lose mechanical 
energy because the light shift has raised their ground-state energy considerably as 
shown in Fig. 9.1. The presence of a weak repumping beam, directed downward, 
not only returns the rising atoms to the lower hfs state near their upper turning 
point, but also further reduces their energy. Note that this repumping beam will 
not be effective when the atoms are near their lower turning point in the evanescent 
wave because of the large light shift there. 

Thus there is a cyclic process by which gravitational energy is converted into 
optical potential energy via the light shift in the strong evanescent wave, and then 
the change of state leaves the atoms in the upper hfs state at their next turning 
point. Optical pumping then radiates away an energy Ii%fs, which is larger than 
the energy separation at the lower turning point (see Fig. 9.1), and the refrigeration 
cycle is closed. In some sense, this gravitational Sisyphus cooling is the closest of 
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all to the original Greek myth, where the former King was really always working 
against gravity. Such a scheme has been realized in a hybrid optical trap discussed 
in Sec. 11.2.3 where thousands of bounces have been observed [109]. Note, that a 
nearly identical cooling mechanism was proposed as far back as 1983 [110] except 
that the conservative part of the force was provided by the inhomogeneous field 
of a magnetic trap (see Chapter 10) instead of gravity. 

The limiting case of such cooling is the loss of energy f:lE in a single bounce. 
This elementary Sisyphus process has been studied theoretically by several au­
thors [105,111,112] who showed that the energy loss per bounce can be readily 
calculated in terms of the spontaneous decay probability Psp and the branching 
ratio q for decay into the lower hfs state. Calculation of Psp requires an integration 
of yp along the atomic trajectory in the evanescent wave. The result is 

2 Whfs 
f:lE = --(1 - q)PspEkin , 

3 Whfs + 81 
(9.1) 

where Ekin is the incoming kinetic energy. Such a single bounce energy loss was 
first observed in 1995 by grazing incidence reflection of an atomic beam ofNa from 
an evanescent wave mirror with appropriate detuning [113]. The authors report a 
loss of ~ 50% of the kinetic energy associated with the component of velocity 
perpendicular the evanescent wave mirror. 

9.3 Dipole Force in a Standing Wave: Optical 
Molasses at High Intensity 

The low-intensity description of optical molasses given in Sec. 7.2 is appropriate 
when excited atoms return to the ground state preferentially by spontaneous emis­
sion because the rate of stimulated emission is much smaller than y. When this is 
not the case, there is a fundamental change in the nature of the optical force. 

On p. 10 the eigenvalues of the total Hamiltonian 1-£ were shown to oscillate spa­
tially in a standing wave, and the corresponding spatial dependence of the atomic 
energy was interpreted as an oscillatory force [87]. Moving atoms experience this 
potential, and exchange kinetic with potential energy while they move through 
the optical field as if moving up and down hills. The possibility for a velocity­
dependent force arises because the atoms can undergo spontaneous decays from 
the oscillatory potential of one pair of the dressed states to one of another pair, and 
those potential curves may not necessarily be the same ones. 

Consider an atom moving as shown in Fig. 9.2. For 8 > 0, the state 1cf>1) of 
Eq. 1.19 is a pure ground state in the node where Q = 0 so that Q' = 8 and its 
energy is lowest. An atom cannot undergo spontaneous emission at such a place 
because it is a pure ground state, but must decay where there is some excited 
state mixed in by the atom-field interaction, as shown in Fig. 9.2. If the decay 
is to another state 1cf>1} in a different pair, the atomic motion in the potential is 
unaffected, but if the decay is to a state 14>2} in a different pair, the phase of the hill 
climbing and descending is reversed. 
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FIGURE 9.2. The spatial dependence of the energy levels of Fig. 1.4 in a standing wave. 
Two-level atoms moving in such a light field can decay as shown, and the most probable 
decay point is from the tops of the hills. Since atoms may fall to the bottoms of hiIIs, energy 
is lost on the average (figure adapted from Ref. 87). 

By contrast, an atom beginning in state 1rf>2) is more likely to undergo a sponta­
neous decay near a node where it is a pure excited state than at an antinode where 
its wavefunction has an admixture of ground state. If the decay is to a state 1</11), 
again the phase of motion in the oscillatory potential is reversed. The result of 
such a sequence of decays is that atoms climb more hills than they descend on 
the average, radiating light of average frequency higher than we from the tops of 
the hills. Thus they convert kinetic energy into potential energy, and then radiate 
away the potential energy. Their motion is thereby damped by the light field, and 
the atoms are cooled, just as in other Sisyphus cooling mechanisms described in 
Sec. 8.8. Needless to say, the mechanism described here depends on atomic motion 
and so energy loss is quite small for low velocities and vanishes for v = O. This 
cooling scheme works only for the case of 8 > 0, which is exactly opposite of the 
detuning needed for laser cooling in low-intensity light as discussed in Sec. 7.2 
for optical molasses. 

The force that actually slows the atoms derives from the light shift which is 
the reversible exchange of momentum between the atoms and the light field via 
absorption followed by stimulated emission. Atoms are excited by light from one 
beam and stimulated to emit into the other, thus exchanging 2hk with the field 
for each cycle. The rate of these processes is not limited by y, but increases with 
the light intensity. This force can therefore be very much larger than the hky /2 
limit associated with spontaneous emission processes (see Eq. 6.2). Spontaneous 
emission and the Doppler shift are not involved in producing the force. 

Such stimulated processes produce optical coherences between the ground and 
excited states, manifest by the mixing of the atomic states. However, in the absence 
of the spontaneous emission that causes the velocity-dependent damping force, 
atoms that move through the light field experience no average force because these 
stimulated processes of momentum exchange between atom and field can occur in 
either direction with equal likelihood. Movement along the oscillatory potential is 
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FIGURE 9.3. The velocity dependence of the force on atoms moving in counterpropagating 
beams with various intensities but with fixed detuning of 8 = -1.5y. The bottom curves 
(lowest intensity) show ordinary optical molasses similar to Fig. 7.1. At higher intensity, 
near the top, some small wiggles appear that develop into a sign reversal near v = 0 and 
into the Doppleron resonances at v far from O. The saturation intensity of the curves shown 
are So = 1,5,25,100 and 1000. 

conservative and therefore does not produce any cooling. Only spontaneous decay 
that causes transitions between the manifolds is both irreversible and dissipative, 
and so can cause the compression of phase space volume. 

This "blue cooling" at high intensity has been demonstrated for several atoms [45, 
88,114,115]. More quantitative calculations show how the force reverses sign for 
a fixed I) as the light intensity increases from low to high [l01], as well as how 
heating for I) > 0 at low intensity becomes cooling at high intensity (see Fig. 9.3). 
There are also velocity-resonant phenomena that are often explained in terms of 
virtual bosons called Dopplerons [102]. The cooling mechanism is reminiscent of 
the Stark cooling of Rydberg states described above in Section 6.2.6 [63], where 
atoms move uphill more than downhill because of spontaneous emission between 
different states. Thus it falls into the category of Sisyphus cooling as discussed in 
Section 8.8. 

9.4 Atomic Motion Controlled by Two Frequencies 

9.4.1 Introduction 

In the early days of laser cooling, the view of two-level atoms moving in a 
monochromatic laser beam provided the fundamental picture. The topics that could 
be described this way included atomic beam slowing and cooling, optical molasses, 
optical dipole traps, lattices and band structure effects, and a host of others. Within 
a few years it became clear that this simple view was inadequate, and that the mul­
tiple level structure of atoms was necessary to explain some experiments. Perhaps 
the most dramatic impact came from the discovery of cooling below the Doppler 
temperature, that could only be explained by polarization gradient cooling in atoms 
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with multiple ground-state levels as described in Chapter 8. Other examples re­
quiring such multiple atomic levels are the Mar (multiple excited state levels, see 
Chapter II), along with velocity selective resonances and velocity selective coher­
ent population trapping (both requiring multiple ground-state levels as discussed 
in Chapters 8 and 18 respectively). 

Thus the extension from two-level to multilevel atoms gave an astounding rich­
ness to the topic of atomic motion in single-frequency optical fields. It might be 
expected that a comparable multitude of new phenomena is to be found for the 
motion of two-level atoms in multifrequency fields, however, this subject has not 
received as much attention. 

Laser cooling requires an irreversible process to provide the dissipation needed 
to compress the volume of phase space, and this is achieved by spontaneous emis­
sion. In the two-level atom case (Doppler cooling), both the force and the dissipa­
tion are provided by the incoherent process of absorption followed by spontaneous 
emission. By contrast, in most cases of laser cooling that depend on the multi­
ple levels of real atoms, such as Sisyphus cooling in a polarization gradient, the 
force results from the frequent coherent sequence of absorption followed rapidly 
by stimulated emission (the dipole force). Comparatively infrequent spontaneous 
emission, that results in optical pumping among the multiple ground-state levels, 
provides the required irreversible process. 

9.4.2 Rectification of the Dipole Force 

In 1987 Kazantzev made some of the earliest proposals for two-frequency light 
fields where the dipole force does not vanish when averaged over a wavelength 
[116]. The first example to be considered here of an optical force derived from 
only stimulated processes that survives such spatial averaging is the case of a 
light field composed of two standing waves of different frequencies. The resulting 
phenomenon is called rectification of the dipole force, and can be applied to a two­
level atom. The parameters of the two light fields are chosen so that the light shift 
from second field I::!..E2 is enough to cause a spatial modulation of the detuning of 
the first field 81, while the force of field 2 is still very much smaller than that from 
field I [116,117]. 

On p. 10 there is a discussion about why the spatial dependence of the light shift 
in a single-frequency standing wave is not sinusoidal, even though the intensity 
distribution is. Such a spatial dependence of the light shift I::!.. E 1 is plotted for a 
standing wave field in the solid curve of part (a) in Fig. 9.4, directly from Eq. 1.16. 
Field I has 81 = 3y and QI = 4Oy. Curve (b) of Fig. 9.4 shows the dipole 
force, which is the gradient of the light shift of the solid curve in (a). Its spatial 
average clearly vanishes, as expected, because of the symmetry about F = o. Of 
course, this represents the energy and force for only one of the two dressed states. 
The energy and force of the other partner of the pair has a complementary spatial 
dependence but their populations are different as well as spatially varying. Note 
that even with the small detuning, the spontaneous emission that occurs at the 
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FIGURE 9.4. (a) The solid curve shows the light shift of the ground state of a two level atom 
in the standing wave of field I, Q) = 40y tuned close to resonance,.5) = 3y. Note that it 
is not sinusoidal, as discussed on p. 10. The dotted curve shows the spatial variation of the 
detuning caused by the smaller light shift of the more detuned field 2, which has Q2 = SOy 
and.52 = - 200y. (b) The gradient of curve (a), corresponding to the ground state force 
from field 1. (c) The total force on the atoms, calculated from Eq. 3.16. Here the gradient 
of a suitably modified curve (a) is not appropriate because the atom spends considerable 
time in the excited state whose light shift is opposite, and an average must be taken. This 
is accomplished using the density matrix calculation that generates Eq. 3.16. Because the 
sign of the light shift, and hence of the dipole force, depends on the detuning, choosing the 
relative spatial phase of these standing waves carefully results in a rectification of the force 
as a result of the spatial variation of the detuning of the strong field 1 caused by the small 
light shift of field 2. 

maximum rate YP '"" Y /2, is still about 80 times slower than the rate of stimulated 
processes at Q). 

The presence of a second standing wave with a relatively small maximum light 
shift l::!.E2 can strongly affect the spatial dependence of the energy levels connected 
by field I, and thus the force. The dotted curve in part (a) of Fig. 9.4 shows the 
detuning of field 1 produced by the light shift l::!.E2 of these energy levels. The 
standing wave of field 2 is displaced to the right by the choice of the phase, and 
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its dotted curve is displaced downward by the 3y detuning of field 1. Field 2 has 
82 = - 200y and Q2 = 25y for each counterpropagating field that makes the 
standing wave, and so 82 dominates the radical JQ2 + 82 everywhere. Its light 
shift is only llE2 ~ -IiQ~/452 ~ 3liy compared with the ~ 40liy offield 1, and 
the force from it is correspondingly much smaller. 

Because llE2 is small, it can be simply treated as a spatially varying shift of the 
atomic energy levels relative to the frequency of field 1. (A complete solution of 
the optical Bloch equations 2.21 shows that over a range of appropriate parameter 
values these light shifts can be considered separately [117].) With this shift, the 
detuning of field 1 from atomic resonance varies between 81 and 81 - 2llE2/1i, 
approximately ±3y as shown in the dotted curve of Fig. 9.4a. (The factor of 2 
arises because both ground and excited states of the transition have light shifts, 
and they're opposite.) 

Since both the light shift and the dipole force reverse sign with the detuning as 
shown in Sec. 1.2.1, the corresponding spatial dependence of the force is changed 
from the curve of Fig. 9.4b to the curve of Fig. 9.4c. It is mostly positive, its 
spatial average does not vanish, and atoms are thus always subject to an average 
positive force. The oscillatory dipole force of field 1 has been "rectified" by the 
light shift caused by field 2 with its well-chosen spatial phase. Making the force 
negative, instead of positive as shown, would require that the second standing wave 
be shifted spatially by )../2 so that the sign of its relative spatial phase with the first 
standing wave is reversed. 

The reader should be cautioned that this rectified force is not suitable for cooling 
atoms. It is completely conservative as a result of the absence of spontaneous 
emission, and so it is not surprising that the rectified force cannot compress the 
phase space volume of a sample of atoms. Furthermore, it depends sensitively on 
the detunings of both beams, and the Doppler shifts of a collection of atoms with 
different speeds would render this scheme inoperable. 

9.4.3 The Bichromatic Force 

In contrast to the rectification described above, choosing somewhat different pa­
rameters for light of two frequencies can indeed produce a force appropriate 
for slowing and cooling a thermal sample. Reference 118 describes a dramatic 
demonstration that exploits the enormous dipole force on a two-level atom in a 
two-frequency light field for slowing a thermal beam in a very short distance. As 
above, the dipole force derives from the frequent coherent sequence of absorp­
tion followed rapidly by stimulated emission. Spontaneous emission among the 
dressed state levels interrupts this coherent process and provides a non-vanishing 
force over large distances and a wide velocity range, as well as the required ir­
reversible process for cooling. The resulting force is no longer limited to liky /2. 
This doesn't happen in ordinary single-frequency Sisyphus cooling because the 
spatial average of the dipole force vanishes, and with a single frequency, there is 
no "judicious choice" of a spatial phase shift to rectify the force. 
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The physical principles of bichromatic slowing have been laid out quite clearly 
in Refs. 118-120. 1 Consider atomic motion along the axis of counterpropagating 
light beams containing two frequencies. Each beam contains both frequencies, and 
they are detuned from atomic resonance by ±8 (difference frequency = 28). This 
is in strong contrast to the rectification case discussed above where the detunings 
are quite different. Each beam can be thought of as an amplitude-modulated single 
carrier frequency at the atomic resonance, and the modulation period is rr /8. 

The equal intensities of each beam are chosen so that the envelope of one "pulse" 
of the beats satisfies the condition of a rr -pulse for the atoms: ground-state atoms 
are coherently driven to the excited state and vice versa. This rr -pulse condition is 
found by adding the electric fields of the light of each frequency, or correspondingly 
the associated Rabi frequencies nl = n2 == n to find 

ntotal = 2n cos or , (9.2) 

because the difference frequency between the two beams is 28. Then the rr-pulse 
condition is found from 

The result is n = rr8/4. 

17r / 28 
2n cos 8t dt = rr. 

-7r/28 
(9.3) 

Since atoms are subject to these rr -pulses alternately from one beam direction 
and then the other, they are coherently driven between the ground and excited 
states, and the force on them can become very large. This is because the first rr­
pulse causes excitation along with momentum transfer in one direction, and the 
second rr -pulse causes stimulated emission along with momentum transfer along 
the same direction. The magnitude of the momentum transfers in each full cycle 
is 2hk and the repetition rate of these processes is 8/rr, so that the optimum total 
force is on the order of 2hk8 / rr . This is very much larger than the usual maximum 
radiative force hky /2 given by Eq. 6.2, principally because it is a coherently 
controlled rapid momentum exchange whose rate is limited only by laser power 
through the rr -pulse condition. 

The mechanism described above requires two additional features to be applica­
ble to atomic laser cooling: (1) there must be some directional asymmetry so that 
its spatial average doesn't vanish, as does the usual dipole force in a standing wave 
as described above, and (2) it must be velocity dependent so that it can compress 
the phase space volume occupied by the atomic sample. The first condition is sat­
isfied by a careful choice of the relative intervals between the counterpropagating 
"pulses" of light, and exploitation of the random nature of spontaneous emission. If 
the oppositely traveling pulses are unevenly spaced, spontaneous emission is more 
likely to occur in the longer interval than in the shorter one as long as r » rr /8. 
Then the force will have an average in the direction of the pulse following the 
longer interval. Atoms that get out of phase with this preferred order by suffering 

I Warning, the definition of y in Refs. 118 and 119 is y == 1/2 T • 
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FIGURE 9.5. The velocity dependence of the bichromaticforce fod2 = 43y and.5 = 39y 
where y == 1/ r . The average value of the force is only about 3/4 of that expected from the 
Jr-pulse model of hk.5/Jr. The calculation is done using the program of Ref. 118. The small 
wiggles near v = ±40y / k are ordinary optical molasses. 

spontaneous emission during the short interval are more likely to undergo correc­
tion than to remain out of phase. The optimum duration for the shorter interval 
is rr I 4li so that atoms typically spend 114 of their time in the wrong phase. Then 
another interval of rr I 4li is needed to negate the resulting undesired force, leaving 
halfthe time, rr 128 for the desired force. Thus the average force is hk8/rr, half the 
optimum estimated above, and this is borne out by numerical calculations shown 
in Fig. 9.5 [118,119]. 

The velocity dependence arises from more subtle effects that derive from the 
combination of light shifts and Doppler shifts. A large force requires a large value 
of 8 and a correspondingly large value of Q to satisfy the rr-pulse condition, sug­
gesting that the dressed atom picture is appropriate for description of the system. 
For velocities near ±812k the combination of light shifts and Doppler shifts opti­
mize the transfer of momentum between the counterpropagating light beams. 

Consider each beam as a carrier frequency at we that is 100% amplitude mod­
ulated with period rr 18. This allows a description of the problem as having two 
frequencies instead offour, thereby providing a much simpler picture. Atoms mov­
ing at velocity v see these counterpropagating modulated beams at the Doppler 
shifted carrier frequencies we ± kv. The dressed state manifolds of atoms exposed 
to a single optical frequency contain two states separated by Q' (see Eq. 1.16 and 
Fig. 1.2). But in the presence of two frequencies equally detuned above and below 
resonance by ±kv, each pair of states in a manifold becomes an infinite ladder 
separated by kv [121]. 

This is relatively easy to see by enumerating the dressed states of energies going 
upward from that of Ig, m, n), where g represents the ground state, m represents 
the photon number of the red-detuned field mode, and n represents the photon 
number of the blue-detuned mode. The energy of Ie, m - 1, n) is hkv higher than 
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FIGURE 9.6. The time dependence of the dressed state energy levels of an atom moving 
at velocity v = 4.5 y / k in a bichromatic field of detuning 8 = lOy. When the fields of 
both frequencies have the same amplitude, the splitting at t = 0 is ±kv because the light 
shift vanishes, as discussed in the text. An atom beginning at the lower left evolves toward 
the upper right by Landau-Zener transitions at the circles, so the laser field gains energy 
~ 7hkv in time 0.3 1T!. This model force of 2hk8/1T needs to be reduced by a factor of 2 
resulting from spontaneous emissions as explained in the text. 

that of Ig, m, n}, and the energy of Ig, m - I, n + I} is higher by another hkv. 
This ladder extends infinitely upward through Ie, m - 2, n + I}, Ig, m - 2, n + 2}, 
Ie, m - 3, n + 2}, etc., and similarly downward, as shown in Fig. 9.6. 

If the two light beams were constant and uniform, the interaction that produces 
the light shift could shift these levels neither upward nor downward because they 
would always be repelled by a neighboring state. However, the light fields are both 
modulated and out of phase with one another, so the energy shifts are not zero, but 
are time dependent. The levels are shifted apart by whichever beam is strongest at 
any particular instant, and these alternate. 

With proper choice of Q these energy levels undulate up and down in time by 
amounts that first "touch" the neighboring state below and then the neighboring 
state above, so the atoms can make Landau-Zener transitions through the infinite 
ladder of states. If the phases are chosen so that the atoms' potential energy in­
creases through the array of states Ig, m, n} enumerated above, their kinetic energy 
decreases and they are slowed. The rate of energy loss is hkv divided by Tl /8, and 
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setting this equal to the force x velocity gives once again the huge deceleration 
force Iik8/rr. 

For velocities smaller than ~ 8/2k there are Doppleron-like higher order pro­
cesses that also contribute to the force, and for velocities larger than this the force 
drops rapidly to zero (see Fig 9.5). The huge net force F = Iik8/rr has a nearly 
constant magnitude over a velocity range of v = ±8/2k, as shown in Fig. 9.5 [118]. 
Shifting this force curve along the velocity axis to make it suitable for beam slow­
ing is accomplished simply by opposite shifts of the two carrier frequencies by 
±8/2 so that the picture given above is correct in a frame moving at v = 8/2k. 
References 118 and 119 provide a good description of how the bichromatic force 
depends on velocity, and how to exploit it for beam slowing. 

9.4.4 Beam Collimation and Slowing 

The very large bichromatic force can provide a dramatic improvement in atomic 
beam collimation. This happens because the time required to stop atoms from 
an initial transverse velocity Vx is M VX /2F = rr /2wr ~ 25 J.Ls for a typical 
Wr ~ 2rr x 10 kHz, where Wr = Iik2/2M is the recoil frequency. This very short 
time is independent of Vx and 8 because the force F = Iik8/rr is proportional to 
8 = kvx • For transverse collimation of a thermal atomic beam, only a few mm 
length along the beam is required for an interaction time of ~ 10 - 50 J.LS. For a 
collimation angle () ~ 0.1, the beam would expand by only a small fraction of 1 
mm, and the corresponding laser parameters are quite modest: a laser beam would 
need only a few mW of power for such collimation. 

Of course, the bichromatic force has a fixed sign, and can only operate on atoms 
diverging in one direction. However, the direction of the force can be reversed by 
shifting the relative phase of the two frequencies by rr, and this can be done by re­
flection from a mirror rr c /28 ~ 1 - 2 m away, a distance easily accommodated on 
an optical table. This returning beam could collimate atoms diverging in the oppo­
site direction a few mm downstream. It is also possible to exploit the Doppler shift 
by tilting the laser beams with respect to the forward direction, thereby choosing 
-Vx = o. The extension of this collimation scheme to two dimensions is straight­
forward. Thus the bichromatic force can be used to capture the atoms emitted from 
a thermal atomic beam in a cone of angle about 0.1 radian. 

It is quite appealing to consider the application of this bichromatic force to 
both the collimation and the slowing of a beam of metastable helium in the 23 S 
state (He*). There are several examples of sources of He* that operate at the 
temperature of liquid nitrogen (77 K) where the atoms have a mean velocity ~ 800 
mI s [122, 123]. The required detuning 8 and laser power for effective slowing can be 
found for the He* transition at A = 1.083 J.Lm, for which y / k = 1.7 mls. Slowing 
atoms to 100 mls requires 8/ k ~ 700 mls so that 8 = 400y (the frequencies 
would be shifted so that the velocity range of the force is from v = 100 to 800 
mis, centered at 450 mls). Thus the force Iik8/rr is ~ 250 times larger than the 
radiative force, liky /2, and the slowing distance is correspondingly reduced from 
1.8 m to less than 1 cm! The slowing time rr /2wr is only ~ 6J.Ls. One of the most 
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important advantages of this very short slowing length and time is the reduction of 
atom loss by several orders of magnitude that accompanies the usual 1-2 m slowing 
length associated with the radiative force. Needless to say, the broad velocity range 
covered by the bichromatic force removes the necessity of Doppler compensation, 
typically a multi-kilowatt Zeeman magnet. 

Even though the rr-pulse model suggests 0 = rrfJj4, as given by Eq. 9.3, nu­
merical calculations have shown that 0 = 1.1 fJ gives better results for the bichro­
matic force [109,119]. Then fJ = 400y leads to a required saturation parameter 
of s = 202 jy2 ~ 4 x 105• Since the saturation intensity for this transition is 
0.16 mW/cm2, the required intensity is only ~ 6 x 104 mW/cm2, corresponding 
to 600 mW in a 1 mm diameter beam. Since the slowing distance is so short, a 1 
mm diameter beam is practical. With the advent of fiber laser amplifiers having 
high gain and capable of few W output at A = 1083 nm [124], such an experiment 
seems quite feasible. 



10 
Magnetic Trapping of Neutral Atoms 

10.1 Introduction 

Magnetic trapping of neutral atoms has the potential for use in very many areas, 
including high-resolution precision spectroscopy, collision studies, Bose-Einstein 
condensation, and atom optics. Although ion trapping, laser cooling of trapped 
ions, and trapped ion spectroscopy were known for many years [125], it was 
only in 1985 that neutral atoms were first trapped [126]. Such experiments offer 
the capability of the spectroscopic ideal of an isolated atom at rest, in the dark, 
available for interaction with electromagnetic field probes. 

Confinement of neutral atoms depends on the interaction between an inhomo­
geneous electromagnetic field and an atomic multi pole moment. Although Earn­
shaw's theorem prohibits an electrostatic field from stably trapping a charged 
particle (similarly for magnetic fields and monopoles), dipoles may be trapped 
by a local field minimum (local maxima are forbidden [1;27]). Unperturbed atoms 
do not have electric dipole moments because of their inversion symmetry, and 
therefore electric (e.g., optical) traps require induced dipole moments that must 
be produced by mixing states of opposite parity. This is often done with nearly 
resonant optical fields, thus producing the optical traps discussed in Chapter 11. 
On the other hand, many atoms have ground- or metastable-state magnetic dipole 
moments that may be used for trapping them magnetically. 

In order to confine any object, it is necessary to exchange kinetic for potential 
energy in the trapping field, and in neutral atom traps, the potential energy must be 
stored as internal atomic energy. There are two immediate and extremely important 
consequences of this requirement. First, the atomic energy levels will necessarily 
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shift as the atoms move in the trap, and these shifts will affect the precision of spec­
troscopic measurements, perhaps severely. Since one of the potential applications 
of trapped atoms is in high-resolution spectroscopy, such inevitable shifts must be 
carefully considered. For example, the quantum states of motion of trapped atoms 
must be well characterized in order to interpret spectroscopic measurements [128]. 
Furthermore, the spatial distribution of a magnetically confined Bose condensate 
that constitutes the trap's ground state must be well understood for a wide variety 
of studies. 

Second, practical traps for ground-state neutral atoms are necessarily very shal­
low compared with thermal energy because the energy level shifts that result from 
convenient size fields are typically considerably smaller than kBT for T = 1 K. 
Neutral atom trapping therefore depends on substantial cooling of a thermal atomic 
sample, and is often connected with the cooling process. In most practical cases, 
atoms are loaded from magneto-optical traps, where they have been efficiently 
accumulated and cooled to mK temperatures (see Sec. 11.4), or from optical mo­
lasses, where they have been optically cooled to ILK temperatures (see Sec. 7.2). 

The small depth of neutral atom traps also dictates stringent vacuum require­
ments, because an atom cannot remain trapped after a collision with a thermal 
energy background gas molecule. Since these atoms are vulnerable targets for 
thermal energy background gas, the mean free time between collisions must ex­
ceed the desired trapping time. The cross section for destructive collisions is quite 
large because even a gentle collision (i.e., large impact parameter) can impart 
enough energy to eject an atom from a trap. At pressure P sufficiently low to be 
of practical interest, the trapping time is ~ (10-8/ P) s, where P is in Torr. 

10.2 Magnetic Traps 

The Stem-Gerlach experiment in 1924 first demonstrated the mechanical action 
of inhomogeneous magnetic fields on neutral atoms having magnetic moments, 
and the basic phenomenon was subsequently developed and refined, for example, 
into the use of magnetic hexapole lenses for focusing and state selecting atoms 
in beams in the 1950s [129,130]. An atom with a magnetic moment jl can be 
confined by an inhomogeneous magnetic field because of an interaction between 
the moment and the field. This produces a force given by 

(10.1) 

Several different magnetic traps with varying geometries that exploit the force of 
Eq. 10.1 have been studied in some detail in the literature. The general features 
of the magnetic fields of a large class of possible traps has been presented [131]. 
These include designs with coaxial coils (quadrupole and hexapole) as well as 
others, most notably the Ioffe trap discussed below. 

W. Paul originally suggested a quadrupole trap comprised of two identical coils 
carrying opposite currents (see Fig. 10.1). This trap clearly has a single center 
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FIGURE 10.1. Schematic diagram of the coil configuration used in the quadrupole trap 
and the resultant magnetic field lines. Because the currents in the two coils are in opposite 
directions, there is a I jj I = 0 point at the center. 

where the field is zero, and is the simplest of all possible magnetic traps. When 
the coils are separated by 1.25 times their radius, such a trap has equal depth in 
the radial (x-y plane) and longitudinal (z-axis) directions [131]. Its experimental 
simplicity makes it most attractive, both because of ease of construction and of 
optical access to the interior. Such a trap was used in the first neutral atom trapping 
experiments at NIST on laser-cooled Na atoms for times exceeding 1 s, and that 
time was limited only by background gas pressure [126]. 

The magnitude of the field is zero at the center of this trap, and increases in all 
directions as 

B = AJ p2 + 4z2 , (10.2) 

where p2 == x 2 + y2, and the field gradient A is constant (see Ref. 131). The 
field gradient is fixed along any line through the origin, but has different values 
in different polar directions because of the 4 in Eq. 10.2. Therefore the force of 
Eq. 10.1 that confines the atoms in the trap is neither harmonic nor central, and 
angular momentum is not conserved. Later in this chapter there is some discussion 
about classical motion and quantum states in this potential. 

The requisite field for the quadrupole trap can also be provided in two dimen­
sions by four straight currents as indicated in Fig. 10.2. The field is translationally 
invariant along the direction parallel to the currents, so a trap cannot be made this 
way without additional fields. These are provided by end coils that close the trap, 
as shown (see Ref. 131 for calculations and plots of the field of this loffe trap). 

Although there are very many different kinds of magnetic traps for neutral 
particles, this particular one has played a special role. As described in Secs. 10.4.1 
and 10.4.2, there are certain conditions required for trapped atoms not to be ejected 
in a region of zero field such as occurs at the center of a quadrupole trap. This 
problem is not easily cured, so the loffe trap has been used in some of the Bose 
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FIGURE 10.2. The loffe trap has four straight current elements that form a linear quadrupole 
field. The axial confinement is accomplished with end coils as shown. These fields can be 
achieved with many different current configurations as long as the geometry is preserved. 

condensation experiments (see Chapter 17). The Ioffe trap inherently has lEI =I- 0 
everywhere, and hence serves such a purpose. Needless to say, there are a number 
of variations on the Ioffe scheme. 

10.3 Classical Motion of Atoms in a Magnetic 
Quadrupole Trap 

There are several motivations for studying the motion of atoms in a magnetic trap. 
Knowing their positions may be important for trapped atom spectroscopy [132, 
133]. Optical cooling of atoms once they are trapped may depend upon knowing 
both their positions and velocities so that laser beams of proper polarization and 
direction can be applied. Simply studying the motion for its own sake has turned 
out to be an interesting problem because the distorted conical potential of the 
quadrupole trap does not have analytic solutions, and its bound states are not well 
known. 

Because of the dependence of the trapping force on the angle between the field 
and the atomic moment (see Eq. 10.1), the orientation of the magnetic moment with 
respect to the field must be preserved as the atoms move about in the trap. Otherwise 
the atoms may be ejected instead of confined by the fields of the trap. This requires 
velocities low enough to ensure that the interaction between the atomic moment 
jl and the field E is adiabatic, especially when the atom's path passes through 
a region where the field magnitude is small and therefore the energy separation 
between the trapping and non-trapping states is small. This is especially critical 
at the low temperatures of the Bose condensation experiments. Therefore energy 
considerations that focus only on the trap depth are not sufficient to determine the 
stability of a neutral atom trap: orbit and/or quantum state calculations and their 
consequences must also be considered. 

10.3.1 Simple Picture of Classical Motion in a Trap 

For the two-coil quadrupole magnetic trap of Fig. 10.1, stable circular orbits of 
radius p in the z = 0 plane can be found classically by setting I-L V B = M v2 / p, 
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so v = ..;pa, where a == /LV B I M is the centripetal acceleration supplied by 
the field gradient (cylindrical coordinates are appropriate). Such orbits have an 
angular frequency of WT = -Jal p. For traps of few cm size and a few hundred 
Gauss depth, a '" 250 mls2, and the fastest trappable atoms in circular orbits have 
Vmax '" 1 mls so WT 12rr '" 20 Hz. Because of the anharmonicity of the potential, 
the orbital frequencies depend on the orbit size, but in general, atoms in lower 
energy orbits have higher frequencies. 

In order for the quadrupole trap to work, the atomic magnetic moments must 
be oriented so that they are repelled from regions of strong field. This orienta­
tion may be produced by the optical pumping process that occurs during Zeeman 
compensated laser deceleration and cooling of atoms (see Sec. 6.2.2), but it must 
be preserved while the atoms move around in the trap even though the trap fields 
change directions in a very complicated way. The condition for adiabatic motion 
can be written as Wz » IdBldtl1 B, where Wz = /LBlh is the Larmor precession 
rate in the field. The orbital frequency for circular motion is WT = v I p, and since 
vi p = IdBldtl1 B for a uniform field gradient, the adiabaticity condition is 

Wz» WT· (10.3) 

More general orbits must satisfy a similar condition. 
For the two-coil quadrupole trap, the adiabaticity condition can be easily calcu­

lated. Using v = ..;pa for circular orbits in the z = 0 plane, the adiabatic condition 
for a practical trap (A '" 1 Tim) requires p » (h2 I M 2a) 1/3 '" 1 /Lm as well as 
v » (hal M)I/3 '" 1 cmls. Note that violation of these conditions (i.e., v'" 1 cmls 
in a trap with A '" 1 Tim) results in the onset of quantum dynamics for the motion 
(deBroglie wavelength ~ orbit size). This is precisely the domain of the quantum 
motion studied in Chapter 15 and the Bose condensation experiments discussed in 
Chapter 17. 

Since the non-adiabatic region of the trap is so small (less than 10-18 m3 com­
pared with typical sizes of'" 2 cm corresponding to 10-5 m3), nearly all the orbits 
of most atoms are restricted to regions where they are adiabatic. Therefore most of 
such laser-cooled atoms stay trapped for many thousands of orbits corresponding 
to several minutes. At laboratory vacuum chamber pressures of typically 10-10 

Torr, the mean free time between collisions that can eject trapped atoms is "'2 min, 
so the transitions caused by non-adiabatic motion are not likely to be observable 
in atoms that are optically cooled. However, evaporative cooling (see Chapter 12) 
reduces the average total energy of a trapped sample sufficiently that the orbits are 
confined to regions near the origin so such losses dominate, and several schemes 
have been developed to prevent such losses from non-adiabatic transitions (see 
Sec. 10.4.3). 

10.3.2 Numerical Calculations of the Orbits 

Atoms that are near the center of a two-coil quadrupole trap see the potential 
U = /LAJ p2 + 4z2 [131] that is appropriate as long as an atom stays in a fixed 
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FIGURE 10.3. Orbits of atoms in a magnetic trap found from solving the classical equations 
of motion. These closed trajectories are shown superposed on the potential contours of the 
trap. The orbit on the upper left clearly has enough energy to escape, but is confined by 
bouncing off the field close to the coils, which are located outside the corners of each plot. 
Very small changes in the initial conditions lead to open orbits. 

Zeeman sublevel so its interaction with the field is determined. In any direction, U 
rises linearly with distance from the origin, but the force is not central anywhere 
except along the lines z = 0 and p = 0, and therefore orbital angular momentum 
is not conserved. This asymmetric anharmonic potential does not yield analytical 
solutions, but numerical integration of Hamilton's classical equations of motion 
have been reported [134]. In addition to the circular orbits discussed above, there 
are other closed orbits in the planes containing the symmetry axis. Some of these 
are shown, along with the potential contours, in Fig. 10.3. 

In addition to these closed orbits, there are unclosed, bounded orbits that cannot 
be adequately described by plots such as those shown in Fig. 10.3. Instead, Poincare 
sections were made for each crossing of the z = 0 plane and some of these are 
shown in Fig. 10.4 [134]. These show relatively smooth island chains that break 
into successively smaller islands at higher energy. As the energy of the trapped 
particle is increased toward the depth of the trapping potential, the motion becomes 
more and more erratic, and the islands of stability begin to break up and proliferate. 

When the atomic kinetic energy approaches the trap depth, the motion clearly 
becomes chaotic, as shown in Fig. 10.4. However, there are regions where the 
potential is higher than in the saddle points at the trap threshold, and there are 
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FIGURE 10.4. Poincare plots of open orbits for magnetically trapped atoms. The same 
calculations that led to the plots of Fig. 10.3 are used for these. In the upper left plot, an 
orbit similar to the upper left of Fig. 10.3 is started with slightly different parameters, and 
an energy low enough to stay trapped. The orbit is quasi-regular. In contrast to the other 
three, the plot on the upper right is for non-zero angular momentum. The two lower plots 
are for different energies, showing the breakup of the island chains. 

orbits where atoms bounce off these high points as shown in Fig. 10.3. Therefore 
the surface of section plots show islands even for energies above the trap depth. 

10.3.3 Early Experiments with Classical Motion 

There has been a large number of successful neutral atom magnetic trapping ex­
periments. The first one used an atomic beam slowed by the Zeeman compensation 
technique described in Sec. 6.2.2 [126]. The atoms were allowed to drift out of 
the solenoid and into the center of a two-coil trap. Then a short pulse of nearly 
resonant light brought the drift velocity to zero, and the field coils were quickly 
turned on. Atoms could be trapped for 1 s, but this value was limited only by the 
vacuum of 10-8 Torr. The density of trapped atoms was estimated to be 103/cm3, 

several orders of magnitude below the density of the background gas. This first 
demonstration showed that ideas of neutral atom trapping could indeed be put into 
practice. 
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FIGURE 10.5. Plot of the magnetic field profile for the Ioffe trap used in the experiments 
of Refs. 132,133,135 (figure from Ref. 133). 

Later, similar experiments in a much better vacuum achieved 2 min. trapping 
time [50]. In these experiments the authors used a multisection superconducting 
solenoid magnet whose first section had a decreasing field to serve as a Zeeman­
compensated atom slower and whose second section formed a carefully designed 
magnetic trap [133]. This loffe trap, which has been discussed in Sec. 10.2 and by 
Pritchard [110] and others [131], has a bias field to discriminate against transitions 
that can eject atoms from it, as discussed in Secs. 10.3.1 and 10.4.2. It is constructed 
from four straight parallel currents arranged to form a quadrupole, and two current 
loops that form the ends. A schematic diagram is shown in Fig. 10.2. 

This trap has been used for the first successful experiments in both optical and 
rf spectroscopy as well as laser cooling of trapped neutral atoms. The optical 
absorption spectrum ofNa atoms in this trap is shown in Fig. 10.6 [133]. A low­
intensity probe beam is directed through the trap on axis, and the transmission 
through the trapped atoms is recorded. The Zeeman splitting caused by the dc bias 
field isolates the transition between the sublevels with M F = 2 of the ground state 
and M F = 3 of the excited state, which tunes linearly with magnetic field. Thus 
the absorption spectrum reflects the number of atoms subject to a particular value 
of B. 

The spectrum can be used to establish the spatial distribution of the trapped 
atoms, since the field profile is known. As the spectrum shows, there is no absorp­
tion below the bottom of the trap, and the highest absorption appears where the 
trap's field gradient is smallest. The relative strength of the two absorption peaks, 
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FIGURE 10.6. Distribution of atoms in the magnetic trap of Fig. 10.5 (shaded area). The 
corresponding optical absorption spectrum is shown on the right (figure from Ref. 133). 

as well as the shape of the curve between them, can be used to determine that most 
of the atoms lie in the deeper portion of the trap (see Fig. 10.6). From this one can 
estimate the average energy of the trapped atoms, and extract a temperature. The 
initial experiments indicated that all energies below the trap depth were equally 
likely to be populated indicating that the temperature is higher than the trap depth. 
Later experiments by the same authors demonstrated laser cooling of these mag­
netically trapped atoms, and the use of optical absorption spectroscopy to measure 
the lowered temperature [135]. 

The ground-state hyperfine structure of Na allows for rf spectroscopy on mag­
netically trapped atoms The inhomogeneous magnetic field results in a position­
sensitive resonance condition for the rf transition, and therefore enables further 
study of the spatial distribution of the trapped atoms, much like NMR imaging in 
medical diagnosis. This, too, can be used to extract the energy distribution of the 
atoms, and has also been used to observe laser cooling of magnetically trapped 
atoms [135,136]. 

10.4 Quantum Motion in a Trap 

Modem techniques of laser and evaporative cooling have the capability to cool 
atoms to energies where their deBroglie wavelengths are on the micron scale. Such 
cold atoms may be readily confined to micron size regions in magnetic traps with 
easily achievable field gradients, and in such cases, the notion of classical orbits 
is inappropriate. The motional dynamics must be described in terms of quantum 
mechanical variables and suitable wavefunctions. Furthermore, the distribution of 
atoms confined in various quantum states of motion in quadrupole as well as other 
magnetic traps is critical for interpreting the measurements on Bose condensates 
(see Chapter 17). 
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10.4.1 Heuristic Calculations of the Quantum Motion of 
Magnetically Trapped Atoms 

Studying the behavior of extremely slow (cold) atoms in the two-coil quadrupole 
trap begins with a heuristic quantization of the orbital angular momentum using 
Mr2wT = nli for circular orbits. The energy levels are then given by 

E = ~E n2/ 3 
n 2 I , (1O.4a) 

where 

(1O.4b) 

which corresponds to about S kHz. For velocities of optically cooled atoms of a few 
cmls, n ~ 10--100. By contrast, evaporative cooling (see Chapter 12) can produce 
velocities ~ 1 mmls resulting in n ~ 1. It is readily found that Wz = nWT, so that 
the adiabatic condition of Eq. 10.3 is satisfied only for n » 1. The lower-lying 
(small-n) bound states, whose orbits are confined to a region near the origin where 
the field is small, are strongly coupled to unbound states as a result of the motion 
(dynamic coupling), and these are rapidly ejected from the trap. On the other hand, 
the large-n bound states are less coupled because they spend most of their time 
in a stronger field, and thus satisfy the condition of adiabaticity of the orbital 
motion relative to the Larmor precession. In this case the separation of the rapid 
precession from the slower orbital motion is reminiscent of the Born-Oppenheimer 
approximation for molecules. 

10.4.2 Three-Dimensional Quantum Calculations 

The quantum mechanical description of atomic motion in a two-coil quadrupo­
le trap begins with the Schr6dinger equation 1t1lJ = EIlJ. The Hamiltonian is 
1i = p2/2M + V, where V = - jl . jj, and it has off diagonal elements that 
arise from the inhomogeneity of the jj field. Then IlJ can be expanded in a basis 
of products of spatial coordinates in the trap and internal angular momentum 
variables: IlJ = L cik1/Ji (r, (), <I» I J, MJ }k. It is possible to find a transformation 
A that diagonalizes V with respect to the magnetic quantum number M J so that 
A V A -\ = Vd. Thus the Schr6dinger equation becomes 

(lO.Sa) 

Defining <l> == A IlJ leads to 

1 2 I p2 
2M [A, P ]A - <l> + 2M <l> + (Vd - E)<l> = O. (1O.Sb) 

Eq. lO.Sb is an eigenvalue equation for <l> that can be solved for its eigenfunctions 
by leaving out the first term with the commutator [A, p2] and then treating it later 
as a perturbation. 
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The spatial part of ell in the remaining unperturbed equation is found by exploit­
ing the cylindrical symmetry of the trap so that its radial and angular parts can 
be separated. These angular solutions for the external motion are combinations 
of spherical harmonics. The remaining radial equation has a centrifugal repulsion 
term proportional to 1/ r2 that helps reduce the wave function at the origin for all 
but the lowest orbital angular momenta. The numerical solutions for the unper­
turbed equation have been discussed in some detail for the case of atoms with two 
magnetic states, J = 1/2 [128]. 

The perturbation that is the commutator of the first term in Eq. lO.5b is non­
zero because the spatially dependent terms of V, and hence of A, do not commute 
with p. Its diagonal matrix elements represent energy shifts and its off-diagonal 
elements drive transitions between the different MJ eigenfunctions of the unper­
turbed equation. Such transitions couple bound and continuum (i.e., trapped and 
free) unperturbed states, and therefore correspond to the Majorana transitions that 
can cause atoms to be ejected. Thus it becomes clear how the dynamics of the 
atomic orbits cause atoms to escape from the trap. This first term has a compli­
cated functional dependence upon the angular and spin variables. Its effect on the 
widths and energies of the bound and unbound quantum states of atoms in the trap 
field has been carefully described by numerical calculations [128]. 

10.4.3 Experiments in the Quantum Domain 

The quadrupole trap was chosen for extended discussion in this chapter because 
it was the first to succeed and is the easiest to analyze. However, its applicability 
is limited because very low energy atoms can escape by non-adiabatic processes 
as embodied in Eq. 10.3 and described in Sec. 1004.1. Several different ways to 
avoid this loss have been considered, and the two that have been most successful 
up to now are discussed below. 

The naive idea of adding a uniform dc magnetic field to the quadrupole trap will 
not eliminate the region of zero field, but simply shift it to a different location. 
However, using two orthogonal sets of coils driven with out-of-phase ac currents 
to add a slowly rotating uniform field moves the point of zero field continuously. If 
the rotation frequency is faster than the atomic orbital frequency, atoms may seek 
the hole at the bottom of the trap but not attain it. The authors of Ref. 137 were 
able to compare the loss rate of atoms from this Time-Orbiting Potential (TOP) 
trap with that from an ordinary magnetic quadrupole trap with similar parameters, 
and showed that it indeed allowed tight magnetic confinement with:::::: 100 times 
smaller losses. Such a trap was used to produce the first reported Bose condensation 
where atoms must be confined to the lowest trapped state [137,138]. 

Needless to say, the orbits and/or quantum states of the TOP trap are not the 
same as those of the pure quadrupole trap discussed above. Instead, the effective 
trap potential has a rounded bottom shape but no zero field point. Up to now, there 
have been no direct calculations of the orbits or quantum states in a TOP trap. 

The loffe trap discussed in Secs. 10.2 and 10.3.3 offers another solution to the 
loss problem. In this trap the field never vanishes, and its minimum value of I jj I is 
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adjustable by varying the straight and end-coil currents. The cost of this flexibility 
is a shallower trap with an elongated trapping volume as shown in Figs. 10.2 
and 10.5 [131]. This type of trap can also confine atoms in its lowest quantum 
state, and has been used in two variations to produce Bose condensation. 

One of these variations is the replacement of wires and currents by permanent 
magnets [139]. Such a trap is compact and reliable, but suffers from the inability to 
change or tum off the fields. The second variation is the replacement of each of the 
four straight currents by two parallel, separated loops, making eight additional coils 
along with the end coils, for a total of ten [140]. This "butterfly" or "cloverleaf" 
trap offers more complete optical access to its interior. 



11 
Optical Traps for Neutral Atoms 

11.1 Introduction 

The force on atoms confined in the magnetic traps described in Chapter 10 arises 
from the permanent magnetic dipole moments of the atoms in the inhomogeneous 
field of the trap. By contrast, the inversion symmetry of atomic wave functions 
prevents them from having permanent electric dipole moments, so optical trapping 
of neutral atoms by electrical interaction must proceed by inducing a dipole mo­
ment. This can be accomplished either by electrostatic fields or by nearly resonant 
optical frequency fields. Inducing appropriate dipole moments with dc fields can 
be accomplished in atoms that have a sufficiently close-lying energy states of op­
posite parity (this excludes most atomic ground states but favors Rydberg states). 
By contrast, there are several types of optical traps that employ various configura­
tions of laser beams [40,41]. These produce not only the mixing of atomic states 
of opposite parity needed to provide dipole moments for interaction with the field, 
but also the strong field gradients appropriately arranged for such trapping. 

Chapter 3 describes two kinds of optical forces, labeled radiative and dipole, 
that are each discussed in some detail in Chapters 6 and 9 respectively. Both of 
these forces play important roles in the purely optical traps described in the first 
part of this chapter. Optical traps for two level atoms that depend purely on the 
radiative force can not work because of the optical Earnshaw theorem discussed in 
Sec. 11.3. However, optical pumping between the sublevels of complicated atoms 
can indeed produce traps that depend purely on the radiative force, because the 
force is not simply proportional to the intensity but also depends on the internal 
state of the atoms. Thus the premise of the optical Earnshaw theorem doesn't hold. 
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FIGURE 11.1. A single focused laser beam produces the simplest type of optical trap. 

Furthermore, hybrid traps in which both forces playa role have been demonstrated. 
Moreover, the force in those types of optical traps that depend purely on the dipole 
force are proportional to V I , not I itself, and so they, too, are not restricted by the 
optical Earnshaw theorem. 

For such dipole optical traps, the oscillating electric field of a laser induces 
an oscillating atomic electric dipole moment that interacts with the laser field. If 
the laser field is spatially inhomogeneous, the interaction and associated energy 
level shift of the atoms (ac Stark shift or light shift, see Eqs. 1.17) varies in space 
and therefore produces a potential, just as in the sub-Doppler cooling schemes 
described in Chapter 8. The force from this potential is called the dipole force 
(see Sec. 3.2 and Chapter 9). When the laser frequency is tuned below atomic 
resonance (8 < 0), the sign of the interaction is such that atoms are attracted to 
the maximum of laser field intensity, whereas if 8 > 0, the attraction is to the 
minimum of field intensity. Note that these traps may require additional cooling 
to offset the concomitant radiative heating. Atoms may be captured near the nodes 
or antinodes of optical standing waves, even in 3D, thereby making an array of 
microscopic optical traps called an optical lattice and discussed in Chapter 16. 

The second, and larger part of this chapter describes the most widely used, and 
therefore perhaps the most important of all optical traps. This uses an inhomoge­
neous magnetic field to Zeeman tune the atomic transition frequencies so that the 
radiative force on the atoms varies with position. The optical field is relatively weak 
so that the dipole force on the atoms is negligible, and the magnetic field gradient 
is sufficentIy small that the magnetic force is dominated by the radiative force. 
This magneto-optical trap is relatively simple to build, captures atoms easily, and 
is quite robust against realistic experimental conditions such as alignment errors, 
laser frequency instabilities, magnetic field imperfections, and a host of others. 
For these and other reasons, it has become the workhorse of cold atom physics, 
and has also appeared in dozens of undergraduate laboratories. 

11.2 Dipole Force Optical Traps 

11.2.1 Single-Beam Optical Traps for Two-Level Atoms 

The simplest imaginable trap consists of a single, strongly focused Gaussian laser 
beam (see Fig. 11.1) [141,142] whose intensity at the focus varies transversely 
with r as 

2/ 2 I(r) = Ioe-r wo, (11.1) 



11.2 Dipole Force Optical Traps 151 

where Wo is the beam waist size. Such a trap has a well-studied and important 
macroscopic classical analog in a phenomenon called optical tweezers [143-145]. 

With the laser light tuned below resonance (8 < 0), the ground-state light shift is 
everywhere negative, but largest at the center of the Gaussian beam waist. Ground­
state atoms therefore experience a force attracting them toward this center given 
by the gradient of the light shift which is found from Eq. 1.17a, and for 8 » Q 
and 8 » y is found to be 

Ii liy2 
F ~ --V(Q(r)2) = --VI(r) 

48 88/s ' 
(11.2) 

since Q2 = y2 I / 2Is. For the Gaussian beam, this transverse force at the waist is 
harmonic and is given by 

liy2IO r _r2/w2 
F~ ---2e 0 

48 Is Wo 
(11.3) 

In the longitudinal direction there is also an attractive force, but it is a bit more 
complicated and depends on the details of the focusing. Thus this trap produces 
an attractive force on atoms in three dimensions. 

Although it may appear that the trap does not confine atoms longitudinally be­
cause of the radiation pressure along the laser beam direction, careful choice of 
the laser parameters can indeed produce trapping in 3D. This can be accomplished 
because the radiation pressure force decreases as 1/82 (see Eq. 3.14), but by con­
trast, the dipole force only decreases as 1/8 for 8 » Q (see Eq. 3.16). If 181 is 
chosen to be sufficiently large, atoms spend very little time in the untrapped (ac­
tually repelled) excited state because its population is proportional to 1/82• Thus 
a sufficiently large value of 181 both produces longitudinal confinement and main­
tains the atomic population primarily in the trapped ground state. A given laser 
power can produce a maximum intensity, and a corresponding light shift and trap 
depth, that is inversely proportional to the area of the beam spot, 7r w5. Thus a large 
numerical aperture is required for focusing such a beam. 

The first optical trap was demonstrated in Na with light detuned below the 
D-lines [142]. With 220 mW of dye laser light tuned about 650 GHz below the 
Na transition and focused to a ....... 10 JLm waist, the trap depth was about 15liy 
corresponding to 7 mK. Single-beam dipole force traps can be made with the 
light detuned by a significant fraction of its frequency from the atomic transition. 
Such a far-off-resonance trap (FORT) has been developed for Rb atoms using light 
detuned by nearly 10% to the red of the D I transition at A = 795 nm [146]. Between 
0.5 and 1 W of power was focused to a spot about 10 JLm in size, resulting in a 
trap 6 mK deep where the light scattering rate was only a few hundred/so The trap 
lifetime was more than half a second. 

There is a qualitative difference when the trapping light is detuned by a large 
fraction of the optical frequency. In one such case, Nd: YAG light at A = 1064 nm 
was used to trap Na whose nearest transition is at A = 596 nm [147]. In a more 
extreme case, a trap using A = 10.6 JLm light from a C02 laser has been used to trap 
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FIGURE 11.2. Focused laser beams of the simple light trap discussed in the text. 

Cs whose optical transition is at a frequency'" 12 times higher ().. = 852 nm) [148]. 
For such large values of 181, calculations of the trapping force can not exploit the 
rotating wave approximation as was done for Eq. 1.17a, and the atomic behavior 
is similar to that in a dc field. It is important to remember, that for an electrostatic 
trap Earnshaw's theorem precludes a field maximum, but that in this case there is 
indeed a local 3D intensity maximum of the focused light. 

11.2.2 Hybrid Dipole Radiative Trap 

A variation of this trap combines the dipole force with the radiation pressure force 
(see Eq. 3.14). In this design, shown schematically in Fig. 11.2, two less tightly 
focused laser beams with Gaussian transverse intensity profiles are directed coax­
ially and oppositely, with their foci slightly separated [149]. Again the frequency 
is below resonance, so the dipole force produces transverse confinement. The scat­
tering force produces axial confinement because atoms axially displaced from the 
equilibrium point midway between the two foci experience increased intensity 
in one beam and decreased intensity in the other. The unbalance results in a net 
scattering force that pushes them back to the equilibrium point. 

Such a trap both cools and heats the atoms. Although Doppler cooling reduces 
the kinetic energy of the trapped atoms, two associated heating mechanisms nec­
essarily destabilize such laser traps. One is the heating or momentum diffusion 
arising from the random direction of both absorption and spontaneous emission of 
light (fluctuations in the scattering force). More important at high intensity is the 
heating associated with fluctuations in the dipole force that are best discussed in 
the dressed atom picture described in Sec. 9.3. Fluorescent decay from an excited 
state may land atoms in either of the two types of states shown in Fig. 9.2. Since the 
optical forces in these states have opposite signs, atoms decaying spontaneously 
down the ladder of dressed states (see Fig. 9.2) experience a fluctuating force that 
has no correlation with their motion, and are therefore heated. The fluctuations 
of the force do not saturate with intensity, and hence cannot be compensated by 
making a deeper trap using high intensity light. The result is that the steady-state 
kinetic energy of atoms in such a trap, resulting from balance between the heating 
and cooling mechanism, is always about equal to the trap depth. Atoms are thus 
continuously boiled out of the trap. 

The characteristics of such optical dipole force traps have been studied by Gor­
don and Ashkin [27]. To obtain a trap that is '" 100 mK deep corresponding to 
v '" y / k, the saturation parameter So should be as high as '" 1 08 and the detuning 
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x 

FIGURE 11.3. The light intensity experienced by an atom located in a plane 30 Il-m above 
the beam waists of two quasi-focused sheets of light traveling parallel and arranged to form 
a V-shaped trough. The x and y dimensions are in Il-m (figure from Ref. 152). 

as large as "v 106 y ("-' 1 013 Hz). The damping rate of the atomic kinetic energy by 
Doppler cooling is then about 1 00 times smaller than the heating rate by diffusion 
in momentum space. Such a trap is inherently unstable, but since the escape time of 
the atoms can be as large as several seconds, such dipole traps can work provided 
they are accompanied by effective cooling. 

Variations of this trapping scheme have been discussed that include damping 
from auxiliary light beams [150], alternating light beams rapidly to avoid standing 
waves and thus large heating from dipole force fluctuations [144], and optical 
molasses [142]. The first reported optical trap used an alternation on the f.LS time 
scale between trapping fields that both confined and heated the atoms, and optical 
molasses that cooled them before they could escape very far [142]. The trapping 
light had the configuration of a single tightly focused laser beam as shown in 
Fig. 11.1. 

11.2.3 Blue Detuned Optical Traps 

One of the principle disadvantages of the optical traps discussed in Secs. 11.2.1 
and 11.2.2 is that the negative detuning attracts atoms to the region of highest light 
intensity. This results in significant spontaneous emission unless the detuning is a 
large fraction of the optical frequency such as the Nd:YAG laser trap [147] or the 
C02 laser trap [148]. More important in some cases is that the trap relies on Stark 
shifting of the atomic energy levels by an amount equal to the trap depth, and this 
severely compromises the capabilities for precision spectroscopy in a trap [151]. 

Attracting atoms to the region of lowest intensity would ameliorate both of 
these concerns, but such a trap requires positive detuning (blue), and an optical 
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configuration having a dark central region. One of the first experimental efforts 
at a blue detuned trap used the repulsive dipole force to support Na atoms that 
were otherwise confined by gravity in an optical "cup" [152]. Two rather flat, 
parallel beams detuned by 25% of the atomic resonance frequency were directed 
horizontally and oriented to form a V-shaped trough. Their Gaussian beam waists 
formed a region::::::: 1 mm long where the potential was deepest, and hence provided 
confinement along their propagation direction as shown in Fig. 11.3. The beams 
were the A = 514 nm and A = 488 nm from an argon laser, and the choice of two 
frequencies was not simply to exploit the full power of the multiline Ar laser, 
but also to avoid the spatial interference that would result from use of a single 
frequency. 

The authors of Ref. 152 performed rf spectroscopy on the trapped atoms using 
the ground-state hfs transition ofNa at 1.77 GHz. They used the Ramsey separated 
fields technique by pulsing the applied rf radiation, and observed signals whose 
width corresponded to ::::::: 118 Hz, less than 10-10 of the carrier frequency. This 
corresponds to a coherence time of several seconds in the trap. To produce similar 
coherence times in an atomic fountain (see Sec. 13.7.2) would require a fountain 
20 m high, which seems quite impractical. In spite of the residual Stark shifts that 
limit the use of such a trap for a clock, however, the authors point out that it would 
be valuable for precision spectroscopy of relative quantities, for example accurate 
comparison of the hfs frequency in electric fields for an electric dipole moment 
search. 

Obviously a hollow laser beam would also satisfy the requirement for a blue­
detuned trap, but conventional textbook wisdom shows that such a beam is not an 
eigenmode of a laser resonator [153]. Some lasers can make hollow beams, but 
these are illusions because they consist of rapid oscillations between the TEMol 
and TEMIO modes of the cavity. Nevertheless, Maxwell's equations permit the 
propagation of such beams, and in the recent past there have been several studies of 
the LaGuerre-Gaussian modes that constitute them, most notably by L. Allen [154-
156], M. Padgett [157, 158] and the thesis of M. Beijersbergen [159]. The several 
ways of generating such hollow beams have been tried by many experimental 
groups and include phase and amplitude holograms, hollow waveguides, axicons 
or related cylindrical prisms, stressing fibers, and simply mixing the TEMol and 
TEMIO modes with appropriate cylindrical lenses. 

An interesting experiment has been performed using the ideas of Sisyphus cool­
ing with evanescent waves as discussed in Secs. 8.7 and 9.2 combined with a hollow 
beam formed with an ax icon [109]. In the previously reported experiments with 
atoms bouncing under gravity from an evanescent wave field [108,160], they were 
usually lost to horizontal motion for several reasons, including slight tilting of the 
surface, surface roughness, horizontal motion associated with their residual mo­
tion, and horizontal ejection by the Gaussian profile of the evanescent wave laser 
beam. The authors of Ref. 109 simply confined their atoms in the horizontal direc­
tion by surrounding them with a wall of blue detuned light in the form of a vertical 
hollow beam. Their gravito-optical surface trap cooled Cs atoms to ::::::: 3 JLK at a 
density of::::::: 3 x 1010 fcm3 in a sample whose 1/ e height in the gravitational field 
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was only 19 /Lm. Simple ballistics gives a frequency of 450 bounces/s, and the 
~ 6 s lifetime (limited only by background gas collisions) corresponds to several 
thousand bounces. However, at such low energies the deBroglie wavelength of 
the atoms is ~ 114 /Lm, and the atomic motion is no longer accurately described 
classically, but requires the deBroglie wave methods of Chapter 15. 

11.2.4 Microscopic Optical Traps 

In a standing wave the light intensity varies from zero at a node to a maximum at 
an antinode in a distance of AI 4. Since the light shift, and thus the optical potential, 
vary on this same scale, it is possible to confine atoms in wavelength-size regions 
of space. 

Of course, such tiny traps are usually very shallow, so loading them requires 
cooling to the /LK regime. The momentum of such cold atoms is then so small 
that their deBroglie wavelengths are comparable to the optical wavelength, and 
hence to the trap size. In fact, the deBroglie wavelength equals the size of the 
optical traps (A/2) when the momentum is 2Jik, corresponding to a kinetic energy 
of a few /LK. Thus the atomic motion in the trapping volume is not classical, but 
must be described quantum mechanically. Even atoms whose energy exceeds the 
trap depth must be described as quantum mechanical particles moving in a periodic 
potential that display energy band structure [161]. Such effects have been observed 
in very careful experiments as described in Secs. 16.3 and 16.4. 

Atoms trapped in wavelength-sized spaces occupy vibrational levels similar to 
those of molecules. The optical spectrum can show Raman-like sidebands that 
result from transitions among the quantized vibrational levels [162,163] as shown 
in Fig. 16.6. These quantum states of atomic motion can also be observed by stim­
ulated emission [162,164] and by direct rf spectroscopy [165,166]. Considerably 
more detail about atoms in such optical lattices is to be found in Chapter 16. 

There is one very special case of atoms trapped in a wavelength-size region 
where such quantum effects are not important. The magnetic dipole transition 
between the two ground hfs states of H atoms has been used to trap them in a 
microwave cavity [167,168]. Since the transition strength is very much weaker 
than that of an optical transition, the strength of the trapping field had to be corre­
spondingly stronger. In the optical case such a strong field could cause undesired 
spontaneous emission, but that is absent for the microwave transition, so there 
needn't be a large detuning. The physical principles discussed above still apply 
completely. 

Apart from this case of trapping with microwaves, progress in optical trapping of 
laser cooled atoms has evolved toward quantization of the atomic center of mass 
motion or external coordinates. The classical description of atomic motion that 
assumes that atoms have arbitrary position and momentum has become outmoded. 
In this new quantum picture of atomic motion, atomic position and momentum 
need to be considered as quantum mechanical variables, as discussed in Chapter 15. 
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11.3 Radiation Pressure Traps 

One of the basic limitations of dipole traps comes from the large saturation param­
eters needed for confinement. To overcome this problem traps have been proposed 
that rely on the scattering force to cool and trap atoms [169]. These designs include 
either four or six Gaussian beams that converge on a small volume where atoms 
are trapped. However, such traps cannot be stable as long as the trapping force is 
proportional to light intensity [169]. This can be simply understood by considering 
that the flow of optical energy cannot be directed inwards everywhere on the surface 
of the trapping volume, and thus the force cannot be directed inwards everywhere. 
Since this is similar to the Earnshaw's theorem for electrostatics, it is called the 
optical Earnshaw theorem. However, for atoms that have multiple ground states 
whose absorption probabilities are not all the same, various configurations oflaser 
beams can be used to make stable optical traps [170]. 

One such example is the trap relying on optical pumping demonstrated for Cs 
atoms [171]. Here an arrangement of six diverging beams of modest power with 
various circular polarizations directed toward the center was able to confine over 
107 atoms in a sub-mm size volume. The special feature of this trap was the 
absence of any magnetic field, thereby enabling extremely rapid switching of the 
trapping force. Furthermore, trapped atoms experience no Zeeman shifts that could 
complicate precision spectroscopy. 

11.4 Magneto-Optical Traps 

11.4.1 Introduction 

The most widely used trap for neutral atoms is a hybrid, employing both optical 
and magnetic fields, to make a magneto-optical trap (Mar) first demonstrated in 
1987 [172]. The operation of a Mar depends on both inhomogeneous magnetic 
fields and radiative selection rules to exploit both optical pumping and the strong 
radiative force [172,173]. The radiative interaction provides cooling that helps in 
loading the trap, and enables very easy operation. The Mar is a very robust trap 
that does not depend on precise balancing of the counterpropagating laser beams or 
on a very high degree of polarization. The magnetic field gradients are modest and 
can readily be achieved with simple, air-cooled coils. The trap is easy to construct 
because it can be operated with a room-temperature cell where alkali atoms are 
captured from the vapor. Furthermore, low-cost diode lasers can be used to produce 
the light appropriate for all the alkalis except Na, so the Mar has become one of 
the least expensive ways to produce atomic samples with temperatures below 1 
mK. 

Trapping in a Mar works by optical pumping of slowly moving atoms in a 
linearly inhomogeneous magnetic field B = B(z) == Az, such as that formed by a 
magnetic quadrupole field as discussed in Sec. 10.2. Atomic transitions with the 
simple scheme of Jg = 0 ~ Je = 1 have three Zeeman components in a magnetic 
field, excited by each of three polarizations, whose frequencies tune with field (and 
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FIGURE 11.4. Arrangement for a Mar in ID. The horizontal dashed line represents the 
laser frequency seen by an atom at rest in the center of the trap. Because of the Zeeman 
shifts of the atomic transition frequencies in the inhomogeneous magnetic field, atoms at 
z = z' are closer to resonance with the a- laser beam than with the a + beam, and are 
therefore driven toward the center of the trap. 

therefore with position) as shown in Fig. 11.4 for 1 D. Two counterpropagating laser 
beams of opposite circular polarization, each detuned below the zero field atomic 
resonance by 8, are incident as shown. 

Because of the Zeeman shift, the excited state Me = + 1 is shifted up for B > 0, 
whereas the state with Me = -1 is shifted down. At position z' in Fig. 11.4 the 
magnetic field therefore tunes the I::!.M = -1 transition closer to resonance and 
the I::!.M = + 1 transition further out of resonance. If the polarization of the laser 
beam incident from the right is chosen to be a- and correspondingly a+ for the 
other beam, then more light is scattered from the (1 - beam than from the (1+ beam. 
Thus the atoms are driven toward the center of the trap where the magnetic field 
is zero. On the other side of the center ofthe trap, the roles of the Me = ± 1 states 
are reversed and now more light is scattered from the (1+ beam, again driving the 
atoms towards the center. 

The situation is analogous to the velocity damping in an optical molasses from 
the Doppler effect as discussed in Sec. 7.2, but here the effect operates in position 
space, whereas for molasses it operates in velocity space. Since the laser light is 
detuned below the atomic resonance in both cases, compression and cooling of the 
atoms is obtained simultaneously in a MOT. 

So far the discussion has been limited to the motion of atoms in 1 D. However, the 
MOT scheme can easily be extended to 3D by using six instead of two laser beams. 
Furthermore, even though very few atomic species have transitions as simple as 
19 = 0 ~ le = 1, the scheme works for any 19 ~ le = 19 + 1 transition. Atoms 
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that scatter mainly from the a+ laser beam will be optically pumped toward the 
Mg = +Jg substate, which forms a closed system with the Me = +Je substate. 

11.4.2 Cooling and Compressing Atoms in a MOT 

For a description of the motion of the atoms in a MOT, consider the radiative force 
in the low intensity limit (see Eq. 3.14). The total force on the atoms is given by 
F = F+ + F_, where 

(11.4a) 

and the detuning 8± for each laser beam is given by 

(ll.4b) 

Here IL' == (geMe - ggMg)ILB is the effective magnetic moment for the transition 
used (see Sec. 6.2.2). Note that the Doppler shift WD == -k· v and the Zeeman 
shift Wz = IL' B Iii both have opposite signs for opposite beams. 

When both the Doppler and Zeeman shifts are small compared to the detuning 8, 
the denominator of the force can be expanded as in Sec. 7.2 and the result becomes 

(11.5) 

where the damping coefficient {J is defined in Eq. 7.2. The spring constant K arises 
from the similar dependence of F on the Doppler and Zeeman shifts, and is given 
by 

IL'A 
K = lik {J. (11.6) 

The force of Eq. 11.5 leads to damped harmonic motion of the atoms, where the 
damping rate is given by rMOT = {JIM and the oscillation frequency WMOT = 
JKI M. For magnetic field gradients A ~ 10 G/cm, the oscillation frequency is 
typically a few kHz, and this is much smaller than the damping rate that is typically 
a few hundred kHz. Thus the motion is overdamped, with a characteristic restoring 
time to the center of the trap of 2rMOT Iw~OT ~ several ms for typical values of 
the detuning and intensity of the lasers. Note that this restoring force is larger than 
the purely magnetic force of Chapter 10 by a factor ~ kz, so it dominates when 
atoms are more than a few wavelengths from the center of the trap. 

The steady-state temperature of atoms in a MOT is expected to be comparable 
to the temperature for optical molasses. Since the polarizations of the counterprop­
agating laser beams are opposite, it seems that sub-Doppler temperatures could 
be achieved in a MOT. Sub-Doppler processes in ID rely on a detailed balance 
between optical pumping and the local polarization, and in 3D such a balance 
is disturbed by the laser beams in the other directions. In the 3D light fields of 
the MOT there are always polarization gradients and the light shifts are spatially 
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dependent, leading to Sisyphus cooling. Detailed studies of polarization gradient 
processes in a MOT [174-176] show that for sufficiently low intensities the tem­
perature of the MOT is indeed below the Doppler limit and proportional to the 
light shift (see Eq. 8.10). The proportionality constant b depends on the atomic 
transition and the polarization gradient. 

Since the MOT constants fJ and K are proportional, the size of the atomic cloud 
can easily be deduced from the temperature of the sample. The equipartition of the 
energy of the system over the degrees of freedom requires that the velocity spread 
and the position spread are related by 

(11. 7) 

For a temperature in the range of the Doppler temperature, the size of the MOT 
should be of the order of a few tenths of a mm, which is generally the case in 
experiments. 

11.4.3 Capturing Atoms in a MOT 

Although the approximations that lead to Eq. 11.5 for the force hold for slow 
atoms near the origin, they do not apply for the capture of fast atoms far from the 
origin. In the capture process, the Doppler and Zeeman shifts are no longer small 
compared to the detuning, so the effects of the position and velocity can no longer 
be disentangled. However, the full expression of Eq. 11.4 for the force still applies 
and the trajectories of the atoms can be calculated by numerical integration of the 
equation of motion [177]. 

Simulations of the motion can exploit the different time scales of the problem. 
The shortest one is the spontaneous lifetime r = 1 /y, which is of the order of 20 
ns. Since this is much smaller than the damping time, there is a large number of 
spontaneous emission cycles during the slowing so it can be assumed that there 
is a continuous force acting on the atoms. The second time scale is the damping 
time that is of the order of several ms. In this time interval the atoms are slowed 
and captured in the MOT. The slowest time scale is the lifetime of the atoms in 
the MOT, which is of the order of 1 s under good vacuum conditions. 

Figure 11.5a shows the results of a simulation of the trajectories of Na-like atoms 
that enter the MOT with a certain velocity. The simulation is carried out in ID and 
the laser beams are assumed to interact with the atoms over a range comparable 
to the diameter of the laser beams. For sufficiently low velocities the atoms are 
immediately slowed down by the Doppler cooling process when they enter the 
MOT region. After this short deceleration period their velocities are within the 
range of the overdamped motion of Eq. 11.5, and the atoms are compressed to 
the center of the trap with the same rate, as shown by the straight line in the 
(z, v)-plane. Atoms entering at higher velocities are slowed down by the tail of 
the Lorentz profile, and if they are completely stopped before the end of the MOT 
region, they can be captured. The capture velocity Vc of the MOT is thus given by 
the incoming velocity for which atoms are completely stopped when they reach 
the opposite edge of the MOT region. In this simulation, Vc is approximately 55 
mls. 
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FIGURE 11.5. Numerical simulation of the capture process in ID of the MOT for a 
19 = 0 -+ 1e = 1 transition. (a) Trajectories for Na atoms with such a simplified struc­
ture entering the MOT region with different initial velocities, which is increased between 
different trajectories by 5 mls. Here so=1O and 15 = -30 MHz. For low enough velocities 
the atoms are collected in the center of the trap and remain trapped. (b) Dependence of the 
capture velocity Vc on the detuning of the laser from resonance. The largest Vc is obtained 
for a detuning of ~ -100 MHz ~ -lOy. 

Figure II.Sb shows Vc as a function of detuning of the laser light from resonance. 
For small negative detunings Vc increases with increasing detuning, and reaches a 
maximum near 8 = -100 MHz ~ -lOy. If the detuning is increased further, the 
atoms can only be cooled in the tail of the Lorentz profile, which is not sufficient 
to completely slow them to rest. 

The situation becomes more complicated when real atoms are considered. In 
the alkalis the ground state has L = 0 so J = S and F = I + J. Cooling and 
trapping is achieved by using the Fg = I + S ~ Fe = Fg + 1 cycling transition. 
This system is closed, i.e., spontaneous emission to the ground state is always to 
the same Fg-state because of the selection rule /).F = 0, ±l. However, another 
excited hfs state Fe = Fg is close by, and only a small excitation rate to that 
state leads to a loss of atoms caused by spontaneous emission to the F~ = I - S 
ground state. Since the hyperfine splitting in the ground state is very large, atoms 
are confined to this state and are no longer cooled and trapped. In order to prevent 
this, a second laser beam, called a repumper, has to be used and this is tuned to the 
F~ = I - S ~ Fe = F~ + 1 transition. The Fe = F~ + 1 state can then decay to 
the original Fg = I + S state. 

The hyperfine structure in the excited state changes the detuning dependence 
of the MOT characteristics considerably [177]. For example, if the laser is red 
detuned from the cycling transition by more than half the splitting between adjacent 
hyperfine states, the frequency is closer to resonance with the adjacent hyperfine 
state, and furthermore, is detuned to the blue. Then the cooling becomes heating 
and the atoms can no longer be trapped. 

On the other hand, the hyperfine structure also allows other cycling transitions to 
be used for cooling and trapping. For Na it was found [172,177] that the transition 
Fg = 1 ~ Fe = 0 can be used to trap atoms, where the Fg = 1 ~ Fe = 1 
transition is used to cool the atoms. Repumping is achieved by tuning the repumper 
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FIGURE 11.6. The schematic diagram of a MOT shows the coils and the directions of 
polarization of the six light beams. It has an axial symmetry and various rotational symme­
tries, so some exchanges would still result in a trap that works, but not all configurations 
are possible. Atoms are trapped from the background vapor of Cs that arises from a piece 
of solid Cs in one of the arms of the setup. 

to the Fg = 2 -+ Fe = 1 transition. This so-called type II trap is much weaker 
than the more common type I trap described earlier, and leads to a much larger trap 
volume. However, since the density of the MOT is limited by collision processes, 
the larger volume allows for the storage of more atoms and the type II MOT usually 
appears much brighter than the type I MOT. 

The capture velocity of a MOT is serendipitously enhanced because atoms trav­
eling across it experience a decreasing magnetic field just as in beam deceleration 
described in Sec. 6.2.2 [173]. This enables resonance over an extended distance 
and velocity range because the changing Doppler shift of decelerating atoms can 
be compensated by the changing Zeeman shift as atoms move in the inhomoge­
neous magnetic field. Of course, it will only work this way if the field gradient A 
does not demand an acceleration larger than the maximum acceleration amax (see 
Sec. 6.2). Thus atoms are subject to the optical force over a distance that can be as 
long as the trap size, and can therefore be slowed considerably. 

The very large velocity capture range Vc of a MOT can be estimated by using 
Fmax = hky /2 and choosing a maximum size of a few cm for the beam diameters. 
Thus the energy change can be as large as a few K, corresponding to Vc ~ 100 
mls [173], as in Fig. 11.5b. The number of atoms in a vapor with velocities below 
Vc in the Boltzmann distribution scales as v: (see Sec. 5.2), and there are enough 
slow atoms to fall within the large MOT capture range even at room-temperature, 
because a few K includes 10-4 of the atoms. A more conservative estimate of the 
capture range might cost another factor of 10, but this is still a very large number of 
atoms for most room-temperature vapors. For example, at a temperature of 300 K, 
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the vapor pressure ofCs is 10-5 Torr so the density is a few times 1011 atoms/cm3 

leaving 107 atoms/cm3 within the capture range of an MOT. Thus a Cs MOT in 
a modest size cell can be filled with 109 atoms in less than a second from the 
room-temperature vapor. Such a scheme was first demonstrated in 1990 with the 
trap shown in Fig. 11.6 using diode laser light [178], and has since been repeated 
in many laboratories for Na, Rb, and Cs atoms. 

11.4.4 Variations on the MOT Technique 

Because of the wide range of applications of this most versatile kind of atom trap, 
a number of careful studies of its properties have been made [173,179-186], and 
several variations have been developed. One of these is designed to overcome the 
density limits achievable in an MOT. In the simplest picture, loading additional 
atoms into an MOT produces a higher atomic density because the size of the 
trapped sample is fixed. 

However, the density cannot increase without limit as more atoms are added. 
The atomic density is limited to ~ 1011 /cm3 because the fluorescent light emitted 
by some trapped atoms is absorbed by others as discussed on p. 27, and this 
diffusion of radiation presents a repulsive force between the atoms [183,184]. 
Another limitation lies in the collisions between the atoms, and as discussed in 
Chapter 14, the collision rate for excited atoms is much larger than for ground­
state atoms. Adding atoms to a MOT thus increases the density up to some point, 
but adding more atoms then expands the volume of the trapped sample. In some 
cases the radiation pressure may cause the sample to break up into a central cloud 
surrounded by an orbiting ring [183,184] driven by asymmetries in the magnetic 
field or laser beam profiles. Photographs of some of these atomic clouds are shown 
in Fig. 11.7. In addition, certain kinds of collisions among the trapped atoms may 
also playa role in limiting the density to a similar value. 

One way to overcome this limit is to have much less light in the center of the 
MOT than at the sides. Simply lowering the laser power is not effective in reducing 
the fluorescence because it will also reduce the capture rate and trap depth. But 
those advantageous properties can be preserved while reducing fluorescence from 
atoms at the center if the light intensity is low only in the center. 

The repumping process for the alkali atoms provides an ideal way of imple­
menting this idea [187]. If the repumping light is tailored to have zero intensity at 
the center, then atoms trapped near the center of the MOT are optically pumped 
into the "wrong" hfs state and stop fluorescing. They drift freely in the "dark" 
at low speed through the center of the MOT until they emerge on the other side 
into the region where light of both frequencies is present and they begin absorbing 
again. Then they feel the trapping force and are driven back into the "dark" center 
of the trap. Such a MOT has been operated at MIT [187] with densities close to 
1012/cm3, and the limitations are now from collisions in the ground state rather 
than from mUltiple light scattering and excited state collisions (see Chapter 14). 

Another variation of the MOT is designed to produce spin-polarized atoms. 
In a usual MOT, the orientation of the atomic spins varies throughout the trap 
volume because of the varying direction of the quadrupole magnetic field and the 
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FIGURE 11.7. Spatial distribution of atoms trapped in a MOT whose beams are slightly 
misaligned. When there are less than 108 atoms, they form a central clump, but with more 
than that there is an orbiting group of atoms as well. (b) and (d) show time exposures of 
this, but (c) shows the clump distinctly when the camera is strobed at 110 Hz. (e) and (f) 
show a full ring from the top and side (figure from Ref. 184). 

different optical polarizations. However, a different trap has been built where two 
of the three pairs of laser beams are misaligned in the "racetrack" arrangement, 
and more coils have been added to change the field symmetry [188,189]. In this 
case the trap can work adequately even when the two beams in the third pair have 
the same polarization and one pair of coils produces a uniform field. Atoms are 
therefore subject to a strong optical pumping toward a particular alignment, and 
the total sample has a 75% spin alignment [189]. 

In a third variation, the number of laser beams has been reduced from six to four 
and arranged in tetrahedral symmetry similar to Fig. 16.3b [190,191]. There are 
advantages to this arrangement apart from the simplicity of fewer laser beams. First, 
capturing atoms from a slowed atomic beam is enormously simplified because 
there is no laser light copropagating with the atoms. Second, the restrictions on 
polarization purity may be relaxed. Of course, it is a bit more difficult to produce 
such a configuration of laser beams, but for certain applications, it is certainly 
advantageous. 
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Finally, Emile et al. [192] reported a new MOT, in which they used orthogonal 
pairs of counterpropagating beams having relative polarization angles of 45° . They 
interpreted the trapping as being a result of a new magneto-optical force observed 
by Grimm et al. [193]. This force arises from a redistribution oflight from one laser 
beam into the other beam by a stimulated process in the presence of a magnetic 
field. Since this force arises from a stimulated process, the magnitude of the force 
can be made much larger than the spontaneous force. Therefore one can expect 
that this trap can have a larger increase of the phase-space density compared to the 
traditional MOT. 
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Evaporative Cooling 

12.1 Introduction 

Laser cooling leads to the production of samples of atoms with low temperature 
and high density. In the 1920s Bose and Einstein predicted that for sufficiently 
low temperature and high density, a gas of atoms undergoes a phase transition that 
is now called Bose-Einstein condensation (BEC-see Chapter 17). This phase 
transition is predicted to occur at a phase space density p == nA~8 ~ 2.612, where 
n is the density of the gas and Ad8 = h/Mv = h/J3Mk8T is the deBroglie 
wavelength of the atoms. For ordinary gases at room temperature and pressure, 
p ~ 10-6 , but in a practical atomic beam oven, p ~ 3 x 10- \0. 

Achieving BEC has been one of the holy grails in physics for many years, and 
from the beginning of laser cooling it was clear that this could be one of the possible 
routes for achieving it. With laser cooling one can obtain JLK temperatures with 
small loss of atoms, so that the phase space density can be increased. However, 
in the mid 1990s it became clear that the increase in phase space density by laser 
cooling of alkali atoms had reached its limit. If the density of the sample becomes 
too large, light scattered by one atom is reabsorbed by others, causing a repulsion 
between them. For resonant light, the optical thickness of a sample of atoms that 
has been laser cooled to the recoil limit and compressed to p ~ 1 is only one optical 
wavelength, so light can neither enter nor escape a reasonably sized sample. 

The increase of density also leads to an increase in the collision rate. The collision 
rate between atoms with one in the excited state (S+P collisions) is also much larger 
at low temperatures than the rate for such collisions with both atoms in the ground 
state (S+S collisions). Since S+P collisions are generally inelastic, and since the 
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inelastic energy exchange generally leads to a heating of the atoms, increasing the 
density increases the loss of cold atoms. To achieve BEC, resonant light should 
therefore be avoided, and thus laser cooling alone is not the most likely route for 
achieving BEe. 

A more promising route to BEC is the technique of evaporative cooling. This 
method is based on the preferential removal of those atoms from a confined sam­
ple with an energy higher than the average energy, followed by a rethermalization 
of the remaining gas by elastic collisions. Although evaporation is a process that 
occurs in nature, it was applied to atom cooling for the first time in 1988 [194]. 
One way to think about evaporative cooling is to consider cooling of a cup of 
coffee. Since the most energetic molecules evaporate from the coffee and leave the 
cup, the remaining atoms obtain a lower temperature and are cooled. Furthermore, 
it requires the evaporation of only a small fraction of the coffee to cool it by a 
considerable amount. Thus even though the method results in the removal of some 
of the atoms in a trap, those that remain have much lower average energy (temper­
ature) and so they occupy a smaller volume near the bottom of the trap, thereby 
increasing their density. Since both the temperature and the volume decrease, the 
phase space density increases. 

This chapter describes a model of evaporative cooling. Since such cooling is not 
achieved for single atoms but for the whole ensemble, an atomic description of the 
cooling process must be replaced by thermodynamic methods. These methods are 
completely different from the rest of the material in the book, and will therefore 
remain rather elementary. 

12.2 Basic Assumptions 

Evaporative cooling works by the preferential removal of atoms having an energy 
higher than the average energy, as suggested schematically in Fig. 12.1. If the atoms 
are trapped, it can be achieved by lowering the depth of the trap, thereby allowing 
the atoms with energies higher than the trap depth to escape, as discussed first by 
Hess [195]. Elastic collisions in the trap then lead to a rethermalization of the gas. To 
sustain the cooling process the trap depth can be lowered continuously, achieving 
a continuous decrease of the temperature. Such a process is called forced evapora­
tion. Although more refined techniques have been developed, this technique was 
first employed for evaporative cooling of hydrogen [136,194,196,197]. 

Several models have been developed for this process, but the simplest one was 
developed by Davis et al. [198], and is mainly of pedagogical value [199]. In this 
model the trap depth is lowered in one single step and the effect on the thermody­
namic quantities, such as temperature, density and volume, is calculated. Although 
the process can be repeated and the effects of multiple steps added up cumulatively, 
forced evaporative cooling is a continuous process and should be described by other 
models. However, the results of the simple model provide considerable insight to 
the process without resorting to tedious calculations. 

In many models of evaporative cooling the following assumptions are made: 
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FIGURE 12.1. Principle of the evaporation technique. Once the trap depth is lowered, 
atoms with energy above the trap depth can escape and the remaining atoms reach a lower 
temperature. 

1. The gas behaves sufficiently ergodically, i.e., the distribution of atoms in 
phase space (both position and momentum) depends only on the energy of 
the atoms and the nature of the trap. 

2. The gas is described by classical statistics and is assumed to be far from the 
transition point to the BEC phase (p « 1). 

3. The quantum mechanical scattering is pure s-wave, i.e., the temperature is 
sufficiently low that all higher partial waves do not contribute to the cross 
section (see Sec. 14.2). Furthermore, the cross section for elastic scattering 
is energy-independent and is given by a = 8Jl"a2, where a is the scattering 
length. Also, it is assumed that the ratio of elastic to inelastic collision rates 
is sufficiently large that the elastic collisions dominate. 

4. Evaporation preserves the thermal nature of the distribution, i.e., the ther­
malization is much faster than the rate of cooling. 

S. Atoms that escape from the trap neither collide with the remaining atoms 
nor exchange energy with them. This is called full evaporation. 

The simple model uses all of these assumptions, and their implications will be 
discussed later in the chapter. 

12.3 The Simple Model 

The first step in applying this simple model is to characterize the trap by calcu­
lating how the volume of a trapped sample of atoms changes with temperature T. 
Consider a trapping potential that can be expressed as a power law given by 

I X lSI I Y I
S

2 I Z I
S
3 U(x,y,z) =f1 al +f2 a2 +f3 a3 ' (12.1) 

where a j is a characteristic length and S j the power for a certain direction j. Then 
one can prove [200] that the volume occupied by trapped atoms scales as V ex T~, 
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where 
1 1 1 

~ == -+-+-. (12.2) 
SI S2 S3 

Thus the effect of the potential on the volume of the trapped sample for a given 
temperature can be reduced to a single parameter ~ . This parameter is independent 
of how the occupied volume is defined, since many different definitions lead to 
the same scaling. When a gas is held in a 3D box with infinitely high walls, then 
SI = S2 = S3 = 00 and ~ = 0, which means that V is independent of T, as 
expected. For a harmonic potential in 3D, ~ = 3/2, for a linear potential in 20 
~ = 2, and for a linear potential in 3D, ~ = 3. 

The evaporative cooling model itself [198] starts with a sample of N atoms 
having a temperature T held in an infinitely deep trap. The strategy for using the 
model is to choose a finite quantity '1, and then (1) lower the trap depth to a value 
'1kB T, (2) allow for a thermalization of the sample by collisions, and (3) determine 
the change in phase space density p. 

Only two parameters are needed to completely determine all the thermodynamic 
quantities for this process (the values after the process are denoted by a prime). 
One of these is v == N' IN, the fraction of atoms remaining in the trap after the 
cooling. The other 1 is y, a measure of the decrease in temperature caused by the 
release of hot atoms and subsequent cooling, modified by v, and defined as 

10g(T'IT) 10g(T'IT) 

y == 10g(N'IN) = log v 
(12.3) 

This yields a power-law dependence for the decrease of the temperature caused 
by the loss of the evaporated particles, namely, T' = Tv Y. The dependence ofthe 
other thermodynamic quantities on the parameters v and y can then be calculated. 

The scaling of N' = Nv, T' = TvY, and V' = VvY~ can provide the scaling of 
all the other thermodynamic quantities of interest by using the definitions for the 

density n = N I V, the phase space density p = nA~B ex nT- 3/2, and the elastic 

collision rate kel == nav ex nT 1/2. The results are given in Table 12.1. For a given 
value of '1, the scaling of all quantities depends only on y. Note that for successive 
steps j, v has to be replaced with v j . 

In order to determine the change of the temperature in the cooling process, it is 
necessary to consider in detail the distribution of the atoms in the trap. The density 
of states for an ideal gas in free space is given by [201] 

2n(2M) 3/2 V E 1/2 
D(E) = h3 (12.4) 

However, for atoms in a trap the density of states is affected by the trapping potential 
U(x, y, z), and becomes [200] 

2n(2M) 3/2 f 3 
D(E) = 3 ,jE-U(x,y,z)dr. 

h v 
(12.5) 

I This Y is not to be confused with the natural width of the excited state. 
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thennodynamic variable symbol exponentq 
Number of atoms N 1 
Temperature T y 
Volume V yg 
Density n 1 - yg 
Phase space density p 1 - y(g + 3/2) 
Collision rate k 1 - y(g - 1/2) 

TABLE 12.1. Exponent q for the scaling of the thermodynamic quantities X' = X vq with 
the reduction v of the number of atoms in the trap. 

The fraction of atoms remaining in the trap after decreasing the trap depth to 11k B T, 
becomes 

1 ["k8 T 
V = N 10 D(E)e-(E-JL)/k8 T dE, (12.6) 

where the exponential factor stems from the Maxwell-Boltzmann distribution of 
the atoms (see Sec. 5.2), and /.L is the chemical potential. For 11 = 00, v = 1 
and this detennines the chemical potential /.L for N atoms [200]. Substituting this 
relation for /.L into Eq. 12.6 yields 

v = 10 11 L!!.(E)e-EdE, (12.7) 

where the reduced energy is defined as E == E / k B T. Furthermore, the reduced 
density of states L!!.(E) is given by 

EHI/2 

L!!.(E) == reg + 3/2)' (12.8) 

with r (x) the complete gamma function. Figure 12.2 shows the reduced density 
of states as a function of E = E / (g + 3/2) for various values of g. The scaling of E 
is perfonned so that the reduced density of states is nearly independent of g. The 
results for different potentials can therefore be compared directly. 

The integral in Eq. 12.7 can be written in tenns of the incomplete gamma function 
rine to give 

(12.9) 

Note that the fraction of atoms remaining is fully detennined by the final trap depth 
11 for given potential characterized by the trap parameter g. 

The averaged reduced energy E of the atoms before truncation is given by 

(12.10) 

The average energy i' after truncation is given by the same expression, when the 
upper boundary is changed from 00 to 11. The average energy is thus 
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FIGURE 12.2. Reduced density of states 6.(E) as a function of the scaled energy 
E = E / (~ + 3/2) for various trapping potentials, indicated by their parameter ~ . 

(12.11) 

Since the average energy is directly proportional to the temperature, the ratio T'I T 
is given by 

or 
10g(T'IT) 

Y= 
10g(N'IN) 

10g(i'li) 

log v 

For each evaporated atom the energy carried away Eoul is given by 

i-i' I-vy+1 

EOUI = -1 - = (~ + 3/2) 1 -v -v 

(12.12) 

(12.13) 

(12.14) 

For large T/, the value of v approaches 1 so the denominator (1 - v) can be treated 
as small. Then 

(12.15) 

so in that case, y is just the excess energy above the average energy, which is 
carried away by the evaporated atoms. 

The results of the model are given in Fig. 12.3. Apart from the 3D box potential 
(~ = 0) the results for the number of atoms and the temperature are nearly identical 
for the different potentials. However, for a stronger potential (larger n the decrease 
in the volume with decreasing temperature is much larger and therefore the increase 
in density n is much larger. Not only does this lead to a larger increase in phase 
space density p, but this is also important for the retherrnalization of the atoms. 
As the results show, the elastic collision rate also increases strongly for a stronger 
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potential. This way the rethermalization speeds up considerably and the cooling 
process can be accelerated. In the case of a weak potential (~ between 0 and 1) 
the collision rate decreases for all values of T/ and therefore the cooling process 
eventually stops. Thus the model indicates that BEC cannot be obtained in such 
potentials. 

12.4 Speed and Limits of Evaporative Cooling 

12.4.1 Boltzmann Equation 

AlthqUgh this simple model shows many aspects of the evaporation process, it does 
not provide information about its time scale. Experimental results show that'" 2.7 
elastic collisions are necessary to rethermalize the gas [202]. In order to model 
the rethermalization process, Luiten et al. [203] have discussed a model based on 
the Boltzmann equation. In their model, the evolution of the phase space density 
p(r, p) is calculated. This evolution is not only caused by the trapping potential, 
but also by collisions between the particles. Only elastic collisions, whose cross 
section is given by a = 8Jl'a2, with a the scattering length, are considered. This 
leads to the Boltzmann equation [201]. 

The Boltzmann equation is solved numerically by dividing phase space density 
into a large number of bins and calculating the flow of particles from one bin to 
another at each instant. As an example of their method, they solved the Boltzmann 
equation for a flat initial distribution, corresponding to an infinite temperature. 
Then at t = 0 the trap depth was lowered and the change in phase space density 
was calculated after various collision times. The resulting phase space density, 
normalized to the initial distribution, is shown in Fig. 12.4. The effect of the 
thermalization is clearly evident from the figure. After 64 collisions, the number 
of slow atoms has increased by a factor 60. In the same figure, the authors indicate 
with a dashed line a Maxwell-Boltzmann (MB) distribution. Clearly the "real" 
distribution is always very close to a MB distribution, apart from a very small 
region in energy close to the top of the trap. However, the authors argue that there 
is a difference between evaporation and thermalization. Although the distribution 
remains mainly MB, the restoration of the high-energy tail by collisions takes 
much more than four collisions. 

12.4.2 Speed of Evaporation 

So far the speed of the evaporative cooling process has not been considered. As 
an extreme example, consider the case of an extremely large value of T/ where 
one just has to wait for a single event where one particle has all the energy of the 
system. Evaporation of that single particle then cools the whole system to zero 
temperature [199]. More realistically one can consider the following two cases. 
If the trap depth is ramped down too quickly, the thermalization process does not 
have time to run its course and the process becomes less efficient. On the other 
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FIGURE 12.3. Result of the model for evaporation for different values of ~ (see Fig. 12.2) 
for the thermodynamic quantities: (1) y, (2) Number of atoms, (3) Temperature, (4) Density, 
(5) Phase-space density, and (6) Elastic collision rate (figure adapted from Ref. 198). 



12.4 Speed and Limits of Evaporative Cooling 173 

101 

0.0 0.2 0.4 

E/Et 

0.6 

0 
1 
2 

" 8 
16 

-. 32 

'" 
0.8 1.0 

FIGURE 12.4. Evolution of the phase space density P as a function of the normalized energy 
E / Et after a number of elastic collisions, where Et denotes the final trap depth. At t = 0, Po 
is assumed to be flat, but because of evaporative cooling p increases for small E. The axis 
on the right-hand side is the number of elastic collisions (from Ref. 203). 

hand, if the trap depth is ramped down too slowly, the loss of particles by inelastic 
collisions becomes important, thereby making the evaporation inefficient. 

The speed of evaporation can be found from the principle of detailed bal­
ance [199]. It states that elastic collisions produce atoms with energy larger than 
'1kBT at a rate that is given by the number of atoms with energy larger than this 
divided by their collision time. The velocity of atoms with this energy is given by 
v = J2'1kBT/M = vJ3'1/2, where v is the average velocity for given temper­
ature (see Eq. 5.9). The fraction of atoms in the MB-distribution with E > '1 for 
large '1 is given by 

(12.16) 

The elastic collision rate is given by ke/ = nav. The rate of evaporated atoms 
dN /dt becomes 

(12.17) 

The average elastic scattering rate depends on the relative velocity and not on the 
average velocity of the atom (see Table 5.1). Thus the average of ke/ is ke/ = 
4na v / J3ii. The ratio of the evaporation time and the elastic collision time then 
becomes 

= (12.18) 
Tel '1 

Note that this ratio increases exponentially with '1. 
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FIGURE 12.5. Final temperature as a function of 1/ for different strategies: (a) asymptotic 
temperature, (b) lowest temperature for cooling with increasing phase space density, and 
(c) lowest temperature for cooling with increasing density. The horizontal dashed line is the 
limit for evaporative cooling Te (figure from Ref. 203). 

12.4.3 Limiting Temperature 

In the models discussed so far, only elastic collisions have been considered, i.e., 
during such collisions kinetic energy is only redistributed between the partners. 
However, if part of the internal energy of the colliding partners is exchanged with 
their kinetic energy in the collision, then it is inelastic. The inelasticity of the 
collision can cause problems for two reasons: (1) the internal energy released can 
cause the atoms to heat up, and (2) the atoms can change their internal states, and the 
new states may no longer be trapped. In each case, inelastic collisions can lead to 
trap loss and are therefore not desirable. For evaporative cooling, elastic collisions 
are referred to as good collisions and inelastic collisions as bad collisions. It is 
important that the ratio of the number of good to bad collisions is large. 

Apart from collisions with the background gas and three-body recombination, 
there are two inelastic processes that are important for evaporative cooling of alkali 
atoms: dipolar relaxation and spin relaxation. Since both of these are inelastic pro­
cesses, the collision rate nkdip for them at low energies becomes constant [1]. Here 
kdip is the velocity-independent inelastic collision rate. Since the elastic collision 
rate is given by kel = navrel, the ratio of good (= elastic) to bad (= relaxation) 
collisions goes down when the temperature does. This limits the temperature to a 
value Te near that where the ratio between good and bad collisions becomes unity, 
and Te is given by 

:n: MkJip 
kBTe = 16a2 • (12.19) 

The limiting temperature for the alkalis is of the order of 1 oK, depending on the 
values for a and kdip. In practice, however, this ratio has to be considerably larger 
than unity, and so the practical limit for evaporative cooling occurs when the ratio 
is rv 103 [199]. 
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Group Atom N n T p T/tOI 

(106) (1012cm-3) (ILK) (10-6) 

Rice 7U 200 0.07 200 7 1.7 
0.1 1.4 0.4 

MIT 23Na 1000 0.1 200 2 1.9 
0.7 150 2 

JILA 87Rb 4 0.04 90 0.3 3.0 
0.02 3 0.17 

TABLE 12.2. Results obtained with evaporative cooling for the achievement ofBEC [199]. 
The first line in each case represents the starting point and the second line represents the 
end point. 

In the model of Ref. 203, the authors discuss different strategies for evaporative 
cooling, and a summary of their results is given in Fig. 12.5. Note that even for the 
strategy of the lowest temperature, the final temperature is higher than Te. 

12.5 Experimental Results 

In all the earliest experiments that achieved BEC, the evaporative cooling was 
"forced" by inducing rf transitions to magnetic sublevels that are not bound in the 
magnetic trap (see Sec's. 10.3 and 10.4). The experiments described in Sec. 10.3.3 
laid the groundwork for this technique. Atoms with the highest energies can access 
regions of the trap where the magnetic field is stronger, and thus their Zeeman shifts 
would be larger. A correspondingly high-frequency rf field would cause only these 
most energetic atoms to undergo transitions to states that are not trapped, and in 
so doing, the departing atoms carry away more than the average energy. Thus a 
slow sweep of the rf frequency from high to low would continuously shave off 
the high-energy tail of the energy distribution, and thereby continuously drive the 
temperature lower and the phase space density higher. 

In Table 12.2 the results of evaporative cooling from the first three groups that 
have obtained BEC is given. The success of evaporative cooling using this rf 
shaving technique demonstrates that it is much easier to select high energy atoms 
and waste them than it is to cool them. 



Part III 

Applications 



13 
Newtonian Atom Optics and its 
Applications 

13.1 Introduction 

Atom optics is a new field that has emerged as a result of the capabilities of laser 
cooling. Devices depending on both material components and carefully arranged 
electromagnetic fields have been demonstrated. However, neutral atoms do not 
penetrate matter, so the only material devices that can be used for atom optics 
must function as masks, gratings, zone plates, and slits. Apart from simple mask­
ing, the principal effect of these intensity modulators is deBroglie wave diffraction, 
and so their discussion is left to Chapter 15. By contrast, atoms traveling in in­
homogeneous electromagnetic fields, for example an optical standing wave, can 
experience a dipole force as discussed in Chapter 9. Thus the trajectories of atoms 
can be altered by the fields so that it becomes possible to control the motion of 
atoms using devices analogous to those in optics, including mirrors, lenses, beam 
splitters, retardation plates, etc .. 

Newtonian atom optics refers to the domain of atomic motion that is classical 
in the sense that atoms are considered as point particles whose motion can be 
described by Newton's laws. In this domain, atoms can be localized, and their 
position and momentum can be known simultaneously. The analogies are readily 
made to geometrical optics, where light is considered to be described as rays that 
are lines drawn perpendicular to the optical wavefronts. However, there are at least 
two distinct examples where particle atom optics has no analogy in classical optics. 
These are the effect of gravity that arises from the atomic mass, and the dissipative 
processes that allow laser cooling and other forms of phase space compression. On 
the other hand, the domain called wave optics where diffraction and interference 
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must be considered, is more akin to the quantum states of motion of atoms. Such 
motion is discussed in several places in this book, including Chapters 15 through 18. 

One device that could be appropriate to this chapter is a beam splitter. However, 
just as in optics, the atom optical beam splitter results in two (or more) beams 
that have a high degree of relative coherence. Since this property is appropriate 
for deBroglie wave optics, beam splitters are discussed in Chapter 15. For similar 
reasons, diffractive optics such as gratings and zone plates are also discussed in 
Chapter 15. 

13.2 Atom Mirrors 

One of the first proposals for an atomic mirror was made by Cook and Hill [104], 
who suggested reflecting atoms from the evanescent wave of laser radiation leak­
ing into the vacuum when light is totally internally reflected at a vacuum-dielectric 
interface (see Sec. 9.2). If the light is detuned blue from resonance, the atoms 
are repelled by the intensity gradient because they are attracted to the weak field 
region, and thus are reflected back into the vacuum. This technique was demon­
strated by Balykin et al. [204], who specularly reflected Na atoms off an internally 
illuminated quartz plate. The laser light was nearly resonant with one of the hyper­
fine components of the D2-line ofNa, so only atoms impinging on the plate in the 
F = 2 ground state were reflected, whereas atoms in the F = 1 ground state were 
unaffected. In this way they could achieve a quantum-state selectivity of around 
100. Balykin and Letokhov [205] suggested that a pair of concave mirrors based 
on this principle would be the ideal arrangement for building an atomic cavity. 
One of the basic limitations of such a cavity, however, would be gravity. Since 
the atomic trajectories would always be perturbed by the gravitational force, the 
lifetime of atoms in the cavity would be limited. 

This problem can be overcome by dropping cold atoms from an optical molasses 
held a few mm above a concave surface. Atoms released from the molasses fall 
down and are then reflected by the mirror. Although several bounces are possible 
on this "atomic trampoline", early experiments [108,206] reported only one or two 
bounces. In an improved version of their earlier experiment, Aminoff et al. [160] 
showed that atoms can bounce as many as eight times before they are lost from the 
cavity. The losses were attributed to light scattering during reflection, collisions 
with background atoms, and scattering of stray light. Going to higher detunings 
reduced the losses caused by scattering, but the signal-to-noise ratio decreased 
as well. More recently, a hybrid gravito-optical trap was demonstrated that used a 
hollow laser beam for lateral confinement and showed thousands of bounces [109]. 

Another kind of atomic mirror has been proposed that depends on the large 
static dipole moment of Rydberg atoms. The force derives from the presence of 
such atoms in inhomogeneous dc fields (see Sec. 6.2.6). Imagine that an atom 
undergoes optical excitation to a Rydberg state in an inhomogeneous field. The 
laser detuning and beam position are chosen to excite a particular sublevel as a 
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result of the spatially varying Stark shifts. If the energy of the chosen sublevel 
increases strongly with field, then the atom would be attracted toward a weaker 
field region. Atoms in such states would be repelled by a strongly concentrated 
field such as that found near the edge of capacitor plates. 

Suppose atoms were incident in their ground state from a field-free region into a 
region with a strong dc electric field gradient. Since the Stark shifts of the ground 
state are small the atoms would travel freely. If they traversed a thin sheet of light 
tuned to excite them to a Rydberg state, they would then experience a strong force 
deriving from the field gradient. The resulting force can be arranged to deflect or 
focus the atoms [207] and could also be arranged to reflect atoms back along their 
paths. Carefully tailored fields and well-chosen Rydberg states could combine to 
produce a very effective atomic mirror. 

Atoms can also be reflected by a strongly inhomogeneous magnetic field, even 
in their ground states because the ground-state magnetic moments can be large. 
The first suggestion for such magnetic mirrors was made in Ref. 208, but it was 
based on a large scale field and was not very practical. Later people experimented 
with arrangements of miniature permanent magnets, on the mm scale. A much 
more clever approach was described in 1998 [209]. The authors used the strong 
field gradients near the surface of recorded magnetic media such as floppy disks or 
video tape. In their most recent experiments they were able to demonstrate about 
a dozen bounces. 

One problem of this type of mirror can arise from the possible reorientation 
of the magnetic moments of different atoms resulting from their passage through 
different field regions. Because the magnetization of the material is essentially 
random, it is quite likely that there will be strongly varying or near-zero field 
regions in the neighborhood of the surface of the magnetized material. Atoms 
traversing these regions might undergo non-adiabatic transitions, i.e., spin flips, 
as a result of their motion (see Sec. 10.3.1). This results in a kind of decoherence 
that can affect deBroglie wave reflection, as discussed in Sec. 15.5. 

13.3 Atom Lenses 

13.3.1 Magnetic Lenses 

The first lens for neutral atoms was devised in 1951 and used the inhomogeneous 
field of a hexapole array of magnets [129]. The principal idea is to produce a 
magnetic field that varies quadratically with distance from the axis so that the field 
gradient, and thus the force, is harmonic (see Sec. 10.2). 

It is straightforward to expand a solution to Laplace's equation for the magnetic 
potential <I>(r, 0) with boundary conditions of six-fold symmetry and to find a 
series with leading term proportional to r3 [131, 210]. Thus the field would be 
quadratic as desired. For the idealized case of cylindrical magnetic poles having 
surface magnetic potentials 0 and V that alternate among the six poles, the magnetic 
potential in the region between the poles is given by [211] 
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FIGURE 13.1. Schematic diagram of the magnetic lens described in the text. The path of 
a typical atom is indicated by the heavy arrows for entering and leaving the lens. Atoms 
whose paths cross the axis at s' are focused to retun to the axis at s. 

CI>(r, 0) = 4V f (~)n sin nO sin (not) I:<-l)£-1 sin [nIT (21- 1)], 
rr n=1 ro n 2 £=1 2N 

(13.1) 
where N is the number of pole pairs (N = 3 in this case), ro is the distance to the 
boundary (half of the lens aperture), and ot is the axial angle subtended by each 
pole [211]. Thus the field for N = 3 and ot = 7f 16 is given by 

8(r, 9) ~ 110 (:.)' [I -2 (J cos 60 + 0 (:.rr (13.2) 

The dominant term is the desired quadratic and the next term is smaller by about 
an order of magnitude for more than 3/5 of the total area of the aperture. 

Atoms with magnetic moment J-t and mass M oscillate in this harmonic potential 
with arbitrary Ao according to r = Ao cos Wlenst, where WIens is given by 

w~ns = 2J-tBoIMr5. (13.3) 

If the magnetic lens has a length L and atoms pass through it with longitudinal 
velocity Vo, then they undergo a phase change of the oscillatory motion of d¢ = 
wlensLlvo. 

Consider an atom that crossed the axis at a distance s' » ro from the lens 
with transverse velocity Vx and then enters the lens at a distance r from the axis 
(see Fig. 13.1). (The condition s' » ro corresponds to the small angle or paraxial 
domain for the lens.) Its initial phase in the oscillation is Vx I AOWlens, and its final 
phase is Vx I AOWlens + d¢. Thus it will be redirected to cross the axis again at a 
distance s from the lens that satisfies (s + s')lss' = II F, where 

2 2 
F=~=~ro 

w~nsL Emag L 
(13.4) 

Here Ek is the kinetic energy and Emag = J-tBo is the magnetic energy at the 
boundary roo This is exactly the equation for a thin lens of focal length F, where 
sand s' are the image and object distances. 

For ordinary thermal atoms it would require high fields and large L to get 
significant focusing, and even then, a practical lens would have a speed of only 
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FIGURE 13.2. The design and construction of a magnetic quadrupole and hexapole lens 
made from permanent magnets. The lower part shows the potential seen by an atom whose 
magnetic moment is correctly oriented for focusing (figure from Ref. 213). 

,...., f /100. In spite of this, such lenses were used routinely in early atomic beam 
experiments [11]. By contrast, laser-slowed atoms have Ek that is typically 10-7 

times smaller, so a lens only a few cm long can have a speed of,...., f /6. The first 
use of a lens for slow atoms was reported in Ref. 212 using the lens described in 
Ref. 208. 

Since then there have been much more sophisticated lenses built for slow atoms 
using permanent magnets made from modem ceramic rare-earth magnetic materi­
als. The materials are cut to shape using electron erosion machining, and then mag­
netized just before assembly. An excellent description is in Ref. 213. Figure 13.2 
shows both a quadrupole and hexapole lens made from permanent magnets. 

The magnetic potential for atoms whose magnetic moment is correctly oriented 
for focusing is also shown in Fig. 13.2. Of course, both the magnetic potential 
and the focal length will be different for atoms with different orientations. If the 
fields are sufficiently strong, the nuclear magnetic moment will be decoupled from 
that of the electron, and only M J will be important. For ground-state alkalis this 
requires fields around 0.1 T, and so atoms passing near the center of such a lens 
will behave differently from those near the edges where the field is stronger. This 
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FIGURE 13.3. Diagram of apparatus used by the authors of Ref. 214. 

decoupling can be viewed as a field-dependent magnetic moment, and needs to be 
taken into account when calculating atomic trajectories in such devices. 

The formula given in Eq. 13.4 is very general. Its derivation does not depend on 
the nature of the force that acts on the atoms, but only requires that they pass through 
a region where they experience a force that is proportional to their distance from 
the axis (harmonic force). The length of the region must be short enough that their 
displacement doesn't change significantly during their passage, even though their 
transverse velocity does (thin lens). For example, the value of F for lenses whose 
focusing properties derive from the light shift is found by replacing the magnetic 
energy by the light shift. The dependence on v5 is always present, and shows that 
such lenses have very strong chromatic aberrations. Thus they are suitable only 
for atoms in a beam whose longitudinal velocity distribution has been compressed 
considerably from thermal, for example, by laser slowing (see Chapter 6). 

13.3.2 Optical Atom Lenses 

Lenses that depend on the light shift have played an important role in a variety 
of atom optics applications. The first such experiment was performed in a beam 
of Na using a copropagating beam of light [214]. These authors placed a 45° 
mirror with a small hole in it in an atomic beam. The atoms passed through the 
hole, and a focused laser beam was reflected by the mirror from perpendicular to 
copropagating along the atomic beam (see Fig. 13.3). The Gaussian beam profile 
of the laser is approximately parabolic at its center, and at its focus the light shift 
is approximately harmonic, as required for a lens. 

By changing the detuning of the laser frequency from above to below atomic 
resonance, the lens could be either converging or diverging. For red detuned light, 
the light shift of the ground state is negative, so atoms are attracted to strong field 
regions (see Sec. 11.2.1) and the lens focused the atomic beam into the movable 
detector. The data show strong focusing by their lens with speed of approximately 
fl20. 

Another kind of atomic lens uses a two-dimensional MOT (see Sec. 11.4). 
Equation 11.5 therein shows that the total force on atoms in the combined magnetic 
and optical fields has both a damping and a harmonic component, but only the 
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harmonic component is of interest here. It can dominate the damping force when 
the transverse component Vx of the velocity of atoms in a beam incident on such a 
lens satisfies Vx « IL' Az/hk, which constitutes the paraxial approximation (here 
A is the magnetic field gradient). Such a restriction is readily satisfied for easily 
achieved parameters for a lens used in the paraxial domain, as appropriate for the 
other lenses discussed in this section. The focal length can again be found from 
Eq. 13.4, using the relevant magneto-optic energy given by mW~nsA6/2, where 
the oscillation frequency Wiens is found from Eqs. 11.5 and 11.6, and Ao is the 
aperture radius. 

13.4 Atomic Fountain 

Not all atom optics devices have analogies to ordinary optics. In addition to dis­
sipative elements, another obvious exception is those devices wherein the atomic 
trajectories are modified by gravity. One of the earliest suggestion to exploit the 
ballistic motion of atoms was the atomic fountain proposed by Zacharias. Authors 
often refer to the citation [215] but this is nothing more than the title only of a talk 
given by Zacharias at a conference. The only known published description of this 
experiment is in Ramsey's book [11], although there is further information in the 
proceedings of Zacharias' 61 birthday festschrift [216]. 

The idea was to make a fountain in which the slowest atoms emitted from a 
thermal source would rise only a small distance before gravity pulled them down. 
The objective was to lengthen the passage time of atoms through a microwave 
field that was driving the ground state hyperfine transition in order to reduce the 
associated transit time broadening to improve the precision of measurement. It 
was hoped that this would eventually lead to the establishment of an atomic time 
standard as envisioned by Rabi some 30 years earlier. 

This experiment failed, because atomic collisions with fast atoms in the source 
aperture always speeded up the slowest atoms. The velocity distribution of atoms 
emerging from a typical thermal source does not resemble that calculated from 
kinetic theory (see Sec. 5.2) except for the case of extremely low densities. 

However, laser cooling enables the production of samples with very slow atoms, 
and these can be vertically launched to make quite excellent fountains. Atoms are 
first loaded into a 3D optical molasses from a MOT (see Chapter 7 and Sec. 11.4) 
made with one pair of beams vertical. Then the frequency of one (or both) of the 
vertical beams is shifted so that the two beams have a frequency difference!!... This 
results in an ordinary optical molasses in a frame of reference that is moving at 
velocity !!../2k, called the launch velocity. 

If the sign of !!.. is chosen so that this velocity is upwards, the atoms are quickly 
cooled to a low temperature in a frame moving upwards at the launch velocity. 
After a short time the molasses beams are shut off and the atoms are in free flight 
on trajectories that can take them to a height of !!.. 2 /8gk2 that can range from a 
few cm to a few m, depending on the height of the vacuum system. Of course, 
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their residual horizontal velocities will cause the sample of atoms to spread out, 
and this, too, may limit the usable height. 

Some interesting questions can arise in gravito-optics that aren't relevant in 
ordinary optics. When a sample of cold atoms is released froni rest and is allowed 
to fall, atoms travel in parabolic trajectories. All possible parabolic trajectories are 
bounded by a parabolic caustic. Each point on a plane placed below the release 
point can be reached by two parabolic trajectories, one that starts in an upward 
direction and one that starts downward. Since these don't have the same path length, 
there can be atom interference fringes present on the plane [217]. By contrast, the 
light from a point source propagates radially and never folds back, so that the 
expanding spherical waves never show interference fringes. 

13.5 Application to Atomic Beam Brightening 

13.5.1 Introduction 

In considering the utility of atomic beams for the purposes of lithography, collision 
studies, or a host of other applications, maximizing the beam intensity may not be 
the best option. Laser cooling can be used for increasing the phase space density, 
as described in Sec. 5.5, and this notion applies to both atomic traps and atomic 
beams. In the case of atomic beams, other quantities than phase space density have 
been defined as well, but these are not always consistently used. Many articles pro­
vide numbers to characterize their beams without specifying which of the defined 
quantities are being cited. Recently a summary of these beam properties has been 
presented in the context of phase space (see Fig. 13.4). 

The geometrical solid angle occupied by atoms in a beam is L\Q = (L\v1-lv)2, 
where v = .J(9rr 18) v is the average velocity of atoms in the beam (see Table 5.1) 
and L\ v 1- is a measure of the width of the transverse velocity distribution of the 
atoms. The total current or flux ofthe beam is <1>, and the flux density or intensity is 
<1>/rr(L\x)2 where L\x is a measure of the beam's radius. Then the beam brightness 
or radiance R is given by 

(13.5) 

Optical beams are often characterized by their frequency spread, and, because of 
the deBroglie relation A = hlp, the appropriate analogy for atomic beams is the 
longitudinal velocity spread. Thus the spectral brightness or brilliance B, is given 
by 

v 
B = R-. (13.6) 

L\vz 
Note that both R and B have the same dimensions as flux density, and this is often 
a source of confusion. Finally, B is simply related to the 6D phase space density 
p. 

One of the most important applications of these beams is for collision experi­
ments. High-resolution studies of collisions between atoms in thermal beams were 
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FIGURE 13.4. Plot of brightness (diamonds) and brilliance (triangles) vs. phase space 
density for various atomic beams cited in the literature. The lower-left point is for a normal 
thermal beam, and the progression toward the top and right has been steady since the advent 
of laser cooling. The experimental results are from Riis et al. [72], Scholz et al. [218], 
Hoogerland et al. [219], Lu et al. [220], Baldwin et al. [221], Molenaar et al. [65], Schiffer 
et al. [222], Lison et al. [223] and Dieckmann et al. [224]. The quantum boundary for 
Bose-Einstein condensation (see Chapter 17), where the phase space density is unity, is 
shown by the dashed line of the right (figure adapted from Ref. 223). 

hampered in the past by the Maxwell-Boltzmann velocity distribution of effusive 
beams (see Sec. 5.2), so even in the simplest experiments the signals were always 
averaged over this distribution. Although some clever schemes have been devised 
to overcome this problem, they always suffer from loss of intensity. In addition to 
the longitudinal velocity compression discussed in Chapter 6, laser cooling can also 
provide intensity enhancement by transverse velocity compression. Most impor­
tant, it enables collision experiments in the new regime of ultra-low temperatures 
(see Chapter 14). 

Another application lies in the field of atom-surface scattering, where well­
collimated atomic beams with large transverse deBroglie wavelengths can be used 
to study surface structures. Still another application is atomic nanofabrication 
discussed in Sec. 13.6. In this case, high brilliance beams are needed because of 
the strong velocity dependence of the focal length of atom lenses as discussed on 
pg. 184. Finally is the application to the area of precision measurements and atomic 
clocks (see Sec. 13.7). Many ofthe precision beam measurements of the 1950s and 
60s were limited by the brightness of the atomic beam. These include several of 
fundamental importance, such as the electrical neutrality of matter and the search 
for dipole moments of elementary particles. This section focuses on techniques to 
obtain monochromatic, well-collimated, high brightness atomic beams. 
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13.5.2 Beam-Brightening Experiments 

One of the first beam-brightening experiments was performed by Nellesen et 
at. [225,226] where a thermal beam of Na was slowed with the chirp technique 
(see Sec. 6.2.1). Then the slow atoms were deflected out of the main atomic beam 
at an angle of 22° using a focused laser beam, while the fast atoms (not captured 
in the slowing process) remained undeflected. This process not only deflected the 
atoms, but also transversely cooled them. The deflected beam had selectable final 
velocities between 50-200 mls. 

In a later experiment [227] this beam was fed into a two-dimensional MOT (see 
Sec. 11.4) where the atoms were cooled and compressed in the transverse direction 
by an optical molasses of a+ -a- polarized light. For this compression the MOT 
field was produced by permanent magnets. To improve the capture range, these 
magnets were shaped to obtain an increasing field gradient from 50 G/cm to 500 
G/cm as the atoms moved through the optical molasses. In this way a beam of a few 
mm diameter was compressed into a beam only 43 ILm wide with a tiny divergence. 
The density in the beam was approximately 109 cold atoms/cm3, which is about 
1000 times the density of the initial effusive beam. Although the density is high, 
the beam is still optically thin from the sides which makes it easy to manipulate it 
even further. 

Another approach was used by Riis et at. who directed a slowed atomic beam 
into a hairpin-shaped coil that they called an "atomic funnel" [72]. The wires of 
this coil generated a two-dimensional quadrupole field that was used as a two­
dimensional MOT as described before. Inside the trapping region, the beam of 
atoms is further slowed in the longitudinal direction by two counterpropagating 
laser beams of different frequencies, thereby forming a moving optical molasses, 
so that atoms moving at a certain selectable velocity experience zero force. In 
this way a monochromatic atomic beam with a velocity of 260 mis, a diameter of 
150 ILm, and a flux of 109 atoms/s was produced, leading to a density of 2 x 106 

atoms/cm3• This is an increase of the density over chirped-cooled atomic beams 
by a factor of 40. 

The authors of Ref. 223 have constructed a high-brilliance beam of Cs using a 
Zeeman slower for longitudinal velocity compression (see Sec. 6.2.2) and trans­
verse collimation with optical molasses. They made two important improvements 
to the longitudinal phase space compression. First, they carefully tailored the field 
near the exit of the solenoid using extra magnets in a way explored in Ref. 65 but 
refined by them. Second, they improved the time-of-flight measurement system so 
that it could resolve only a few mmls, nearly down to the recoil velocity for Cs. 
Thus Fig. 13.4 shows their beam with the highest brilliance to date, even though 
the phase space density is considerably lower than other beams. This beam is very 
well suited to nanofabrication. 



13.5 Application to Atomic Beam Brightening 189 

<,1 .. 

t------------~ , 

FIGURE 13.5. Schematic representation of a two-dimensional collimator. The incoming 
laser beam makes several bounces, and at each bounce the angle between the laser light and 
the normal to the atomic beam is reduced. In this way the light interacts with atoms coming 
from a much larger solid angle of the source. Furthermore, because of the recycling of the 
light, less laser power is required (figure from Ref. 219). 

13.5.3 High-Brightness Metastable Beams 

These approaches yield intense beams when the number of atoms in the uncooled 
beam is already high. However, if the density in the beam is initially low, for 
example in the case of metastable noble gases or radioactive isotopes, one has to 
capture more atoms from the source in order to obtain an intense beam. Aspect 
et al. [71] have used a quasi-standing wave of converging laser beams whose 
incidence angle varied from 87° to 90° to the atomic beam direction, so that a 
larger solid angle of the source could be captured. In this case they used a few mW 
oflaser light over a distance of 75 mm. 

One of the most sophisticated approaches to this problem has been developed 
for metastable Ne by Hoogerland et al. [219]. They used a three-stage process 
to provide a large solid angle capture range and produce a high brightness beam. 
The first stage of their beam brightener consists of two pairs of nearly parallel 
mirrors arranged so that multiply reflected beams of light cross the atomic beam 
at varying angles to provide a large capture range (see Fig. 13.5). The laser beams 
bounce between the mirrors 10 times, and the angle of the light with respect to the 
direction of the atomic beam increases by 0.5 mrad each time, so that at the end 
of the mirrors the light intersects at almost 90° with respect to the atomic beam. 
By recycling the laser light, the laser power consumption of this section is only 30 
mW and the collimation of the beam could be extended over a large distance of 
150 mm. The solid angle captured in the process is about 0.1 rad. 

This region is followed by a magneto-optical lens to focus the atoms to a small 
space (see Sec. 13.3). This is required because the transverse collimation is nec­
essarily accompanied by an increase in the diameter of the atomic beam to 20 mm 
in the last case. To overcome this problem, a two-dimensional MOT as discussed 
before could be used, but the high longitudinal speed of the atoms would require 
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a very long region for this. Instead they used only a short section to deflect the 
atoms toward the center of the beam, effectively forming a magneto-optic lens 
(see Sec. 13.3). After 70 cm the atoms are focused to nearly a point and a small 
section of optical molasses was then used to cool the transverse velocities. In this 
way they obtained an increase of the metastable intensity of over 1400. 

13.6 Application to Nanofabrication 

The ability to decelerate, cool, and trap atomic samples is only one of the capa­
bilities of optical control of atomic motion. As discussed earlier in this chapter, 
light can also be used to manipulate and steer atoms with sensitivity and resolution 
unimagined just a few years ago. Atomic beams can be focused, split, and delivered 
in complex patterns for the construction of objects on an incredibly small scale. 
Atomic beam nanofabrication has wavelength limits much smaller than similar 
optical processes because typical values of the de Broglie wavelength are 10-11 m 
in atomic beams. Furthermore, the neutrality of atoms removes the space charge 
limits and Coulomb repulsion effects associated with charged particle beams. 

There are two fundamentally different methods for nanofabrication. The first 
consists of optically manipulating the atoms of interest from a beam or vapor 
directly into the desired pattern, typically on a substrate where the desired structures 
build up on the surface as the atoms strike and stick to it. Such direct fabrication 
is limited to those atoms having optical transitions that are convenient for laser 
manipulation and those substrates that are compatible with the atoms. The second 
method is atomic lithography, using atoms instead of light to expose the resist. 
There are many combinations of atoms and resists that have been shown to work, 
using either geometrical masks or optical fields to generate the distribution of atoms 
in the desired pattern to expose the resist. After exposure, the resist is "developed" 
by vapor etching, wet chemistry, or whatever is appropriate, just as in traditional 
lithography. 

In the first experiments [228,229] a pattern of lines of atoms was applied to a 
substrate. The Na atoms in a thermal beam traversed a standing wave of nearly 
resonant laser light, and the pattern of nodes and antinodes formed an array of 
microlenses resulting from the dipole force as discussed in Sec. 13.3.2. Even though 
the intensity distribution of such dipole force lenses is sinusoidal instead of the 
optimal parabolic, very good focusing can be achieved. In later experiments [230] 
a substrate placed in the "focal plane" of such an array of "cylindrical microlenses" 
was coated with an array of lines of Cr, as shown in Fig. 13.6. Although the Na 
pattern of the earlier experiments could not be exposed to air because metallic Na 
is unstable, Cr is quite durable and the pattern is very robust. There are now many 
laboratories seeking suitable combinations of atoms and substrates for such direct 
nanofabrication. 

Atom lithography depends on having a thin layer of an appropriate resist for 
the atoms to react with. Perhaps the most successful types are self-assembled 
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FIGURE 13.6. Chromium deposited directly onto a substrate of silica using a series of 
microlenses (figure from Ref. 230). 

monolayers (SAM's) of polymers of various lengths. These long molecules have 
hydrophyllic radicals at one end and hydrophobic ones at the other end, so they 
tend to line up on a substrate in water like the vertical filaments of a plush carpet. 
Thus a chemically vulnerable layer of material, previously deposited on a suitable 
base, can be covered with a film of such a SAM. Then atoms arriving in a pat­
tern formed by a mask or by optical steering or focusing can attack the polymer 
molecules somewhere along their length by penetrating a few atomic layers into 
the "carpet", compromising their ability to protect the underlying layer of mate­
rial. One very common preparation is alkanethiolate polymers of various lengths 
between 5 and 10 units which form suitable SAMs on evaporated gold surfaces. 
After exposure, the broken alkanethiolate molecules undergo chemical removal 
and then the exposed gold is dissolved away. Then the remaining alkanethiolate 
molecules are removed, leaving the desired gold pattern. 

Metastable rare gas atoms, carrying between 10 and 20 e V of energy, can ef­
fectively break these alkanethiolate chains with nearly 100% efficiency. The low 
energy (heavy) metastables are more suitable for shorter chains, whereas He* with 
its 20 e V energy can damage chains of length up to 12. Needless to say, the longer 
the chain ofthe SAM polymer, the better the undamaged molecules can protect the 
substrate and prevent unwanted etching. Some early experiments were done with 
He* atoms for this reason [231,232], and now several laboratories are pursuing 
this technology. 

Until 1997 all such atom lithography experiments were done by patterning the 
atomic beam with a physical mask. The authors of Ref. 233 used an optically 
focused Cs beam to attack the nine-element long chains of nonanethiole in a SAM 
on a thin layer of gold. The exposed sample was suitably etched and examined with 
both an optical and an atomic force microscope. Both images showed well-defined 
lines separated by 426 nm. 

The potential applications of such atomic nanofabrication are manifold. Gratings 
made this way can serve as primary length standards in the JLm range because 
the long-range order is not subject to systematic effects of the kind that arise with 
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mechanical translations, and because the A /2 separation between the grids is known 
to spectroscopic accuracy. By doing such nanofabrication in two dimensions, it 
may be possible to make arrays of microstructures with unprecedented ease and 
precision. These may be suitable for many diverse purposes such as diffractive 
optical devices or electronic chips such as computer memory or Josephson junction 
arrays. 

13.7 Applications to Atomic Clocks 

13.7.1 Introduction 

Throughout history humans have tried to build devices for measuring time. There 
was a great increase in the development of clocks after the Europeans discovered the 
western hemisphere when good clocks became necessary for accurate navigation. 
Various governments offered large awards for the construction of clocks that could 
maintain accuracy through an ocean voyage. Many countries established Naval 
Observatories for this purpose, and several of these remain today as the principal 
national arbiters of time. 

In the 16th century Galileo discovered the periodicity of the pendulum, and in the 
17th century Huygens developed an escapement mechanism for both pendulum and 
spring-driven clocks that set the standard for 200 years. Time keeping experienced 
significant progress in the 19th century with the advent of the American railroads. 
The first clocks with accuracy much better than 1 sec/day were based on crystal 
quartz oscillators developed at the beginning of the 20th century. 

Motivation for accurate time keeping comes from very many sources. For the 
purposes of scientific research, very accurate comparison of frequencies is neces­
sary for testing basic theories, including relativity, QED, quantum mechanics, etc .. 
For the purposes of navigation, time keeping has been essential for hundreds of 
years. All commercial and military aircraft and spacecraft carry quartz or atomic 
clocks, and many even carry redundant systems. The new Global Positioning Sys­
tem (GPS), which has already begun to revolutionize travel, depends on atomic 
time, as do computer systems, radio and television broadcasting, telephone and 
communication systems, and a host of other contemporary technologies. As long 
as it is believed that all133Cs atoms are identical, then there is confidence that an 
atomic clock anywhere in the universe keeps the same time as the commercially 
available standards found in dozens of laboratories throughout the world. 

The idea of atomic clocks grew out of the atomic beam research begun in the 
late 1930s. Rabi, Ramsey, Zacharias, and others promoted the idea after World 
War II, but it took 20 years more to become adopted. In 1967 the internationally 
accepted definition of the second changed from mechanical time pieces calibrated 
by the Earth's orbit to atomic time calibrated by the hyperfine structure splitting 
of the ground state ofCs. By definition, 1 second is exactly 9,162,631,770 cycles 
of the (F, MF) = (3,0) {:} (4,0) transition in l33Cs, the natural stable isotope. 
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The limitation to both the accuracy and precision of atomic clocks is imposed 
by the thermal motion of the atoms (see Sec. 5.2). Both the nonzero speed and 
the thermal range of the speeds of different atoms from an atomic sample provide 
the ultimate limitation on high precision laboratory measurements and on clocks. 
One cause of this problem arises from the broadening of a spectral line caused by 
the small interaction time between the measuring equipment and rapidly moving 
atoms. At thermal velocities of typically 500 mis, there are only a few ms to interact 
with a free atom in an apparatus of reasonable size (i.e., a few meters). 

The other source of this limit arises from a frequency shift caused by the rela­
tivistic time differences between reference frames in relative motion (sometimes 
called the second-order Doppler effect; the first -order Doppler effect is the familiar 
classical frequency shift between moving objects). If the velocity of the atoms with 
respect to the measuring apparatus were known, this effect could be calculated and 
accommodated as well. But the atoms have a velocity distribution, characterized by 
the temperature oftheir source. Although this too can be calculated as in Sec. 5.2, 
the details of the distribution at the low velocity end depend very sensitively on the 
details of the source, and sometimes cannot be adequately known (see Sec. 13.4). 
Thus a sample of laser-cooled atoms could provide a substantial improvement in 
atomic clocks and in spectroscopic resolution. 

13.7.2 Atomic Fountain Clocks 

The first attempts at providing slower atoms for better precision or clocks were 
by Zacharias in the 1950s, as discussed in Sec. 13.4. The advent of laser cooling 
changed this because the slow atoms far outnumber the faster ones. The first rf 
spectroscopy experiments in an atomic fountain using laser cooled atoms were 
reported in 1989 and 1991 [234,235], and soon after that some other laboratories 
also reported successes. 

Some of the early best results were reported by Gibble and Chu [236,237]. They 
used a MOT with laser beams 6 cm in diameter to capture Cs atoms from a vapor at 
room temperature. Their estimated capture velocity was 30 mis, consistent with the 
estimates of Sec. 11.4.3. These atoms were launched upward at 2.5 mls by varying 
the frequencies of the MOT lasers to form a moving optical molasses as described 
in Sec. 13.4, and subsequently cooled to below 3 ILK. The atoms were optically 
pumped into one hfs sublevel, then passed through a 9.2 GHz microwave cavity 
on their way up and again later on their way down. The number of atoms that were 
driven to change their hfs state by the microwaves was measured vs. microwave 
frequency, and the signal showed the familiar Ramsey oscillatory field pattern. The 
width of the central feature was 1.4 Hz and the SIN was over 50 (see Fig. 13.7). 
Thus the ultimate precision was 1.5 mHz corresponding to liv/v ~ 10-12/. 1/ 2 

where. is the number of seconds for averaging. Stability of the rf signals was 
maintained with a hydrogen maser. 

The ultimate limitation to the accuracy of this experiment as an atomic clock was 
collisions between Cs atoms in the beam. Because of the extremely low relative 
velocities of the atoms, the cross sections are very large (see Sec. 14.3) and there 
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FIGURE 13.7. The central Ramsey fringes of the microwave clock transition 
(F, M F) = (3, 0) {} (4, 0) in a 15 cm high Cs fountain. Each open circle data point 
represents approximately 1 s of data collection time (figure from Ref. 237). 

is a measurable frequency shift [238]. By varying the density of Cs atoms in 
the fountain, the authors found frequency shifts of the order of a few mHz for 
atomic density of 109/cm3, depending on the magnetic sublevels connected by 
the microwaves. Extrapolation of the data to zero density provided a frequency 
determination of aviv ~ 4 x 10-14• More recently the frequency shift has been 
used to determine a scattering length of -400ao [239] so that the expected frequency 
shift is 104 times larger than other limitations to the clock at an atomic density 
of n= 109/cm3• Thus the authors suggest possible improvements to atomic time 
keeping of a factor of 1000 in the near future. Even more promising are cold atom 
clocks in orbit (microgravity) where the interaction time can be very much longer 
than I s [240]. 

Another important approach to atomic clocks uses an optical transition fre­
quency instead of a microwave frequency. A group at NIST is studying the 2 Hz 
wide transition in metastable Xe atoms driven by a two-photon transition between 
the Iss and IS3leveis [241]. The energy difference corresponds to A = l.1{tm, but 
the angular momentum J of these levels differs by 2 so single-photon transitions 
are not allowed. Because the two-photon process at A = 2.19 {tm is so weak, its 
natural width is very small, enabling very high spectral resolution. The atoms can 
be cooled and trapped on the allowed Iss {} 2P8 transition at A = 883 nm whose 
natural width is'" 5 MHz, an easily accessible wavelength for diode or Ti:Sapphire 
lasers. 

13.8 Application to Ion Traps 

The notion of laser cooling originates from attempts at improving the precision 
of measurements with trapped ions for high resolution spectrocopy and atomic 
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clocks [37,242]. The resolution limits are imposed by both residual first-order 
Doppler effects from "Doppler-free" spectroscopy, and from second-order Doppler 
effects (time dilation) that can not be completely characterized because of a lack 
of sufficently accurate information about the velocity distribution of ions in the 
traps. Although there was indeed early discussion about applications to neutral 
atoms as well [38], certainly the first experiments [242,243] and the first quanti­
tative description [39] were motivated by the ion trap groups. Several papers, but 
especially Ref. 39, laid down the fundamental ideas of resonant cooling that apply 
to both ions and neutral atoms. 

These initial cooling ideas were related to Raman transitions (see Sec. 8.7.2) 
among the discrete bound states of trapped ions, as illustrated for optical lattices 
in Fig. 16.5. But the experiments described in Ref. 242 were in the domain where 
the discrete quantum states could not be resolved, and so the discussion here is 
more appropriate for this chapter than for Chapter 15 or 16. 

In this first experiment [242], the authors used the currents induced in the trap 
electrodes as a measure of the motion of the ions, and assumed that the number 
of ions was fixed. They applied the cooling light from a frequency-doubled dye 
laser, and observed the time dependence of this induced voltage. They found that 
the temperatures were reduced to below their threshold of measurement of 40 K, 
although it's safe to assume that they had actually acheived a temperature below 
lOOmK. 

It was not long before the experimenters could isolate a single ion [244] and 
laser cool it to extremely low energy. Such experiments were followed by dramatic 
technological progress in precision spectroscopy that is still an active subject in 
atomic clock research (see Sec. 13.7). Furthermore, the development of this new 
tool for one purpose was exploited for a plethora of fascinating experiments in 
the fundamentals of quantum mechanics. These include, but are not limited to the 
study of single quantum jumps, Wigner crystals, "shelved atoms", SchrOdinger cat 
states, and laser cooling to the quantum limit of the zero-point motion in the trap. 
Although this book is about laser cooling of neutral atoms, its readers should pay 
careful attention to the extensive literature of beautiful experiments done with ion 
traps. 

13.9 Application to Non-Linear Optics 

One of the most widespread applications of the interaction between atoms and light 
is non-linear optics. Atomic absorption and scattering provide the appropriate in­
teraction for multi-photon effects, Raman processes, and other related phenomena. 
In order to avoid interatomic effects in such studies, they are often done in a va­
por where collisions are negligible. Since many cases require that the detuning 
of the light from atomic resonance be large enough to avoid resonant excitation, 
this detuning must generally exceed the Doppler width associated with the motion 
of the atoms in the atomic vapor. At ordinary temperatures, such Doppler widths 
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FIGURE 13.8. The absorption spectrum of a probe beam transmitted through a sample of 
Cs atoms in a MOT, where the probe frequency is measured relative to that of the MOT. 
The narrow dispersion-shaped feature at zero detuning corresponds to a stimulated Raman 
transition between ground state levels. Its 400 kHz width is less than 1110 of the natural 
width, and is dominated by the Zeeman shifts from the inhomogeneous trap fields. Its 
spectroscopic linewidth limit is determined by the transit time broadening, the spread of 
the light shifts from the inhomogeneous optical field, and the residual population of the 
atomic excited state. The large, broad absorption feature centered at the atomic absorption 
frequency near 15 MHz, and the weak gain feature centered near -15 MHz, are not of interest 
here. (Figure adapted from Ref. 245.) 

are a large fraction of a GHz, but laser cooling can provide atomic samples with 
much smaller values. With such samples, non-linear optics will enter a new domain 
where the Doppler widths are much smaller than the natural widths, and optical 
detunings can therefore be reduced to a few times the natural width. Thus one can 
expect enormous non-linear effects, allowing the exploration of previously known 
effects at much lower intensities, as well as the study of new effects that could not 
be observed at ordinary temperatures. 

The earliest demonstration of non-linear optical spectroscopy in laser-cooled 
atomic vapors was in 1991 [245,246]. Both groups studied the Raman transitions 
of atoms trapped in a MOT (see Sec. 11.4). The first experiments measured the 
transmission of an auxiliary probe laser beam through the atomic sample under 
conditions where it absorbed as much as 75% of the light. The experimenters 
observed three features in the spectrum, two broad and one narrow as shown in 
Fig. 13.8. The two broad features result from atomic fluorescence phenomena that 
are roughly independent of frequency, and hence are not affected by the Doppler 
shifts caused by atomic motion. But the narrow feature is a Raman transition 
involving light from each of the two laser beams, one from the probe and the 
other from the trap. Satisfying the Raman resonance condition for excitation by 
one beam and stimulated emission by the other demands that all atoms in the 
sample see both beams with the same frequency, and since they are not parallel, 
the atomic velocities must be small enough for the Doppler shifts to be negligible. 
This requires a sample of laser cooled atoms. 

The signals arise from transitions between different magnetic sublevels of the 
ground state whose degeneracies have been lifted by the light shifts caused by the 
trap laser beams, and whose populations differ as a result of optical pumping, again 
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by the trap laser beams. In later stages of the experiments, additional laser beams 
were added to test this hypothesis [245]. This test, along with careful modeling of 
all the experimental parameters, confirmed the scenario described here. 

Other Raman transitions have provided further experiments in non-linear optics 
with cold, trapped atoms [247,248]. In these experiments an optical cavity was 
placed around a sample of Cs atoms in a MOT, and tuned near the frequency of 
the gain peak near w in Fig. 13.8. Since there is a population difference between 
the two ground states coupled by the Raman resonance, stimulated emission of 
radiation can occur, resulting in gain in the cavity. When the cavity is resonant 
with the emitted light, the process is enhanced and a laser beam emerges from 
the excited mode of the cavity. Again, careful tests verified this description of the 
origin of the strong gain reported [247,248]. 

This is a most curious laser configuration, because the gain width of the active 
medium is very narrow. In the case of condensed matter lasers, the spectral range 
of the gain curve is typically many orders of magnitude larger than the width of 
the laser's optical cavity (the cavity width is approximately its free spectral range 
divided by its finesse, or several MHz in most cases). Even for gas lasers, the 
spectral width of the gain medium is the Doppler width, typically a large fraction 
of a GHz. In this unique gas phase laser, however, the Doppler width is well below 
the cavity width, and also below the atomic natural width. In fact, the spectral 
width of the gain medium is determined by the inhomogeneous laser and magnetic 
fields, as well as by the optical pumping rate, just as in the Raman spectroscopy 
experiment described above. Clearly there will be very many new and interesting 
studies on such non-linear systems. 

Non-linear opticar/ effects also play an important role in the experiments on 
atoms trapped in the periodic wells associated with the standing waves of optical 
molasses in one [162-164], two [249], or three dimensions [250,251]. That subject 
is discussed in Sec. 11.2.4 on microscopic optical traps and Chapter 16 on optical 
lattices. Here it is only mentioned for completeness, along with the suggestion that 
there will surely be non-linear experiments performed on such samples of atoms. 
In Ref. 250 there is a considerable discussion of Bragg reflection and four-wave 
mixing from atoms bound in a three-dimensional optical lattice. Further studies 
on this topic have been performed [252]. 

Still another multibeam effect on laser-cooled atoms is recoil-induced reso­
nances. Here the resonance condition is calculated very precisely so that it in­
cludes both the energy and the momentum imparted to an atom that undergoes 
absorption followed by stimulated emission [253-256]. Since the recoil energy of 
the atom in the scattering process is included in the energy balance, the initial and 
final states are almost always non-degenerate, and a very sensitive dependence on 
atomic velocity enters the resonance condition. In many ways it is similar to the 
Compton effect, and may be appropriately described as stimulated optical Comp­
ton scattering. Thus the method lends itself to very high-resolution measurements 
of atomic velocities, well below the recoil velocity likj M. Since this corresponds 
to recoil energies in the kHz region, the limits of this spectroscopy will probably 
be dominated by interaction time and small field inhomogeneities. 



198 13. Newtonian Atom Optics and its Applications 

One of the most interesting, and potentially useful, applications of non-linear 
optics is phase conjugate reflection. Two light beams prepare the atoms in a sam­
ple and a third incident beam is retroreflected, independent of its initial angle. 
The temporal phase of the beam is reversed, so that any aberrations or wavefront 
distortions may be removed. This has applications in processing images from 
satellites, airborne cameras, or other sources. The use of a laser-cooled sample for 
phase conjugate reflection will make enormous improvements in its sensitivity, 
and hence its utility. The first experiments of this kind have already demonstrated 
that it works [257], and further improvements are in progress. 



14 
Ultra-cold Collisions 

14.1 Introduction 

Laser-cooling techniques were developed in the early 1980s for a variety of reasons, 
such as high-resolution spectroscopy. During the development of the techniques 
to cool and trap atoms, it became apparent that collisions between cold atoms in 
optical traps was one of the limiting factors in the achievement of high density sam­
ples. Trap loss experiments revealed that the main loss mechanisms were caused by 
laser-induced collisions. Further cooling and compression could only be achieved 
by techniques not exploiting laser light, such as evaporative cooling in magnetic 
traps (see Chapter 12). Elastic collisions between atoms in the ground state are 
essential in that case for the rethermalization ofthe sample, whereas inelastic colli­
sions lead to destruction of the sample. Knowledge about collision physics at these 
low energies is therefore essential for the development of high-density samples of 
atoms using either laser or evaporative cooling techniques. 

At the end of the 1980s it became clear that laser-cooling techniques could also 
be used as a tool to study collision processes at low energies. Thermal collisions 
had been studied in laboratories since the beginning of the century, whereas high­
energy collisions have been studied only since the development of accelerators in 
the 1930s. Laser cooling produces samples of atoms with temperatures below 1 
mK and allows collision physicists to extend their energy range by more than six 
orders of magnitude. Moreover, the study of cold collisions in the presence of a 
light field became a fruitful subject from which high-resolution information on 
molecular structure could be obtained. 
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This chapter presents ultra-cold collisions from both points of view. Although 
excited-state collisions were studied in more detail before ground-state collisions, 
this discussion begins with ground-state collisions. It starts with potential scatter­
ing, which formed the heart of collision physics for many decades and which has 
been the subject of many books [258-260] and recent review articles [261-264] 
that will be cited for further details. 

14.2 Potential Scattering 

The interaction between two structure less particles is commonly described by 
the technique of potential scattering, where the interaction between the colliding 
partners is given by the interaction potential V (R), where R is their separation. 
In the quantum mechanical description of the collision process, the incoming 
wavefunction of the relative motion of the two particles is expanded in partial 
waves, each having a well-defined angular momentum i. In this so-called partial 
wave analysis, the scattering of each partial wave l is calculated by solving the 
time-independent SchrMinger equation (SE) using the following Hamiltonian in 
spherical coordinates: 

/i2 d ( 2 d) /i 21(l + 1) 
1t = - 2/LR2 dR R dR + 2/LR2 + V(R). (14.1) 

Here /L = MaMb/(Ma + Mb) is the reduced mass of the interacting particles 
denoted by a and h. The second term denotes the centrifugal energy for a given 
partial wave i. 
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FIGURE 14.1. (a) Interaction potential of two colliding particles interacting by a en / Rn 

potential. (b) The trajectory of an atom in the potential of (a) for different impact parameters 
b. The critical impact parameter be for which the collision leads to a reaction in the inner 
region is indicated. 
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At small internuclear distances the potential V(R) becomes appreciable com­
pared with the total energy E, and the solutions of the SE are complicated functions. 
However, at large distance V(R) becomes small and the solutions evolve toward 
simple oscillatory functions that are the solutions of the SE in the absence of the 
potential energy term V (R). The only difference is that there is a phase shift 8e 
between the two solutions, and both the differential and total cross sections can be 
expressed in terms of these phase shifts [259]. The total cross section is 

(14.2) 

where the sum runs over all different partial waves l and k - .j2ILE/Ii. The 
summation over l can be truncated at a certain value of lmax, where the centrifugal 
term in the Hamiltonian is so large compared to the total energy, that the incoming 
wave can no longer penetrate through the centrifugal barrier to small regions where 
the potential is appreciably different from zero. Then the phase shift 8e becomes 
small and therefore the contribution to the total cross section becomes vanishingly 
small. Although this partial wave analysis of the collision process is very powerful, 
it does not provide much insight into the reaction. 

The connection between a quantum mechanical and semiclassical description 
of the collision process can easily be made by identifying the total orbital angu­
lar momentum Ii.jl(l + 1) as the magnitude of a classical angular momentum 
i = R x jj. Since the magnitude of the angular momentum in a central potential 
V (R) is conserved, its value is given by L = ILVob, where Vo is the initial velocity 
and b is called the impact parameter (see Fig. 14.1 b). In the semiclassical analysis 
the particle with reduced mass IL starts at infinity with a velocity Vo and at each 
instant the classical equations of motion are solved using the interaction V (R) and 
the centrifugal term. The quantum mechanical correspondence principle between 
quantum and classical mechanics requires that the semiclassical description be­
comes valid when the angular momentum in the process becomes large compared 
to Ii, i.e., when many partial waves l contribute to the cross section. At thermal 
collision energies a semiclassical description is normally sufficient. 

The semiclassical description provides insight into the many special properties 
of ultra-cold collisions. The Langevin model that was first introduced in 1905 can 
be used to calculate mobility and diffusion coefficients [265]. In the simplest case, 
the interaction potential between two colliding particles can be approximated by 
the long-range interaction in combination with the centrifugal term: 

Cn 1i21(l + 1) 
U(R) = --Rn + -2-IL-R-=-2- (14.3) 

where n is the order of the interaction and Cn is the corresponding dispersion 
coefficient. Here the centrifugal term has been included in the definition of the 
interaction potential U (R). Only the restricted case of collisions of identical atoms, 
either alkali-metal or metastable noble gas atoms is considered here. If the atoms 
collide in the S-state, the interaction is a van der Waals interaction and n = 6. 
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FIGURE 14.2. Potential energy of two Na atoms interacting with different interactions (n=3, 
5, 6) indicated by solid straight lines. The ranges for which the molecular, fine structure and 
hyperfine structure interaction become important, are indicated in the bottom part of the 
graph. The dashed line indicates the deBroglie wavelength as a function of temperature. The 
symbols p, d, f, g, and h indicate the onset for scattering with the partial waves i= 1,2,3,4 and 
5 for each of the three potentials. The temperature TO indicates the temperature for which 
the WKB-approximation begins to fail. The temperatures T D and Tr on the left side indicate 
the range of temperatures which can be reached respectively, by Doppler and sub-Doppler 
cooling (see Sec. 5.1). The energy ranges on the right indicate the typical atomic interaction 
energies. The temperature Ts is the temperature where spontaneous emission during the 
collision becomes important. 

For two atoms colliding in the P-state, the interaction is a quadrupole-quadrupole 
interaction and n = 5. If one atom is in the S-state and the other atom is in a 
P-state, so the two states are coupled by an allowed dipole interaction, there is a 
dipole-dipole interaction and n = 3. 

In the semiclassical model, the centrifugal barrier prevents reactions from taking 
place if the angular momentum is too large. For a low collision energy this cut -off 
becomes important even for small values of the angular momentum. However, in 
the quantum mechanical model there is no centrifugal barrier for l = 0 and the 
scattering of the lowest partial wave can always take place. So for sufficiently low 
energy, the scattering can be described in terms of only one partial wave and the 
regime is referred to as s-wave scattering. From the Langevin model, an estimate 
can be made for the energy where this regime becomes accessible. 

The maximum of the interaction potential of Eq. 14.3 occurs at Rc , which can 
be found by setting dU(R)/dR = O. Then (see Fig. 14.la): 

R = ( J.LnCn ) 1/(n-2) 

c ;,2l(l + 1) (14.4a) 
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and 

(14.4b) 

Reactive collisions can only take place if the collision energy is larger than U (Re) 
(see Fig. 14.1 b). In order to estimate the cross section for the process, the maximum 
impact parameter be that contributes to the reaction needs to be found. Classically 
the first step consists of writing L = R x /-tv ~ /-tvb. At threshold, taking the 
energy E equal to U(Rc) and putting L2 = h2i(i + 1) yields 

L E(n-2)/2n 
b - - E- 1/ n 

e - ~ ()( 1/2-
",2/-tE E 

(14.5) 

The cross section u is then proportional to b~ ()( E-2/ n . 

Equation 14.4a also permits an estimate of the number of partial waves con­
tributing to reactive collisions. For the highest partial wave ie contributing at a 
certain temperature T, the relation U (Re) = 3k B T 12 yields for ie: 

iii = (n/-tCn) ( 3kBT )(n-2)/n 
e( e + ) ;;2 (n - 2)Cn 

(14.6) 

The onset of quantum behavior can be defined as the temperature T Q where only s­
waves can contribute, i.e., the temperature for which ie = 1 no longer contributes. 

Figure 14.2 shows the R -dependence that this analysis predicts for the interaction 
energy of Na. Similar plots can be made for the other alkalis, but such plots are 
very similar. The onset for scattering with partial wave i= 1, 2, 3, and 4 is indicated 
with the symbols p, d, f, and g for each of the three potentials indicated by the 
solid lines. The temperature TQ is thus defined at the point where the p-wave 
starts to contribute. Notice that T Q is of the order of the Doppler temperature 
(see Sec. 5.1) for an atomic interaction with an n = 6 potential, but that much 
lower temperatures are needed to observe the quantum threshold for dipole-dipole 
interactions (n = 3). 

Julienne and Mies [266] suggested that the onset of quantum behavior can 
be found more rigorously by considering the temperature TO' where the WKB­
approximation fails. Defining the local deBroglie wave vector k = 2rr: 1 Ad B = 
J2/-t[E - U(R)]lh, the validity criterion for the use of WKB-methods becomes 
dAdBldR « 1. Using the interaction potential ofEq. 14.3, they obtain the same 
scaling of the maximum angular momentum ie with temperature, but the overall 
onset of quantum behavior occurs at a somewhat higher temperature (see Fig. 14.2). 

Both T Q and TO provide rigorous definitions of the transition point from semi­
classical to quantum mechanical scattering. This transition point can also more 
loosely be defined as the point where the deBroglie wavelength becomes com­
parable to the size of the potential. Although this size is not strictly defined, for 
chemical reactions it is of the order of 1 Oao, where ao = h2 1 me2 is the Bohr radius. 
However, as the deBroglie wavelength is lowered, the scattering probes different 
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parts of the potential and as this chapter will show, cold collisions probe the long­
range part of the potential as a result of the long deBroglie wavelength. Finally, 
in excited-state collisions the transition point can be defined as the temperature 
where the lifetime of the excited state becomes larger than the collision time. In 
that case the atoms can no longer be excited at long range and remain in the excited 
state during the collision. Since the lifetime of the first excited state in the alkalis 
and noble gases is of the order of tens of ns, this regime is characteristic of most 
optical traps. 

Figure 14.2 summarizes this discussion in one plot for the different interactions 
important for cold collisions in optical traps. As the plot shows, the behavior for the 
different possible interactions is very different. For an n = 6 interaction, the regime 
of s-wave scattering appears at the Doppler temperature, so the scattering process 
for this potential has to be described quantum mechanically. However, for the n = 3 
interaction many partial waves can still contribute at the Doppler temperature and 
the collision process can easily be described semiclassically. Therefore there is 
not one single transition point between quantum and semiclassical descriptions 
to be defined for a given system, but this point depends on the power n of the 
interaction. In this respect it is not practical to make a distinction between cold 
and ultra-cold collisions. Although this distinction is defined in the literature to 
be around 1 tLK [264], the physics of the collision process below 1 tLK is very 
different for S-S (n=6) or S-P (n=3) collisions. 

14.3 Ground-state Collisions 

Ground-state collisions play an important role in evaporative cooling (see Chap­
ter 12). Elastic collisions are necessary to obtain a thermalization of the gas after 
the trap depth has been lowered, and a large elastic cross section is essential to 
obtain a rapid thermalization. These are therefore called "good" collisions in Chap­
ter 12. Inelastic collisions, on the other hand, are called "bad" collisions, since the 
released energy accelerates the particles, which can then reach energies too high 
to remain trapped. A large good-to-bad collision ratio is essential for efficient 
evaporative cooling. 

Ground-state collisions for evaporative cooling can be described by one param­
eter, the scattering length a. As Fig. 14.2 shows, ground-state collisions below or 
at the Doppler temperature are in the s-wave scattering regime and therefore only 
the phase shift 80 for e = 0 is important. Moreover, for sufficiently low energies, 
such collisions are governed by the Wigner threshold laws where the phase shift 
80 is inversely proportional to the wavevector k of the particle motion. This can be 
understood as follows: The wavefunction in the inner range of the potential is no 
longer dependent on the energy of the collision, since in the inner range the poten­
tial energy is much larger than the collision energy. So the total accumulated phase 
in the inner region is independent of E. However, the phase of the unperturbed 
wavefunction is directly proportional to k, so the phase shift 80 is proportional to 
1/ k. Taking the limit for low energy gives the proportionality constant, defined as 
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FIGURE 14.3. Wavefunctions of scattering states for Na for a temperature of 2 nK. The 
scattering length a is defined as the intersection of the unperturbed wavefunction, which is 
matched at long range to the "real" wavefunction. By making slight changes to the inner 
part of the potential, the scattering length can be changed over a wide range. 

the scattering length a, 
. 80 

a = - hm­
k--->O k 

(14.7) 

The scattering length not only plays an important role in ultra-cold collisions, but 
also in the formation of Bose-Einstein condensates (see Chapter 17). 

The physical interpretation of the scattering length a can be inferred from 
Fig. 14.3 that shows a wavefunction plotted for three different values of a. In 
the inner region the wavefunctions are nearly identical in all three cases: the three 
cases only become different at long range. The scattering length is found by match­
ing these wavefunctions at long range with the unperturbed wavefunctions, and 
this is indicated by the dashed lines. The intersection of this shifted wavefunction 
with the R-axis can now be identified as the scattering length a. For a negative 
scattering length, the shifted wavefunction has to be extended to negative R. Since 
at long range there is no difference between the original solution and the shifted, 
unperturbed wavefunction, it is clear that only the shift is important. Since the 
phase shift 80 for low energies is directly proportional to the scattering length a, 
the whole potential can be described by only one relevant parameter. Although cold 
collisions are very sensitive to the potential, the sensitivity is completely confined 
to changes in a. Details of the inner part of the potential cannot be obtained in low 
energy collisions. 
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In the Wigner threshold regime the cross section approaches a constant. This 
can easily be seen by substituting Eq. 14.7 into 14.2 to find 

(14.8) 

For a large elastic cross section the scattering length has to be large. This is the 
reason that evaporative cooling works much better for the alkalis than for hydrogen. 
The range for which Eq. 14.8 is valid depends on the total potential, not on the 
scattering length alone. In particular, it depends on the last bound vibrational state 
in the potential. If this state is far from the threshold, Eq. 14.8 can be applied 
for temperatures up to TQ. However, this is no longer true when the last bound 
state is close to the threshold. The accumulated phase is then close to 7f and the 
scattering length changes considerably with small changes of the potential, as can 
be seen from Eq. 14.7. Special approximations for this situation can be found in 
the literature [267]. 

Inelastic collisions in the ground state also play an important role for evaporative 
cooling. If the atoms are in the lowest ground state, these collisions are forbidden, 
since the kinetic energy for the atoms in the trap is not sufficient to provide the 
inelastic energy gain. However, atoms in the lowest ground state cannot be trapped 
in a magnetic field (see Sec. 10.1). Atoms in these states are high field seekers and 
a maximum of the magnetic field in free space cannot be created [127]. Atoms in 
a magnetic trap are therefore in higher magnetic sublevels of the ground state, and 
inelastic collisions to lower states are therefore possible. 

The inelastic processes can be divided in two cases. In the first case, the total spin 
of the collision system is conserved and the process can only proceed if the spin 
of initial and final state are identical. Such exchange or relaxation processes are 
induced by the exchange potential between the two atoms, which is the difference 
potential between the singlet and triplet potential for the alkalies. Such process are 
generally strong and the rates are typically ofthe order of 10- 11 cm3 Is. For a density 
of lOll atoms/cm3 , which is rather low to reach quantum degeneracy, the sample 
will self destruct in the order of 1 s because of collisions. Exchange collisions 
should therefor be avoided. In the second case, the total spin is no longer conserved. 
Such transitions can only be induced by magnetic dipole-dipole interactions, which 
can be either electron-electron, electron-nuclear or nuclear-nuclear interactions. 
Since the magnetic dipole moment of the nucleus is 1000 times smaller than the 
magnetic dipole moment of the electron, the electron-electron interaction usually 
dominate. Rates for such processes are typically of the order of 10- 15 cm3/s for 
the alkalies. 

In Fig. 4.2 the energies of the hyperfine ground states of Na in a magnetic field 
are shown. For atoms trapped in the high-field seeking state 7 exchange collisions 
lead to population of state I. Such a reaction will not only release an amount 
of internal energy into kinetic energy, but also leads to trap loss, since state 1 is 
not trapped by the magnetic field. In order to avoid exchange collisions, atoms 
can be prepared in a doubly polarized state (state 8), which is generally used for 
BEC-experiments. Another possiblity is to trap in a sufficiently small magnetic 
field state 3, which is high-field seeking for a field up to 0.03 T. Although the trap 
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cannot be very deep, the advantage is that the energy released in the reaction is 
small and therefore the inelastic rates are suppressed. 

14.4 Excited-state Collisions 

Although ground-state collisions are important for evaporative cooling and BEC, 
they do not provide a very versatile research field from a collision physics point 
of view. The situation is completely different for the excited-state collisions. For 
typical temperatures in optical traps, the velocity of the atoms is sufficiently low 
that atoms excited at long range by laser light decay before the collision takes place. 
Laser excitation for low-energy collisions has to take place during the collision. By 
tuning the laser frequency, the collision dynamics can be altered and information 
on the states formed in the molecular system can be obtained. This is the basis of 
the new technique of photo-associative spectroscopy, which for the first time has 
identified purely long-range states in diatomic molecules. 

Excited-state collisions in optical traps play an important role. Since the laser 
cooling is done with nearly resonant light, a large fraction of the atoms are in 
the excited state. The cross section for excited-state collisions can be many or­
ders of magnitude larger than for ground-state collisions, so inelastic excited-state 
collisions are the most dominant trap loss mechanism. In the rest of this section, in­
formation on excited-state collisions from trap losses is discussed first, then comes 
optical collisions where the collisions are induced by a probe laser, and finally the 
results obtained in photo-associative spectroscopy are presented. 

14.4.1 Trap Loss Collisions 

For atoms colliding in laser light closely tuned to the S-P transition, the potential 
is a C3/ R3 dipole-dipole interaction when one of the atoms is excited. Since 
this potential has a much larger range than the C6/ R6 ground-state potential, the 
ground-state potential can be considered flat at such ranges. Absorption takes place 
at the Condon point Rc given by 

Ii8 = _ C3 
R3 c 

or R __ 3 ( 
C )1/3 

C - 11181 (14.9) 

Note that the light has to be tuned below resonance, which is mostly the case for 
laser cooling. The Condon point for laser light detuned a few y below resonance 
is typical 1000-2000 ao. 

Once the molecular complex becomes excited, it can evolve to smaller internu­
clear distances before emission takes place. Two particular cases are important for 
trap loss (see Fig. 14.5): (1) The emission of the molecular complex takes place 
at much smaller internuclear distance, and the energy gained between absorption 
and emission of the photon is converted into kinetic energy, or (2) the complex 
undergoes a transition to another state and the potential energy difference between 
the two states is converted into kinetic energy. In both cases the energy gain can 
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FIGURE 14.4. Molecular system of two Na atoms interacting in the ground and first excited 
state showing both attractive and repulsive potentials. Only excitation to attractive potentials 
leads to a close collision due to the small kinetic energy of ultra-cold atoms, whereas 
excitation to repulsive states leads to a breakup of the system. For light detuned more to 
the red, the excitation takes place at a smaller internuclear distance for which the excited 
complex has a larger probability to remain excited during the collision. 

be sufficient to eject one or both atoms out of the trap. In the case of the alkalis, 
the second reaction can take place because of the different fine-structure states and 
the reaction is denoted as a fine-structure changing collision. The first reaction is 
referred to as radiative escape. 

Trap loss collisions in Mar's have been studied to great extent, but results of 
these studies have to be considered with care. In most cases, trap loss is studied 
by changing either the frequency or the intensity of the trapping laser, which also 
changes the conditions of the trap. The collision rate is not only changed because 
of a change in the collision cross section, but also because of changes in both the 
density and temperature of the atoms in the trap. Since these parameters cannot be 
determined with high accuracy in a high-density trap, where effects like radiation 
trapping can play an important role, obtaining accurate results this way is very 
difficult. 

The results of one trap loss study is shown in Fig. 14.6. The trap loss rate has 
a minimum at some modest value of light intensity, increases sharply at lower 
intensity, and increases more slowly at higher intensities. For low intensities, the 
trap depth becomes small so that even hyperfine-structure changing collisions in 
the ground state can lead to trap loss. This accounts for the sharp increase of the trap 
loss for small intensities. For high intensities, fine-structure changing collisions 
and radiative escape playa dominant role. Increasing the intensity increases the 
number of excited molecular complexes and thus the loss rate. 
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FIGURE 14.5. Schematic diagram of processes leading to trap loss in optical traps. In the 
radiative escape process (RE) the atoms gain kinetic energy from their mutual attraction 
and then a spontaneous photon is emitted that has less energy than the one that was initially 
absorbed. The energy difference appears as kinetic energy and can be enough to eject the 
atoms out of the trap. In a fine-structure changing collision (FS) the atoms gain kinetic 
energy from the transition, which is sufficient for ejection of one or both atoms out of the 
trap. 

14.4.2 Optical Collisions 

The previous section discusses experiments where trap loss is caused by collisions 
between atoms excited by the light of the trapping laser. More complete information 
on this type of collision can be obtained by using another laser to induce the losses. 
The benefits of a second, probe laser is that its intensity can be chosen to be so 
low that it will not perturb the trap. Furthermore, the detuning of the laser can 
be varied over a much larger range. In a more elaborate scheme, the trapping and 
probing can even be interchanged and the reaction products can be detected only 
in the probe phase. Such experiments are referred to as optical collisions, since the 
collisions take place in the presence of the optical field. 

The first description of such processes was given by Gallagher and Pritchard 
[269]. In their semiclassical model (the GP-model) the first atom is located at the 
origin and the second atom is located at a certain distance R approaching the origin 
with a velocity v. The atoms are assumed to be distributed evenly over the reaction 
volume and the number of atoms between R and R + dR is given by n4Jl" R2dR, 
where n is the density of the atoms. The laser light is assumed to be weak enough 
that the excitation rate Pexc can be described by a quasi-static excitation probability 
(see Chapter 2): 
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FIGURE 14.6. Trap loss as a function of the intensity of the trapping laser for two different 
isotopes of Rb [268]. 

SOYm/2 
Pexc = -1-+-(2-8-m-/-Ym-)-=-2 with (14.10) 

Here 8m is the detuning of the molecular system from resonance and Ym the 
linewidth of the molecular transition, which is between 0 and 2y depending on 
the molecular state [270]. Atoms in the excited state are accelerated toward the 
origin by the C3/ R3 potential. In order to calculate the survival of the atoms in the 
excited state, the elapsed time telap between excitation and arrival at the origin is 
calculated. For low collision energies they find 

( 5)1/2 
telap ~ ~~3 (14.11) 

The decay of the excited atomic state is assumed to be purely exponential and the 
survival rate becomes 

Psurv = exp(-Ymtelap)' (14.12) 

The total number Q of collisions is then given by the number of atoms at a 
certain distance, the fraction of atoms in the excited state, and the survival rate, 
integrated over all distances: 

Q = -- dR 41r R2 Pexc Psurv , n2 V 100 

2 0 
(14.13) 

where V is the volume of the trap. To derive a rate coefficient, the authors define 
the collision rate coefficient k* analogous to the rate for thermal, excited-state 
collisions, i.e., 
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Q = k*n*n V, (14.14) 

where n* is the density of excited-state atoms. Using this definition, the rate coef­
ficient k* becomes independent of the intensity of the laser light for low excitation 
rates. For small detunings, corresponding to large internuclear distances, the exci­
tation rate is appreciable over a very large range of internuclear distances. However 
the excitation occurs at large internuclear distances so the survival rate of the ex­
cited atoms is small. For large detunings the excitation is located in a small region 
at small internuclear distances, so the total excitation rate is small, but the survival 
rate is large. As a result of this competition, the collision rate peaks at intermediate 
detunings. This is not true for the rate coefficient k* as defined in Eq. 14.14. Since 
the atomic excitation rate becomes small for large detuning, the density of excited 
atoms n* decreases for large detunings more strongly than the rate and thus the 
rate coefficient k*, as defined in Eq. 14.14, increases for increasing detuning. 

Another description of optical collisions is given by Julienne and Vigue [270]. 
Their description of optical collisions (JV-model) is quantum mechanical for the 
collision process, where they make a partial wave expansion of the incoming 
wavefunction. In order to determine the number of the incoming partial waves, 
they start with the statistical partition function and calculate the pair distribution 
function of two atoms with a relative collision energy E at an internuclear distance 
R. From this they obtain the flux F of atoms per unit of volume approaching each 
other with a given angular momentum l and relative energy E: 

dF = n2 (U + 1) e-E/kBT dE, (14.15) 
hQtr 

with Qtr = (277: /Lk8 T / h2)3/2 the translational partition function per unit vol­
ume. In their model dF describes the number of incoming collision pairs, which 
approach each other from infinity to small internuclear distance in the ground state. 

In order to determine the number of optical collisions, the authors describe the 
excitation process in the same way as it was done in the GP-model. Thus the 
excitation is localized around the Condon point with a probability given by the 
quasi-static Lorentz formula of Eq. 14.10. The time between excitation and close 
collision is given by integration of the equation of motion given the interaction 
potential U(R) with fixed angular momentum i. The survival rate is given by 
Eq. 14.12. Note that the total number of partial waves that contribute to the collision 
cross section has to be considered carefully. The number of partial waves is in 
general much larger in the excited state than in the ground state, since the potential 
in the ground state has a much smaller range (see discussion in Sec. 14.2). However, 
for the collision to proceed in the excited state through a certain l, the centrifugal 
barrier in the ground state at the Condon point has to be lower than the incoming 
kinetic energy, otherwise the atoms are repelled from each other before the Condon 
point is reached. 

The total rate for excited-state collisions in the JV-model is given by 

1 N 
k* = - L kf3If3. 

N f3=! 
(14.16) 
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The sum runs over the total number N of channels. Here kfJ is the rate of excited­
state collisions in channel {J, when one of the atoms is prepared in the excited state 
at infinite internuclear distance and no spontaneous decay takes place. This rate 
can be calculated with the method of potential scattering of Sec. 14.2. The factor 
IfJ is the excitation and survival factor, which describes the combined effect of the 
modification of the collision because of the excitation and decay processes. This 
factor is a weighted average for each partial wave l and energy E. Although the 
factor can be either larger or smaller than 1, it will be much smaller than 1 for most 
atoms as a result of the decay process. 

The modification of the excitation process caused by the molecular interaction 
has been discussed in a large number of articles in the literature, which have been 
reviewed recently [264]. The problem in the case of optical collisions is related to 
the incompatible descriptions of the excitation and the collision process. For the 
excitation process a time-dependent description is used, for instance, solving OBE­
equations (see Sec. 2.3). For the collision process the description is R-dependent. 
The relation between R and t is, of course, given by the velocity v, which depends 
on the potential V (R). Since two states are coupled in the excitation process that 
have different potentials, this leads to an ambiguity regarding the choice of the 
potential. Although different choices have been considered, they do not lead to 
satisfactory results. 

This problem can be resolved by going to a completely R -dependent description 
and treating the atom-laser interaction as a perturbation term in the Hamiltonian. 
The coupling between the two states can then be treated in the Landau-Zener 
model, where the excitation rate is given by 

with 
JiQ2 

A=--. 
2ave 

(14.17) 

Here Q is the Rabi-frequency, which is the coupling between the two states, a the 
gradient of the potential around the Condon point, and Ve the radial velocity of 
the system at the Condon point. 

The validity of the Landau-Zener excitation rate for optical collisions is limited. 
First of all, the excitation has to be localized, which means that the detuning of the 
light from atomic resonance should not be too small. Furthermore, the effects of 
spontaneous emission are neglected in the Landau-Zener treatment, which means 
that it describes a single excitation. It therefore applies well for the low-intensity 
case. Excitation and spontaneous emission can then be treated separately and the 
survival rate in that case is again given by Eq. 14.12. 

In still another approach, a completely semiclassical description of optical col­
lisions has been given by Mastwijk et al. [271]. These authors start from the 
GP-model, but make several important modifications. First, the Lorentz formula 
is replaced by the Landau-Zener formula. Second, the authors consider the motion 
of the atoms in the collision plane. At the Condon point, where the excitation takes 
place, the trajectory of the atom in the excited state is calculated by integration 
of the equation of motion. Since the atom can cross the Condon point at different 
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FIGURE 14.7. The frequency dependence for the associative ionization rate of cold He* 
collisions. The experimental results (symbols) is compared with the semiclassical model 
(solid line), IV-model (dashed line), and modified IV-model (dashed-dotted line). The axis 
on top of the plot shows the Condon point, where the excitation takes place. 

angles in the collision plane, the trajectory is calculated for each angle and the out­
come of the collision is determined. If this angle is large, the angular momentum 
L is too large, the atom is repelled by the rotational barrier in the excited state and 
no close collision occurs. If, on the other hand, the angle is small the excitation 
can lead to a collision. Finally, since the trajectory of the atoms is calculated, the 
elapsed time between excitation and close collision is known and Eq. 14.12 can 
be used to calculate the survival rate. 

The results for their model are shown in Fig 14.7, and are compared with ex­
periment and the IV-model. The agreement between the theory and experiment is 
rather good. For the IV-model two curves are shown. The first curve shows the sit­
uation for the original IV-model. The second curve shows the result of a modified 
IV-model, where the quasi-static excitation rate is replaced by the Landau-Zener 
formula. The large discrepancies between the results for these two models indi­
cates that it is important to use the correct model for the excitation. The agreement 
between the modified IV-model and the semiclassical model is good, indicating 
that the dynamics of optical collisions can be described correctly quantum me­
chanically or semiclassically. Since the number of partial waves in the case of He* 
is in the order of 10, this is to be expected. 

14.4.3 Photo-Associative Spectroscopy 

The description of optical collisions in the previous section applies to the situation 
that the quasi-molecule can be excited for each frequency of the laser light. How­
ever, the quasi-molecule has well-defined vibrational and rotational states and the 
excitation frequency has to match the transition frequency between the ground and 
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FIGURE 14.8. Photoassociation spectroscopy of Na. By tuning the laser below atomic 
resonance, molecular systems can be excited to the first excited state, in which they are 
bound. By absorption of a second photon the system can be ionized, providing a high 
detection efficiency. 

excited rovibrational states. Close to the dissociation limit there are a large number 
rovibrational states with a small energy spacing, so the excitation can be treated 
as if there is a continuum. This is not true far from the dissociation limit, where 
well-resolved resonances are observed. This has been the basis of the method of 
photo-associative spectroscopy (PAS) for alkali-metal atoms, where detailed in­
formation on molecular states of alkali dimers have been obtained recently. Here 
photo-association refers to the process where a photon is absorbed to transfer the 
system from the ground to the excited state where the two atoms are bound by 
their mutual attraction. 

The process of PAS is depicted graphically in Fig. 14.8. When two atoms collide 
in the ground state, they can be excited at a certain internuclear distance to the 
excited molecular state. If the excited state is attractive, the two atoms remain bound 
after the excitation and form a molecule. This so-called transient molecule lives as 
long as the systems remains excited, so after spontaneous emission of the molecule 
the atoms return to the ground state and in general dissociate again. The transition 
frequency is given by the difference between the total energy in the ground and 
excited state. The total energy in the ground state is well-determined, since the 
broadening from the kinetic energy is small because of the low temperature of 
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FIGURE 14.9. Molecular potentials connected to the 3S-3P asymptote of Na. The subplots 
b, c, d are sequential magnifications of the indicated regions. The curves are labeled with 
Hund's case (c) notation (see Ref. 272). 

the atoms. The total energy of the bound excited state is given by the energy of 
the rovibrational state, and thus PAS yields precise information on the position of 
these states. The number of rotational states that can contribute to the spectrum is 
small for low temperature. The resolution is only limited by the linewidth of the 
transition, which is comparable to the natural linewidth of the atomic transition. 
With PAS, molecular states can be detected with a resolution of ~ 1 0 MHz, which 
is many orders of magnitude better than traditional molecular spectroscopy. 

The molecular potentials for alkali-metal dimers are very complex. In Fig. 14.9 
the potentials connected to the 3S-3P asymptote of Na are shown. Note that the 
fine structure interaction results in two asymptotes, either 3S-3Pl/2 or 3S-3P3/2. 
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FIGURE 14.10. Photoassociation spectroscopy of Na (figure from [273]). 

Depending on the orientation of the atomic states with respect to each other, the 
molecular states split up in energy when the two atoms come closer together. The 
region around 1OOao in Fig. 14.9a shows 10 states that asymptotically connect 
to the 3S-3P3/2 state. These states are identified by their molecular labels (for 
details on the labeling of molecular states, see Ref. 272). Further magnification 
of the scale shows a broadening of each molecular state caused by the hyperfine 
interaction. This hfs interaction differs strongly for different molecular states, as 
can be seen in Fig. 14.9d. The state labeled as 2u shows a splitting between the 
different hyperfine state of ~ 100 MHz, whereas the hyperfine splitting of the 0;­
can not be observed on this scale. 

In Fig. 14.10 the excitation spectrum for Na2 transient molecules is shown. The 
formation of the molecules is probed by absorption of a second photon of the same 
color, which can ionize the molecule. This way ions can be detected, which provides 
a high detection efficiency of the process. In the spectrum a typical vibrational 
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structure can be observed, where the spacing between the states becomes smaller 
close to resonance. Although it is to be expected that all five attractive states 
connected to the 3S-3P3/2 asymptote would contribute to the spectrum, only the I g 

state is clearly observable because of the small excitation or ionization probability 
of the other states. 

A more flexible way to study PAS is the use of a second color to ionize the 
transient molecules. The frequency and intensity of this second ionizing laser can 
be controlled independently, which has a number of benefits. Since the ionization 
process has a smaller cross section than the association process, the intensity of the 
association laser can be lowered compared to the one-color case without decreasing 
the signal strength. Furthermore, since the frequency of the ionizing laser can be 
tuned independently, the ionization process can proceed via different channels. In 
the case of one color, the total energy of the two photons will always be smaller 
than twice the energy of the resonance frequency, since the first step requires a 
frequency below the resonance frequency. This is no longer the case for two-color 
spectroscopy, and in this way doubly excited states can be reached, which have a 
much larger probability for ionization compared to direct photo-ionization. 

In this way new molecular states have been observed that are now referred to as 
long-range molecular states. These states have been predicted in 1977 by Movre 
and Pichler [274] and are shown in Fig. 14.9 labeled as 0;- and lu. In Na the 0;­
state has been detected in two-color spectroscopy [275,276]. The state connects to 
the 3S-3P3/2 asymptote, is attractive at very large internuclear distance, but already 
becomes repulsive at long range because of an avoided crossing with a similar state 
connected to the 3S-3PI/2 asymptote. The state is bound by only 55 GHz and has 
an inner turning point of 55ao, which is very large compared to "normal" molecular 
states. Therefore such states are referred to as long-range molecular states. 

Since the total potential is determined by long-range interaction, it can be cal­
culated with high accuracy. For the first excited state the interaction at long-range 
is a dipole-dipole interaction and only depends on the one parameter C3. This 
dispersion coefficient in tum depends only on the dipole moment of the atom, 
which is related to the natural lifetime r of the atomic state involved. Accurate 
determination of the C3 parameter thus leads to an accurate determination of r. 
Jones et at. [277] have measured 10 vibrational states ofthe 0;- state of Na2 with 
high accuracy and compared their results with accurate calculation of these states. 
Although the calculation relies on a careful analysis of several effects, such as 
higher-order dispersion, non-adiabatic effects and retardation, the only fit param­
eter in the analysis is the C3 coefficient. The lifetime derived from their analysis 
agrees with the most recent theoretical values. 

Finally, PAS has been discussed in the literature as a technique to produce cold 
molecules. The methods discussed employ a double resonance technique, where 
the first color is used to create a well-defined rovibrational state of the molecule 
and a second color causes stimulated emission of the system to a well-defined 
vibrational level in the ground state. Although such a technique has not yet been 
shown to work experimentally, cold molecules have been produced in PAS recently 
using a simpler method [278]. The 0;- state in CS2 has a double-well structure, 
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where the top of the barrier is accidentally close to the asymptotic limit. Thus 
atoms created in the outer well by PAS can tunnel through the barrier to the inner 
well, where there is a large overlap of the wavefunction with the vibrational levels 
in the ground state. These molecules are then stabilized against spontaneous decay 
and can be observed. The temperature of the cold molecules has been detected and 
is close to the temperature of the atoms. This technique and similar techniques will 
be very important for the production and study of cold molecules. 

14.5 Collisions Involving Rydberg States 

Most studies dealing with cold collision with excited states only consider colli­
sions with one atom in the first excited state. Although such studies have already 
produced a wealth of new information on molecular states, atoms have many more 
than one excited state. The situation becomes extremely interesting when using 
atoms in Rydberg states [279]. Such studies are currently under way and the first 
preliminary results have recently been discussed in the literature [280,281]. 

Rydberg atoms are atoms in highly excited states close to the dissociation level. 
The radius of Rydberg atoms is proportional to n2 with n the principal quantum 
number of the state. For very high n the radius of the atom can become in the 
order of a few JLm. The cross section for a collision between two Rydberg atoms 
becomes very large and thus for already a moderately high density of the cold 
atomic sample, such collisions dominate its evolution. 

The situation is rather complicated. Since the radius of the Rydberg atoms is 
so large and the velocity of the atoms is rather small, the atoms react with a large 
number of other atoms without changing their position appreciably. This situation 
is referred to as a "frozen Rydberg gas", much like the situation of interactions 
between atoms in a solid. Collisions are then no longer dominated by the relative 
velocity between two atoms, but by the diffusion of the atoms through the gas. 
This leads to novel phenomena that will surely be studied in the near future. 



15 
deBroglie Wave Optics 

15.1 Introduction 

One of the major developments of laser cooling of neutral atoms in the 1990s 
has been the evolution toward quantization of the atomic center-of-mass motion 
(external coordinates). For Newtonian atom optics, as defined in Chapter 13, the 
motion of atoms is described in a perfectly classical way, assuming they have ar­
bitrary position and momentum, and that both of these quantities can be known 
simultaneously. This classical picture of atoms moving as particles without regard 
to their overall wavelike character has been of great use, but some recent experi­
ments have come into the range where the center-of-mass motion of atoms must 
be viewed quantum mechanically. The first discussion of such ideas has already 
appeared in the calculations of quantum states in a magnetic trap in Sec. 10.4 and 
in optical traps in Sec. 11.2.4. A collection of articles on related topics is to be 
found in Ref. 282. 

Thus it becomes necessary to consider atomic position and momentum as quan­
tum mechanical variables, replete with wavepacket spreading and non-commuting 
operators. A deBroglie wave field occupies allowed states of a region of space that 
may have a spatially varying potential, which defines modes of the field. For ex­
ample, these may be eigenstates in the optical potentials created by the laser fields. 
By contrast, if the potential is uniform, it can then be set to zero and a classical 
description of the motion may be used. 

In analogy with optics, the occupation of particular modes of this field can 
result in spatial interference, and the entire field of atom interferometry emerges 
as a subset of this way of thinking. However, there are several important differences 
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between this and the optical case. First, atoms have internal structure that can be 
manipulated by the same fields that determine the light shifts they experience as 
they move in the light fields. The deBroglie wave view of this phenomenon leads 
to the equivalent of multiple refractive indices in the same region of space. Second, 
atoms have mass that can be affected by the earth's gravitational field and that also 
leads to a different dispersion relation for de Broglie waves than for light. Third, 
unlike photons, atoms are not all bosons. With fermionic atoms there will be cases 
where only a single atom can occupy a particular mode of the deBroglie wave 
field. 

Thus there is a new view of optical control of atomic motion in terms of its quan­
tum mechanical behavior. Of course, atoms at ordinary velocities are distributed 
over thousands of quantum states, so laser cooling is intimately involved in these 
studies. But the subject is evolving toward a quantum description of optical control 
of atomic motion, and may also involve rf or microwave transitions to prepare the 
desired internal states. After all, it is the internal states of atoms that determine the 
magnitude and nature of the electromagnetic forces on them. 

Among the most obvious manifestations of the wave nature of atoms are inter­
ferometry, Bose-Einstein condensation (BEC), and the band structure that results 
from the movement of atoms in periodic potentials. The first of these is discussed 
in some detail in Sec. 15.7. As for the second topic, when atoms are sufficiently 
slow and dense that their de Broglie wavelengths are large enough to overlap one 
another, BEC occurs and an entirely new domain of phenomena appears. The 
whole of Chapter 17 is devoted to this special topic of deBroglie wave optics. The 
third topic, band structure, becomes important when sufficiently cold atoms move 
in a periodic potential. Then their kinetic energy levels exhibit band structure in 
accordance with the Kronig-Penney model to be found in many quantum mechan­
ics texts. Reference 161 presents a full quantum treatment of laser-cooled atoms 
moving in a periodic potential, and the topic is discussed further in Chapter 16. 

15.2 Gratings 

Perhaps the simplest atom optical device is the mask or slit that passes only those 
atoms in a beam that are incident on its openings, and blocks the others. Although its 
role in Newtonian atom optics is clear and simple, for example, collimating atomic 
beams as described in Chapter 13, its role in deBroglie wave optics needs further 
discussion. An array of parallel slits constitutes a grating, and atoms in a sufficiently 
collimated beam that pass through such a grating can undergo interference that is 
constructive in the favored directions, given by the grating equation 

nAdB = d sin O. (15.1) 

Here n is an integer that gives the order of the diffraction, Ad B = h / p is the 
deBroglie wavelength of the atoms, and d is the grating spacing. 

In this case "sufficiently collimated" means that the atoms must sample more 
than one of the grating's slits, and this statement only has meaning in the context 
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FIGURE 15.1. The measured profile of the atomic beam after diffraction from the material 
grating described in Ref. 283. 

of deBroglie wave atom optics: localizable particles cannot possibly pass through 
more than one slit. Sampling more than one of the grating's slits requires that 
the atoms' transverse deBroglie wavelength is larger than d, which means that 
the angular spread of the beam incident on the grating must be less than (). This 
corresponds to the obvious geometrical criterion that diffraction fringes at angles 
smaller than those of the incident beam spread can not be observed. 

The diffraction of waves from such an amplitude modulator grating is an old 
problem whose solutions for optical beams are Bessel functions [31] that appear in 
many textbooks. The first detailed study of atomic beams diffracted by a material 
grating was reported in 1988 [283]. The authors used a thermal beam ofNa that was 
carefully collimated by two 10 11m slits placed ~ 1 m apart. Their early results are 
shown in Fig. 15.1. The manufacturing, mounting, and handling of such gratings 
obviously requires great skill and care. Sec. 13.3 describes the use of atom optics 
for lithographic fabrication of such nanostructures, but here is an example of the 
complementary process. A device prepared by electron beam lithography is used 
for atom optics. 

Another kind of periodic structure that can function as an atom grating is a phase 
rather than amplitude modulator. This means that all the atoms pass through, but the 
phase of the deBroglie wavefront is altered from place to place. Atoms in a beam 
traversing a perpendicular optical standing wave experience position-dependent 
light shifts. If the atomic beam is sufficiently collimated, its transverse deBroglie 
wavelength is larger than the d = A/2 periodicity of the standing wave, and so 
various parts of the transmitted deBroglie wavefront lead or lag adjacent regions. 
This is manifest as a diffraction pattern that also obeys Eq. 15.1. 

Such optical gratings provide two complications that are absent in material grat­
ings. The first one arises because the atoms can be excited by the light and then 
undergo spontaneous emission to the ground state. Since the recoil momentum 
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change is in an unpredictable direction, different atoms suffer different deBroglie 
wave phase shifts, and hence their interference fringes will appear in different 
places so their diffraction pattern will be washed out. Spontaneous emission can 
be avoided by detuning the standing wave frequency far from atomic resonance, 
reducing its intensity, or shortening the interaction time as the atoms pass through 
it. All of these choices reduce the strength of the interaction that causes the phase 
shift, and so appropriate compromises are necessary. If observation of the atomic 
interference pattern is restricted by selection of only those atoms whose sponta­
neous emission is in a particular small range of directions, then the pattern is not 
washed out [284]. 

The second complication arises because the standing wave can be in a laser 
beam whose diameter is large enough for atoms to spend a considerable amount 
of time in it. If the grating is thick enough in the direction of the atomic beam, 
then the atoms can move transversely a considerable distance while they are still 
in the light field. The atoms could undergo multiple optical transitions, and in fact 
are Bragg diffracted by the "lattice" comprised of the periodic potential associated 
with the standing wave. This long interaction time domain is called the "Bragg 
regime", and is discussed further in Sec. 15.3 and in Chapters 16 and 18. It is 
precisely this kind of interaction that is most effective for the atom lithography 
described in Sec. 13.3. The converse of this thick grating Bragg regime is called 
the Raman-Nath regime, and corresponds to a thin grating similar to the very thin 
structures that constitute the material gratings discussed above. 

Such gratings necessarily change the transverse velocity of atoms that are 
diffracted, so the atomic momentum is changed. Momentum conservation is easily 
described for optical gratings because atoms can absorb a photon from one beam, 
and then undergo stimulated emission to provide an additional photon in the other 
beam. Thus their transverse momentum would be changed by ±2Iik, and their 
angle of travel would be changed by ±21ik / p = ±2Ad B / A, exactly the condition 
given by Eq. 15.1 for d = A/2. 

It is important to realize, however, that the sign of the transverse momentum 
change does not vary from one atom to another. Instead, all atoms are driven 
into superposition states having momentum components of both signs, and it is 
only after a measurement is made that one component of the superposition is 
determined. This view helps to provide understanding of momentum conservation 
for the material grating case where there is no photon exchange picture. As with 
the light grating, atoms enter a superposition of opposite transverse momentum 
states. In some sense they are thus "split into two parts" having opposite transverse 
momenta, and so the net momentum transfer is zero. 

Energy conservation is not so easily handled. For material gratings, there is no 
problem with either energy or momentum conservation because there is always a 
large mass present whose recoil can provide for both. But for optical gratings in 
the Raman-Nath regime, it is necessary to consider that a light beam confined to a 
small region of space, such as the focused standing waves under consideration here, 
are not plane waves. Thus th~ are superpositions of many spatial modes with the 
same frequencies but various k-vectors. Energy conservation then requires that lon-
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gitudinal velocity is diminished by the absorption-stimulated emission sequence 
because the photon momenta that are exchanged are neither exactly opposite to 
one another nor exactly perpendicular to the incident atomic beam. Instead, the 
nearly 7r angle between them must slow the atoms by just the right amount to con­
serve energy. This can be pictured most easily in terms of the spherical Huygen's 
wavelets emerging from each slit in a water wave (ripple tank) grating. 

For optical gratings in the Bragg regime, energy and momentum must be strictly 
conserved. Thus an incident atomic beam can be reflected only if both the incident 
and the emerging deBroglie wavefront satisfy the Bragg condition. This places 
severe limits on the range of angles and velocities that can be used. Nevertheless, 
several important atom optics experiments are described in Secs. 15.3 and 15.7 
that have been done using such Bragg diffraction. 

15.3 Beam Splitters 

One of the most elementary devices for de Broglie wave optics is a coherent beam 
splitter. It must divide an atomic sample or beam into two or more spatially or 
temporally separated parts in such a way that each atom undergoes interactions 
exactly the same as all the others. This precludes such inhomogeneous events as 
spontaneous emission or collisions, because the wavefunction of the external state 
of motion of such atoms that suffer such interactions will necessarily undergo 
uncontrolled and therefore different phase shifts. On the other hand, if atoms 
undergo absorption followed by stimulated emission in a transverse standing wave 
geometry, the wavepacket of the atoms splits up coherently and such a beam splitter 
might serve in an atomic interferometer. 

To minimize the effects of spontaneous emission, one has either to reduce the 
number of spontaneous emissions by detuning far from resonance (8'f » 1) or 
reduce the interaction time 'fint to much shorter then the spontaneous lifetime 'f. In 
an early experiment, Moskowitz et al. [285] showed that a beam of sodium atoms 
crossing a standing wave is deflected into two symmetric peaks, where the scattered 
atoms acquire momentum in multiples of 2lik from the combined absorption and 
stimulated emission of photon momenta lik. Later Gould et al. [286,287] showed 
that the rms momentum gained by the atoms in the case of large detuning is 
proportional to Q'find8, where Q is the Rabi frequency. 

Another demonstration of an atomic beam splitter was shown by Sleator et 
al. [288]. They created a large period standing wave by reflecting a laser beam at 
a small angle from a mirror. The interference field in front of the mirror forms a 
standing wave with a spatial period much larger than A, in their case 15 /-Lm. As 
discussed in Sec. 9.3, the proper description for a two-level atom in a strong near­
resonant radiation field is in terms of dressed states. Since the dressed states have 
opposite light shifts, they feel opposite forces as atoms traverse the light field, and 
thus an incoming deBroglie wavepacket splits in two. They achieved a splitting 
of 4lik in their experimental setup. In a similar arrangement they observed the 
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focusing of an atomic beam, where they used the approximately harmonic force 
of the light shift near the antinode of this large period standing wave [289]. Since 
the thickness of such a lens is given by the beam waist of the laser beam in the 
direction of the atomic beam (in their case only 40 /Lm), one can produce thin 
atomic lenses this way (see Sec. 13.3). 

A significant increase of the transverse momentum can be obtained by using 
a novel magneto-optical force, as was first described by Pfau et al. [290]. In this 
scheme the atomic beam is crossed transversely by two counterpropagating laser 
beams, where both laser beams are linearly polarized and the polarizations make 
an angle ifJ with respect to each other. To obtain this new magneto-optical force, 
the authors discuss a V-type level scheme with one ground state g coupled to two 
excited states e+ and L, which are split by a magnetic field along the laser beam 
direction. By matching the Larmor precession frequency caused by the magnetic 
field with the Rabi oscillation frequency, it is possible to achieve efficient absorp­
tion of light from one beam followed by stimulated emission into the other beam. 
In this way a large number of photon momenta hk can be transferred from the 
light field to the atom. A dressed atom picture of this magneto-optical force has 
been given [291]. In such an experimental arrangement, Pfau et al. showed that an 
atomic beam can be split in two, where the splitting between the two peaks was as 
large as 42 hk [292]. 

Still another scheme for an atomic beam splitter, that used the bichromatic force 
of Ref. 118 was proposed in 1994. In the configuration as described in Sec. 9.4.3, 
which was optimized for beam slowing and collimation, the relative phase of 
the standing waves of the two frequencies was chosen to be 7r /2 in order for 
spontaneous emission to provide a bias for the force direction. However, if the phase 
is chosen instead to be 7r, then there is no preferred direction and thus atoms may 
experience a force in either direction [293]. The dressed atom states of Sec. 9.4.3 
become coherent superpositions of motion in both directions. Because of the large 
size and velocity range of the bichromatic force, atoms entering such a laser field 
are coherently split into two beams with very large momentum differences. It 
is only necessary to choose the interaction time rint to be small enough so that 
yrint « 1, thereby minimizing the chance for spontaneous emission to destroy 
the atomic coherence. 

15.4 Sources 

Any spatially extended source of deBroglie waves can be characterized by its 
spatial modes, and a finite size atomic sample having a finite temperature occupies 
many such modes. In analogy to light sources, laser-cooled atomic samples can 
be made very monochromatic just as highly filtered classical light sources. But 
single mode light can only come from a process of stimulated emission into one 
single mode of an optical cavity, and correspondingly, single mode de Broglie 
wave sources are necessarily Bose-Einstein condensates (BEe's) as described in 
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Chapter 17. Eventually, atom optics experiments will all start with BEC's as their 
source. 

Nevertheless, there is still a large class of deBroglie wave optics experiments 
that can be done with laser-cooled atomic samples. Some of these are described 
in Sec. 15.7 on atom interferometry, or in other places scattered throughout this 
book. These are analogous to optics experiments performed with white light or 
multimode lasers. For example, most HeNe lasers operate in several modes, and 
yet interferometry, metrology, spectroscopy, holography, and a host of other ex­
periments are readily done with these lasers. This is because each mode interferes 
only with itself, and as long as there are not too many independent interference 
patterns overlapping one another so that the fringes wash out, the finite coherence 
length of HeNe lasers poses only limitations but not prohibitions. Thus laser-cooled 
atoms that are not in BEC's can be used for lithography, interferometry, inertial 
measurements such as atom gyroscopes, and many other experiments. 

Another form of experiments in atom optics that can be done with such "clas­
sical" atom sources are in reduced dimensions (see Sec. 13.5.1). Atoms in a beam 
can be collimated by slits sufficiently well that they occupy just a single transverse 
spatial mode, and one-dimensional experiments can be performed. Furthermore, 
certain kinds of subrecoillaser cooling such as the velocity selective coherent pop­
ulation trapping described in Secs. 18.2 and 18.3 as well as the Raman cooling of 
Sec. 8.7.2 can also provide appropriate samples for experiments in deBroglie wave 
optics. In addition, both VSCPT and Raman cooling can be done in 3D [294]. 

15.5 Mirrors 

In the domain of deBroglie wave optics, atomic mirrors must be designed to pre­
serve atomic coherence. This means that atoms must not suffer inhomogeneous 
events such as collisions, spontaneous emissions, or any other interactions that 
will alter either their internal or external states in a way that is different from one 
atom to the next. In view of this, perhaps the ideal atomic mirror is produced using 
Bragg reflection as discussed in Sec. 15.3 and in Chapters 16 and 18. The atoms 
experience a plane optical standing wave whose only function is to reflect the 
incident deBroglie waves using momentum exchanges from absorption followed 
by stimulated emission. All the photons absorbed by the atoms are returned to the 
standing wave laser field with the same frequency and polarization because there 
is only stimulated emission, and thus neither the internal energy nor the internal 
states of the atoms can be changed. Therefore the external energy of the atoms 
must also be unchanged, and so their final momenta must be either identical to or 
opposite to their initial momenta. Such a mirror may also be viewed as reflection 
at the edge of a Brillouin zone formed by the optical lattice of the standing wave 
light field (see Chapter 16). 

Other atomic mirrors have been discussed in Sec. 13.2. None of these is assuredly 
coherent, but some could be made so by careful choices of their parameters. For 
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example, reflection by the evanescent waves near the surface of a dielectric can be 
made coherent if the light is detuned sufficiently far from resonance. Similarly, the 
Rydberg atom mirror could be made coherent if the atoms experienced rr pulses for 
both excitation and de-excitation from the Rydberg state, and these were spaced 
much closer together than the natural lifetime of the chosen Rydberg state to avoid 
spontaneous decay. Needless to say, if the pulse timing were determined by passage 
of the atoms through the laser beams, the mirror would be coherent only for atoms 
within a small velocity range. 

By contrast, the reflection of atoms from the inhomogeneous magnetic fields 
above the surface of magnetic recording media may be incoherent. This is because 
various atoms experience the fields from different microscopic domains, and so 
their Zeeman sublevels are precessed differently. Their external motion suffers no 
inhomogeneous effects caused by spontaneous emission, but their internal states 
do (see Sec. 13.2). 

15.6 Atom Polarizers 

Polarized light is usually characterized by its transmission through various polar­
izers at various angles. Such polarization is attributed to the state of the light field 
or the spin orientation of the photons, and a similar property exists for neutral 
atoms. The ground and excited states of two-level atoms cannot be considered as 
appropriate polarization components, even though the wavefunction is often writ­
ten as a spinor, simply because the excited state eventually decays to the ground 
state. Therefore the appropriate coordinates are restricted to ground states, and 
one suitable choice is the orientation M F of the total angular momentum F (J for 
I = 0). The principle difference is that optical polarization has only two states 
(helicity ±1 or two coordinates on the Poincare sphere), but atomic polarization 
can have as many as 2F + 1 coordinates. For F = 1/2 the systems are formally 
identical. 

The simplest example of an atomic polarizing component is an inhomogeneous 
magnetic field in the spirit of the Stem-Gerlach experiment. Atoms with F = 1/2 
are deflected either up or down depending on their M F value. If atoms that were 
deflected in a particular direction subsequently pass through a second magnet, their 
transmission depends on the relative field orientation as cos2 () just as does light 
traveling through successive polarizers. Similar descriptions apply for atoms with 
F> 112-

The orientation of linearly polarized light may be rotated by half wave plates 
or optically active materials, and analogously the magnetization of atoms may 
be altered by Raman transitions among the ground states. For F = 1/2 a rr­
pulse on a Raman transition completely inverts the polarization, just as a half 
wave plate whose axes are at ±rr / 4 to a linearly polarized light beam. More 
complicated descriptions apply to other Raman transitions or more complicated 
atoms. Superpositions of multiple M F states can be described as a pure M F state 
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in a different coordinate system if they are in phase, corresponding to linearly 
polarized light at an angle to the chosen coordinate axes. Superpositions with 
different phases correspond to circularly or elliptically polarized light. 

15.7 Application to Atom Interferometry 

Atom interferometry is an important part of deBroglie wave optics. Just as Dirac 
said about photons, atoms can only interfere with themselves. In order to see 
the fringes, at least two components of the same internal and external atomic 
states must evolve differently and then be recombined. These shared wavefunction 
components do not need to involve 100% of the total atomic wavefunction, but the 
contrast of the fringes may be reduced proportionately. What is required is that 
there be no way to distinguish which of the two (or more) paths was followed by 
some parts of the recombined wavefunction. In this sense, Ramsey oscillations, 
spin and photon echoes, and quantum beats are simply interference in the time 
domain rather than in space. 

Some interference experiments have been done in the spatial domain by de­
flecting the coherently split atomic beams away from one another and then re­
combining them (transverse), while others have been done in the time domain by 
delaying or phase shifting one of the two states that form an atomic superposition 
(longitudinal). The transverse experiments are much more similar to the familiar 
optical interferometers, and the most commonly used configuration resembles a 
Mach-Zehnder type. The longitudinal experiments are much more similar to the 
familiar Ramsey separated oscillatory fields method, and these experiments may 
be regarded simply as a reinterpretation of the Ramsey oscillations. Longitudinal 
interference experiments have been used in atomic fountains to study possible 
atomic clocks [236,295], as discussed in Sec. 13.7. Transverse experiments have 
been used to measure the gravitational acceleration [296] or photon recoil [297]. 

The first atom interferometers were reported in 1991. There were two of the 
transverse or spatial kind, and two of the longitudinal or temporal kind. The trans­
verse ones [298,299] were both made with material atom optical elements for 
beam splitting. In Ref. 298 the authors used a single slit followed by a double slit 
so it was analogous to a Young's double slit experiment. The authors of Ref. 299 
used multislit gratings to split and recombine the beams so the interferometer was 
analogous to a Mach-Zehnder. Within a few months, the authors of Ref. 298 also 
described the focusing of atoms with a material fabricated Fresnel zone plate [300]. 
This is an example of an atomic lens in the deBroglie wave optics regime. 

The first demonstration of spatial atom interferometry with an all optical beam 
splitter was reported in 1995 [301,302]. In the case of Ref. 301, the atomic beam 
was collimated by narrow slits spaced far apart so that the transverse velocity 
distribution of the atoms was sufficiently narrow. Atoms were Bragg diffracted 
by optical standing waves tuned several hundred linewidths from resonance to 
avoid spontaneous emission. The angle between the incident atomic beam and the 
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standing wave field was carefully adjusted to satisfy the Bragg condition, and the 
laser parameters were chosen so that the beam was divided in half. The atomic 
beam was thus split into two coherent components separated by 58 IHad, traveled 
freely for 31 cm, passed a second standing wave field for a second Bragg reflection, 
and then the two components crossed 31 cm further downstream. At that crossing 
point they passed a third standing wave Bragg region and were recombined. The 
interference fringes were observed by scanning a detector downstream from the 
third Bragg region. 

The efficiency of Bragg diffraction depends on the laser and atomic parameters, 
and can be chosen to be 50% for beam splitters. However, atoms passing through 
such an optical field can be Bragg reflected with nearly 100% efficiency after 
sufficiently long time. Of course, the newly redirected beam can be Bragg reflected 
again back to the original direction if it is still in the optical field. This oscillation of 
the direction of Bragg reflection is called "pendulosung", and was first studied in 
neutron diffraction. Pendulosung has also been observed in the Bragg diffraction 
of neutral atoms in 1996 [303]. 

The temporal interferometers went beyond the demonstration of fringes, and 
were actually used for inertial measurements. In Ref. 295 the entire apparatus was 
mounted on a rotatable table, and the authors were able to measure the shift of the 
fringes arising from rotation. This fringe shift is called the Sagnac effect [304], and 
for any interferometer in a non-inertial reference frame (e.g., rotating), there is a 
phase shift of the fringes .1.<1> = 4nn . AIAv, where Inl is the rotation frequency, 
A is the wavelength of the interfering entity, and v is its velocity of propagation. 
Also, A is a vector whose magnitude is the area of the plane enclosed by the two 
paths through the interferometer and whose direction is normal to this plane. 

For an optical interferometer v = e, and for an atom interferometer, A = hip = 
hi Mv. Thus the Sagnac phase shift is larger for atoms by a factor Me21liw which 
is typically a few times 1010. This huge factor is somewhat compromised because 
optical interferometers can easily have I A I hundreds of times larger than atomic 
ones, and the SIN is surely better, too. Nevertheless, the possibility of atomic iner­
tial sensors, navigational gyroscopes, and other devices is very much a possibility. 
This first demonstration of the Sagnac effect for atoms is a precursor of possible 
atomic gyroscopes for navigational purposes, especially in space where the atomic 
trajectories would not be influenced by gravity. 

More recently, another group has used a similar apparatus with several improve­
ments that achieved a factor of 100 better sensitivity [305]. They used Raman tran­
sitions between the two ground hfs states of Cs to double the momentum transfer, 
and an atomic beam apparatus nearly 2 m long to increase I A I. The ultimate res­
olution was a rotation of Inl = 2 x 10-8 rad/s, corresponding to 2x 10-4 of the 
Earth's rotation rate. 

The opposite point of view was the objective of the other temporal interference 
experiments. In Refs. 296, 306 the authors exploited the extreme sensitivity to 
inertial frames to measure the acceleration of gravity to the extraordinary precision 
of one part in 3 x 108. Such exquisite sensitivity has been further exploited to 
measure the recoil frequency Wr == lik2 I M from the atomic motion, and with the 
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help of other fundamental constants and well-measured quantities, provide a new 
measurement of the ratio h / me where me is the electron mass. Further refinements 
of the technique, using two atomic samples separated vertically by 1 m, allowed 
measurement of the gradient of the gravitational acceleration resulting from the 
inverse square law [307]. The the measured 3.3 x lO-6/s-2 is within lO% of the 
expected value. 

There have been several other experiments that demonstrated the superb capa­
bilities of atom interferometry for various measurements. For example, the MIT 
group has measured both the real and imaginary parts of the "index of refraction" 
of various gases for deBroglie waves of Na [308]. These were found to differ from 
unity by only'" 1 part in 108, demonstrating again the high sensitivity of atom 
interferometry. They also applied an electric field to Na vapor in one arm of their 
interferometer and measured the polarizability of the atomic ground state to better 
than ±0.25% [309]. 

Atom interferometry has also been used to study such fundamental subjects as 
spatial topological effects. There have been measurements of both Berry's phase 
for atoms [3lO] and the Aharonov-Casher effect [311]. Thus atom interferometry is 
fulfilling its promise of providing physicists with new tools to make measurements 
that could not otherwise be possible. 



16 
Optical Lattices 

16.1 Introduction 

In 1968 V.S. Letokhov [312] suggested that it is possible to confine atoms in the 
wavelength size regions of a standing wave by means of the dipole force that 
arises from the light shift, as discussed in Chapters 1, 9, and 11. This was first 
accomplished in 1987 in one dimension with an atomic beam traversing an intense 
standing wave [313]. Since then, the study of atoms confined in wavelength-size 
potential wells has become an important topic in optical control of atomic motion 
because it opens up configurations previously accessible only in condensed matter 
physics using crystals. 

The basic ideas of the quantum mechanical motion of particles in a periodic 
potential were laid out in the 1930s with the Kronig-Penney model and Bloch's 
theorem, and optical lattices offer important opportunities for their study. For ex­
ample, these lattices can be made essentially free of defects with only moderate 
care in spatially filtering the laser beams to assure a single transverse mode struc­
ture. Furthermore, the shape of the potential is exactly known, and doesn't depend 
on the effect of the crystal field or the ionic energy level scheme. Finally, the laser 
parameters can be varied to modify the depth of the potential wells without chang­
ing the lattice vectors, and the lattice vectors can be changed independently by 
redirecting the laser beams. 

Because of the transverse nature of light, any mixture of beams with different 
k-vectors necessarily produces a spatially periodic, inhomogeneous light field. The 
importance of the "egg-crate" array of potential wells arises because the associ­
ated atomic light shifts can easily be comparable to the very low average atomic 
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FIGURE 16.1. The "egg-crate" potential of an optical lattice shown in two dimensions. The 
potential wells are separated by )../2. 

kinetic energy of laser-cooled atoms. Thus the picture of an atomic vapor of laser 
cooled atoms moving in an optical molasses with no spatial order in a homoge­
neous region eventually fails, and the atomic motion is instead strongly influenced 
by the unavoidable periodic potential. A typical example projected against two 
dimensions is shown in Fig. 16.1. 

The name "optical lattice" is used rather than optical crystal because the filling 
fraction of the lattice sites is typically only a few percent (as of 1998). The limit 
arises because the loading of atoms into the lattice is typically done from a sample 
of trapped and cooled atoms, such as a MOT for atom collection, followed by an 
optical molasses for laser cooling. The atomic density in such experiments is lim­
ited to a few times 1011 /cm3 by collisions and multiple light scattering as discussed 
on p. 27. Since the density oflattice sites of size A/2 is a few times 1013/cm3, the 
filling fraction is necessarily small. Experiments are underway in several labora­
tories to confine atoms with far-off-resonant lattices using long wavelength lasers 
such as the A ~ 10 /Lm C02 laser so that the density oflattice sites is comparable 
to readily achieved atomic densities of a few times 109/cm3. 

16.2 Laser Arrangements for Optical Lattices 

The simplest optical lattice to consider is aID pair of counterpropagating beams 
of the same polarization as was used in the first experiment [313]. A variation of 
this uses beams of different polarization, where the conservative part of the force 
arising from the polarization gradient provides the periodic potential for the lattice 
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FIGURE 16.2. A single mode of a standing wave cavity is folded by mirrors to make an op­
tical field consisting of two perpendicular phase-stable standing waves. Their polarizations 
can be different by placement of a retarder at the indicated position [316]. 

(see Chapter 8). Such ID lattices have produced much new knowledge about atoms 
moving in periodic potentials as discussed below. 

The "crystallography" of optical lattices in 2D and 3D is a large subject, well be­
yond the scope of this book. Nevertheless, some of the most important features are 
summarized here. The reader is directed to an excellent article on the subject [314], 
as well as a more general review article [315]. 

At first thought it would seem that a rectangular 2D or 3D optical lattice could 
be readily constructed from two or three mutually perpendicular standing waves. 
However, a sub-wavelength movement of a mirror caused by a small vibration 
could change the relative phase of the standing waves. This could make dramatic 
changes in the local polarization, for example, converting linearly polarized light to 
circular, and hence to the depth and nature of the wells, just as in optical molasses. 
In 2D this problem can be partially avoided by choosing all the beams to have 
the same linear polarization, perpendicular to the plane containing the beams' 
k-vectors, but this can't be done in 3D because no such plane exists. 

One way to avoid problems arising from such phase fluctuations is to exert 
careful control of the relative phases of the standing waves. This has been done to 
interferometric precision [249], but presents a technical challenge because many 
of the mirrors and other optical components are necessarily mounted far from the 
solid surface of an optical table. 

Clearly the phase problem can also be controlled by making the optical field from 
the single mode of a multiply folded cavity, as shown for example in Fig. 16.2 for 2D 
[316]. The light field is a standing wave formed by reflection from the mirror, and 
therefore has a fixed temporal phase everywhere. The scheme of Fig. 16.2 suffers if 
the mirrors are outside the vacuum system because the returning horizontal beam 
will have passed through six more windows and undergone three more reflections 
than the incident horizontal beam, and so balancing the intensities can be quite 
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(a) (b) 

FIGURE 16.3. Arrangement for a stable optica11attice. In (a) the three beams all have the 
same polarization plane and propagate at 1200 to one another. In (b) the four beams still 
share the same polarization plane and the vertically traveling one is circularly polarized. 
The other three no longer have coplanar wavevectors (figure adapted from Ref. 250). 

a task. Therefore the authors of Ref. 316 devised a slightly different geometry 
that produces the same fixed-phase standing wave but eliminates the intensity 
balancing problem. They also described other similar configurations in both 2D 
and 3D [316]. In such cases, vibrations or other phase changes would displace the 
optical wells in space, but would not make major changes in the character of the 
optical field [249]. 

In 1993 a very clever scheme was described [250]. It was realized that an n­
dimensional lattice could be created by only n + 1 traveling waves rather than 2n. 
Instead of producing optical wells in 2D with four beams (two standing waves), 
these authors used only three. The k-vectors of the co-planar beams were separated 
by 2rr /3, and they were all linearly polarized in their common plane (not parallel 
to one another) as shown in Fig. 16.3a. As in the folded cavity scheme discussed 
above, vibrations or other phase changes would only displace the optical wells in 
space [249]. 

The same immunity to vibrations was established for a 3D optical lattice by 
using only four beams arranged in a quasi-tetrahedral configuration. The three 
linearly polarized beams of the 2D arrangement described above were directed out 
of the plane toward a common vertex, and a fourth circularly polarized beam was 
added (Fig. 16.3b). All four beams were polarized in the same plane [250]. The 
authors showed that such a configuration produced the desired potential wells in 
3D. 

Other four-beam configurations for 3D optical lattices were also devised and 
studied. For example, the Paris group realized that a more symmetric laser beam 
configuration could be made by altering the standard 1 D lin ..L lin configuration 
to make a 3D lattice [317]. They replaced each of the beams by two beams of 
the same linear polarization traveling at an angle with respect to one another. 
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FIGURE 16.4. The four beams of the Paris lattice can be thought of as originating from a 
I D lin ~ lin configuration by replacing each of the beams by two of the same polarization 
traveling in a plane perpendicular to the polarization (figure adapted from Ref. 314). 

If the original lin -.l lin configuration had horizontal k-vectors with horizontal 
and vertical polarization, then the lattice was formed by replacing the originally 
horizontally polarized beam by two other horizontally polarized beams, traveling 
at an angle (h with respect to one another in one vertical plane, and by replacing 
the originally vertically polarized beam by two vertically polarized beams at an 
(possibly different) angle 01 with respect to one another traveling in one horizontal 
plane (see Fig. 16.4). 

The NIST group studied atoms loaded into this type of lattice using Bragg 
diffraction of laser light from the spatially ordered array [318]. They cut off the 
laser beams that formed the lattice, and before the atoms had time to move away 
from their positions, they pulsed on a probe laser beam at the Bragg angle appro­
priate for one of the sets of lattice planes. The Bragg diffraction not only enhanced 
the reflection of the probe beam by a factor of 105 , but by varying the time be­
tween the shut-off of the lattice and tum-on of the probe, they could measure the 
"temperature" of the atoms in the lattice. The reduction of the amplitude of the 
Bragg scattered beam with time provided some measure of the diffusion of the 
atoms away from the lattice sites, much like the Debye-Waller factor in X-ray 
diffraction. 

16.3 Quantum States of Motion 

Laser cooling has brought the study of the motion of atoms into an entirely new 
domain where the quantum mechanical nature of their center-of-mass motion must 
be considered. Such exotic behavior for the motion of whole atoms, as opposed to 
electrons in the atoms, has not been considered before the advent of laser cooling 
simply because it is too far out of the range of ordinary experiments. A series of 



236 16. Optical Lattices 

f 
~ 
w 
Z 
w 

o 'M2 
POSITION 

FIGURE 16.5. Energy levels of atoms moving in the periodic potential of the light shift in 
a standing wave. There are discrete bound states deep in the wells that broaden at higher 
energy, and become bands separated by forbidden energies above the tops of the wells. 
Under conditions appropriate to laser cooling, optical pumping among these states favors 
populating the lowest ones as indicated schematically by the arrows (see Sec. 16.5). 

experiments in the early 1990s provided dramatic evidence for these new quantum 
states of motion of neutral atoms, and led to the debut of deBroglie wave atom 
optics (see Chapter 15). 

The limits of laser cooling discussed in Sec. 8.7 suggest that atomic momenta 
can be reduced to a "few" times lik. This means that their deBroglie wavelengths 
are equal to the optical wavelengths divided by a "few". If the depth of the optical 
potential wells is high enough to contain such very slow atoms, then their motion 
in potential wells of size 'A/2 must be described quantum mechanically, since they 
are confined to a space of size comparable to their deBroglie wavelengths. Thus 
they do not oscillate in the sinusoidal wells as classical localizable particles, but 
instead occupy discrete, quantum mechanical bound states as shown in the lower 
part of Fig. 16.5. 

Optical lattices can be used for the study of many effects normally associated 
with solid state physics. One example is the Bragg diffraction discussed in the 
previous section. Another example arises because atoms bound in states near the 
tops of the potential wells can readily tunnel to adjacent wells. The result is that 
bound states near the tops of the wells are broadened into bands, and of course, 
there are also forbidden energy bands even above the tops of the wells. Figure 16.5 
shows this energy level structure for the simplest 1 D case. The generalization to 
more complicated ID cases, as well as higher dimensions, is obvious. In addition 
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FIGURE 16.6. (a) Fluorescence spectrum in a ID lin 1. lin optical molasses. Atoms are 
first captured and cooled in an MOT, then the MOT light beams are switched off leaving a 
pair of lin 1. lin beams. Then the measurements are made with 8 = -4)1 at low intensity. 
(b) Same as (a) except the ID molasses is a+ -a- which has no spatially dependent light 
shift and hence no vibrational motion (figure from Ref. 163). 

to the presence of the discrete bound states shown by the sidebands in Fig. 16.6 (see 
discussion below), the existence of such energy bands is also a direct manifestation 
of the quantum mechanical nature of the atomic center-of-mass motion in the 
lattice, since tunneling is a purely quantum phenomenon. 

The very low temperatures of optical molasses described in Chapter 8 produced 
severe limits on the ballistic technique described in Sec. 7.4 used for measuring the 
atomic velocity distribution. The group at NIST therefore developed a new method 
that superposed a weak probe beam of light directly from the laser upon some of the 
fluorescent light from the atoms in a 3D optical molasses, and directed the light 
from these combined sources onto on a fast photodetector [319]. The resulting 
beat signal carried information about the Doppler shifts of the atoms in the optical 
molasses [163]. These Doppler shifts were expected to be in the sub-MHz range for 
atoms with the previously measured 50 ILK temperatures. The observed features 
confirmed the previous measurements done by atomic ballistics [82]. 

The results of such experiments, shown in Fig. 16.6, display a central peak 
whose width corresponds to the average velocity along the direction of the weak 
probe beam, and two sidebands that correspond to transitions that raise or lower 
the energy of atoms in the wavelength size traps by one vibrational quantum (see 
Fig. 16.5). Their unequal strength reflects the unequal populations of the vibrational 
levels, and allows extraction of the "temperature" from the Boltzmann factor. The 
dependence of this measured temperature on the laser trap parameters is consistent 
with the theories of laser cooling previously described in Chapter 8 above. 

The experiments also showed a much narrower peak atop the sub-MHz central 
peak whose width corresponded to velocities much less than a single atomic recoil. 
Since there was no evidence to support the existence of such a narrow velocity 
distribution, the sharp peak was attributed to Dicke narrowing [320], a suppression 
of Doppler shifts when radiators or scatterers are confined to a space smaller than 
a wavelength. It is not surprising to expect atoms to be confined to sub-wavelength 
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size regions in optical molasses because the light shifts associated with antinodes 
of the standing waves can be considerably larger than the kinetic energy of J-tK 
atoms. 

At about the same time, the Paris group used a complementary technique to 
study the quantized motional states of atoms in the discrete bound states of the 
potential wells [162]. Instead of looking at the result of spontaneous emission 
from excited internal atomic states, they stimulated these transitions, effectively 
producing Raman transitions between the discrete vibrational levels. The result 
was a set of very narrow features in absorption (or gain) of their probe beam at 
frequency differences that corresponded to the vibrational transitions in the wells 
(see Fig. 13.8). 

16.4 Band Structure in Optical Lattices 

The band structure associated with the motion of atoms in standing waves was first 
studied theoretically in 1991 [161,321], and experimentally in 1994 [322]. The 
experimenters used the 23S -+ 23p transition in He* at A = 1.083 J-tm in various 
ID polarization configurations. The ratio of its high recoil energy (~ 42 kHz) to 
its small natural width (~ 1.6 MHz) combine to produce a relatively large value of 
8 ~ 0.025 as defined in Eq. 5.5, and thereby maximize the observable effects. It is 
easy to see why a large value of 8 maximizes such quantum effects by considering 
the ratio r of the energy level spacing to the optical excitation rate Yp given by 
Eq. 2.26. Classically this ratio gives approximately the Q of the oscillations, since 
the lifetime of the ground states is given by y p' Using the harmonic approximation 
to the shape of the bottom ofthe sinusoidal wells given by U = Uo(l +cos 2kx)/2, 
the ratio r becomes 

l/ITid2U r = - --- = 
yp M d.x 2 

8 4UoY ex J8 (101)3 
liy~ y 

(16.1) 

for 101 » y. Of course, 101 can never be made too large in any experiment because 
the laser cooling rate will be considerably decreased, so a large value of 8 is indeed 
important. 

The results of the measurements showed features that depended on the existence 
of bands with finite energy widths, rather than simply the presence of discrete 
states in the wells. For example, the Bloch states within a band have a continuum 
of energy levels whose populations may vary as a result of optical pumping. This 
variation can influence the velocity distribution of the entire population of the band 
in a calculable way, and this is precisely what these authors observed [322]. 

In the 1930s Bloch realized that applying a uniform force to a particle in a 
periodic potential would not accelerate it beyond a certain speed, but instead would 
result in Bragg reflection when its deBroglie wavelength became equal to the lattice 
period. Thus an electric field applied to a conductor could not accelerate electrons 
to a speed faster than that corresponding to the edge of a Brillouin zone, and that 
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FIGURE 16.7. Plot of the measured velocity distribution vs. time in the accelerated ID 
lattice. The atoms accelerate only to the edge of the Brillouin zone where the velocity is 
+vr, and then the velocity distribution appears at -Vr (figure from Ref. 323). 

at longer times the particles would execute oscillatory motion. Ever since then, 
experimentalists have tried to observe these Bloch oscillations in increasingly pure 
and/or defect-free crystals. 

Atoms moving in optical lattices are ideally suited for such an experiment, as 
was beautifully demonstrated in 1996 [323]. The authors loaded a 10 lattice with 
atoms from a 30 molasses, further narrowed the velocity distribution, and then 
instead of applying a constant force, simply changed the frequency of one of the 
beams of the 10 lattice with respect to the other in a controlled way, thereby 
creating an accelerating lattice. Seen from the atomic reference frame, this was the 
equivalent of a constant force trying to accelerate them. After a variable time ta 
the 10 lattice beams were shut off and the measured atomic velocity distribution 
showed beautiful Bloch oscillations as a function of ta. The centroid of the very 
narrow velocity distribution was seen to shift in velocity space at a constant rate 
until it reached Vr = hkj M, and then it vanished and reappeared at -Vr as shown 
in Fig. 16.7. The shape of the "dispersion curve" allowed measurement of the 
"effective mass" of the atoms bound in the lattice. 

16.5 Quantum View of Laser Cooling 

In the semiclassical picture of laser cooling used up to now, the motion of atoms is 
treated as if they were point particles whose positions and velocities can be known 
simultaneously. The optical damping force on them is calculated from the force 
operator V'Jt, and the average over the mixture of states created by the light field 
is done using F = -Tr(pV'Jt) (see Eq. 3.4). Here p is the atomic density matrix 
found from its equation of motion, Eq. 2.21, called the optical Bloch equations. 
The velocity distribution evolves in classical phase space according to the Fokker­
Planck Equation (FPE), given in Eq. 5.20. Solution of these equations results in a 
formal quantitative description of the Sisyphus cooling that has been modelled in 
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Chapter 8 by atoms rolling up and down hills formed by the spatially varying light 
shifts. 

It is clear that such a treatment is no longer appropriate when the deBroglie 
wavelength ofthe particle becomes comparable to the wavelength of the light. The 
view of localized particles moving up and down hills whose size are comparable 
to the size of the atoms becomes untenable. At these same velocities, the use of 
the FPE becomes inappropriate since the recoil momentum becomes comparable 
to the width of the momentum distribution (see Secs. 5.3 and 5.4). 

By contrast, in the quantum mechanical view, the external states of motion 
are treated as quantum mechanical variables just as the internal atomic states. 
Laser cooling then becomes a process of optically pumping atoms to states of 
lower kinetic energy, dissipating the lost energy into the radiation field. This new 
theoretical approach requires a different explanation of laser cooling than that 
of a damping force competing with momentum diffusion (see Sec. 8.7), because 
stationary quantum states rather than classical trajectories are involved. Optical 
excitation and spontaneous emission deplete the more energetic quantum states 
faster than the low energy states because the transition rates are asymmetric in total 
energy. Thus laser cooling becomes an optical pumping process among external 
states of motion as well as among internal atomic states [324]. 

Figure 16.5 shows a model of how this works [325]. Atoms occupy discrete levels 
in the wells formed by the interference of the laser beams that do the cooling. They 
absorb light and undergo spontaneous emission from the excited states as indicated 
by the wavy lines. When the laser parameters correspond to those appropriate for 
cooling, the spatial overlap of the wavefunction of the excited and ground states 
favors excitation to those particular vibrational levels of the excited state whose 
decay paths preferentially lead to lower ground state vibrational energies. 

This is an especially interesting description because it depends on the light-shift 
potential caused by stimulated emission to make the wells, and also on the optical 
pumping caused by the spontaneous emission to enable the cooling. Both of these 
quite different processes are caused by the same light field. 



17 
Bose-Einstein Condensation 

17.1 Introduction 

The basis underlying the great advance of the Planck distribution law for black 
body radiation in 1901 was a mystery in the era before the development of quan­
tum mechanics in the late 1920s. Early attempts to calculate this spectrum using 
classical statistical mechanics had failed dismally, resulting in the catastrophe of 
the Rayleigh-Jeans law. In 1924 S. Bose found the correct way to evaluate the dis­
tribution of identical entities such as Planck's radiation quanta that allowed him to 
calculate the Planck spectrum using the methods of statistical mechanics. Within 
a year Einstein had seized upon this idea, and generalized it to identical particles 
with discrete energies. The result was the Bose-Einstein (BE) statistical mechan­
ics of identical particles, even before the idea of wavefunctions had appeared. The 
Fermi-Dirac statistics, and their contrast with BE statistics, came after the ad­
vent of quantum mechanics and the Pauli exclusion principle (antisymmetrization 
postulate). The BE distribution is 

1 
N(E) = P(E-) , e JL - 1 

(17.1) 

where f3 == 1/ k B T and f.L is the chemical potential that vanishes for photons: 
Eq. 17.1 with f.L = 0 is exactly the Planck distribution. 

Einstein observed that this distribution has the peculiar property that for suf­
ficiently low average energy (i.e., low temperature), the total energy could be 
minimized by having a discontinuity in the distribution for the population of the 
lowest allowed state. That is, at sufficiently low temperatures, the total energy of 
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a sample of atoms would be minimized if there were a significant fraction of its 
atoms in the ground state, and infinitesimal fractions of the atoms in each of the 
discrete excited states. 

The condition for this Bose-Einstein condensation (BEC) in a gas can be ex­
pressed in terms of the deBroglie wavelength Ad B associated with the thermal 
motion of the atoms as 

nA~B :::: 2.612 ... , (17.2) 

where n is the spatial density of the atoms. In essence, this means that the atomic 
wavefunctions must overlap one another. 

The most familiar elementary textbook description of BEC focuses on non­
interacting particles. The photons of the Planck distribution is the most widely 
studied example, but BEC for massive, non-interacting particles is also discussed. 
However, particles do interact and the lowest order approximation that is widely 
used to account for the interaction takes the form of a mean-field repulsive force. 
It is inserted into the Hamiltonian for the motion of each atom in the trap (n.b., not 
for the internal structure of the atom) as a term Vint proportional to the local density 
of atoms. Since this local density is itself 111112, it makes the Schrodinger equation 
for the atomic motion non-linear, and the result bears the name "Gross-Pitaevski 
equation". For N atoms in the condensate it is written 

(17.3) 

where R is the coordinate of the atom in the trap, Vtrap(R) is the potential associated 
with the trap that confines the atoms in the BEC, and Yint == 4rrli2aj M is the 
coefficient associated with strength of the mean field interaction between the atoms. 
Here a is the scattering length (see Chapter 14), and M is the atomic mass. 

For a > 0 the interaction is repulsive so that a BEC would tend to disperse. 
This is manifest for a BEC confined in a harmonic trap by having its wavefunction 
somewhat more spread out and flatter than a Gaussian. By contrast, for a < 0 the 
interaction is attractive and the BEC eventually collapses. However, it has been 
shown that there is metastability for a sufficiently small number of particles with 
a < 0 in a harmonic trap, and that a BEC can be observed in vapors of atoms with 
such negative scattering length as 7Li [32~328). This was initially somewhat 
controversial. 

Solutions to this highly non-linear equation 17.3, and the ramifications of those 
solutions, form a major part of the theoretical research into BEC. Note that the 
condensate atoms all have exactly the same wavefunction, which means that adding 
atoms to the condensate does not increase its volume, just like the increase of atoms 
to the liquid phase of a liquid-gas mixture makes only an infinitesimal volume 
increase of the sample. 

The consequences of this predicted condensation are indeed profound. If atoms 
in a container, or bound in a trap, satisfy the condition ofEq. 17.2, then a significant 
fraction of them will be in the lowest bound state, whose wavefunction spans a 
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large fraction of the accessible volume. For example, in a harmonic trap, the lowest 
state's wavefunction is a Gaussian. With so many atoms having exactly the same 
wave function they form a new state of matter, unlike anything in the familiar 
experience. 

17.2 The Pathway to BEe 

The earliest interpretation of an experiment to observe BEC is usually associated 
with studies of the A transition in liquid 4He in the late 1930s. At the temperature 
2.2 K the conditions of Eq. 17.2 are satisfied, there is clearly a phase transition, 
and the properties of the fluid change dramatically. However, because of the very 
strong interaction between the atoms, only a small fraction ('" 9%) of the atoms are 
in the condensate. In fact, the behavior of the system is sufficiently complicated 
that neither the simple Bose distribution given by the Planck spectrum nor the 
Gross-Pitaevski equation is adequate. 

In the late 1970s there were several attempts to achieve BEC in spin-polarized 
atomic hydrogen gas. This gas does not liquefy even at T = 0 K, and the BEC 
could be made at densities sufficiently low that the interactions associated with 
collisions could be neglected. The major problem was recombination of two H 
atoms into a molecule of H2, and this was thought to be impossible since the 
required three-body collisions would be quite rare. The process was doomed to 
failure by the existence of long-range two-body interactions that were predicted 
soon after the experiments began. These caused the atomic spins to invert as a 
result of the dipole magnetic field associated with their spin magnetic moments, 
and this greatly enhances recombination into H2 molecules. After considerable 
development of forced evaporative cooling techniques (see Sec. 12.5), BEC in H 
was finally reported in 1998 without using laser cooling [329]. 

A claim to BEC in condensed matter was made based on the motion of excitons. 
These sparse electron excitations in certain materials have some of the properties 
of atoms, and are sufficiently delocalized that their wavefunctions can overlap. But 
the system is rather restricted, and has not attracted as much attention as the BEC 
in laser-cooled alkali vapors. 

Achieving the conditions required for BEC, namely satisfying Eq. 17.2 in a low­
density atomic vapor, requires a long and difficult series of cooling steps. First, 
note that an atomic sample cooled to the recoil limit would need to have a density 
of a few times 1013 atoms/cm3 in order to satisfy Eq. 17.2. However, atoms can 
not be optically cooled at this density because the resulting vapor would have an 
absorption length for on-resonance radiation approximately equal to the optical 
wavelength. Thus atoms would form an opaque vapor that would not permit the 
cooling light in or the fluorescent light to escape it. Furthermore collisions between 
ground and excited state atoms that can heat them by energy transfer among fine 
or hyperfine states have such a large cross section, that at this density the optical 
cooling would be extremely ineffective. 
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In fact, the practical upper limit to the atomic density for laser cooling in a 3D 
optical molasses (see Sec. 8.2) or Mar (see Sec. 11.4) corresponds to n '" 1010 
atoms/cm3. In order to satisfy Eq. 17.2 at this density, the temperature would have 
to be a few nK, clearly out of the range of any of the usual optical processes that 
have been described up to now (Sec. 8.7). (Note that the Raman cooling described 
in Sec. 8.7.2, and the VSCPT process described in Sec. 18.3 are optical processes 
that can achieve such sub-recoil temperatures, but these are inefficient so that 
cooling enough atoms to make a BEC with these techniques is quite a formidable 
task.) Thus it is clear that the final stage of cooling toward a BEC must be done 
either in the dark or in a far-off-resonance trap (Sec. 11.2.3). 

The process typically begins with a Mar for efficient capture of atoms from a 
slowed beam or from the low-velocity tail of a Maxwell-Boltzmann distribution 
of atoms at room temperature. The Mar fields are then shut off in a very short 
time (few ms), a process that requires very great care in the electronics that power 
the Mar coils. Then a polarization gradient optical molasses stage is initiated (see 
Sec. 8.2) that cools the atomic sample from the mK temperatures of the Mar to a 
few times Tr • For the final cooling stage, the optical molasses beams are quickly 
switched off and the magnet coils are turned back on again so that the cold atoms 
are confined in the dark in a purely magnetic trap. Then a forced evaporative 
cooling process, described in some detail in Chapter 12, is used to cool the atoms. 

The observation of BEC in trapped alkali atoms in 1995 has been the largest 
impetus to research in this exciting field. In each reported case the atoms were 
trapped, laser-cooled, and then evaporatively cooled. At first there were only three 
reported successful experiments, and then there was a hiatus for over a year. Slowly 
other labs developed the technology and reports of successful BEC's began to 
appear more rapidly. As of this writing (1999), the only atoms that have been 
condensed are Rb [138], Na [330], Li [331], and most recently, H [329]. The case 
ofCs is special because, although BEC is certainly possible, the presence of a near­
zero energy resonance severely hampers its evaporative cooling rate. The case of 
H is also special because it was done using standard cryogenic methods followed 
by evaporative cooling, without laser cooling. 

17.3 Experiments 

17.3.1 Observation of BEe 

The apparatus for producing the conditions necessary for BEC has been described 
in several parts of this book, and is summarized in the previous section. By contrast, 
the apparatus for observing BEC is quite different from the usual setups for the 
study of laser cooling. Nevertheless, the basic principles apply, namely to devise 
a scheme to measure the spatial distribution of atoms some delay time after the 
atoms have been released from whatever trap holds them. Simple classical ballistic 
calculations then are used to infer the velocity distribution of atoms in the original 
sample from the measured spatial distribution. 
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FIGURE 17.1. Three panels showing the spatial distribution of atoms after release from the 
magnetostatic trap following various degrees of evaporative cooling. Tn the first one, the 
atoms were cooled to just before the condition of Eq. 17.2 was met, in thc second one, to 
just after this condition, and in the third one to the lowest accessible temperature consistent 
with leaving some atoms still in the trap (figure taken from the liLA web page). 

The first observations of BEC were in Rb [138], Li [331], and Na [330], and 
the observation was done with such destructive ballistic techniques. The results 
from one of the first experiments are shown in Fig. 17.1. The three panels show the 
spatial distribution of atoms some time after release from the trap. From the bal­
listic parameters, the size of the BEC sample, as well as its shape and the velocity 
distribution of its atoms could be inferred. For temperatures too high for BEC, the 
velocity distribution is Gaussian but asymmetrical. This is because the magnetic 
trap is necessarily anisotropic, as outlined in Sec. 10.2, so the Gaussian wavefunc­
tion of the lowest state is narrower in one direction than in the other. Of course, 
the momentum distribution is wider in the direction where the spatial distribution 
is narrower. For temperatures below the transition to BEC, the distribution is also 
not symmetrical, but now shows the distinct peak of a disproportionate number 
of very slow atoms corresponding to the ground state of the trap from which they 
were released. The effect is most dramatic, and was described as not the usual 
kind of "clue hidden in the data", but more like "Venus rising from the sea, fully 
formed" [332]. As the temperature is lowered further, the number of atoms in the 
narrow feature increases very rapidly, a sure signature that this is truly a BEC and 
not just very efficient cooling. 

Such destructive ballistic measurement methods have been complemented by 
direct optical imaging in many cooling and trapping experiments. However, the 
physical size of a typical BEC is only ~ 10 {Lm, so direct imaging strains the 
capability of optical design for viewing a BEC that is several cm from the near­
est window of a vacuum system. Nevertheless, both absorptive and dispersive 
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measurements, with limited resolution, have become more and more important in 
the experiments. The destructive methods have recently been replaced by in-situ 
non-destructive dispersive measurements that have enormous advantages, enabling 
direct observation of the growth of the BEe, as well as of its collective motion 
under the influence of various kinds of perturbations. 

BEe in H was first reported in 1998 [329] and is quite different from the ex­
periments in the alkalis. The temperature is as high as 50 ILK because the small 
mass of H results in a sufficiently large deBroglie wavelength, even at such high 
speed. It is produced by evaporative cooling of a sample of atomic H that has been 
cooled in a conventional cryostat and then magnetically confined in a Ioffe trap 
(see Sec. 10.2). At first, the sample is allowed to evaporate spontaneously over the 
low end of the magnetic trap, cooling the gas to about 120 ILK, and then forced 
evaporation using rf is applied (see Sec. 12.5). 

The detection scheme is also quite different. The authors use two-photon spec­
troscopy to excite the metastable 2S state of H at A = 243 nm [333]. With retrore­
flected beams of light, the spectrum shows both the very narrow, Doppler-free 
signal caused by absorption of two counterpropagating photons, and the Doppler­
broadened spectrum from absorption of co-propagating photons. Small shifts or 
broadening of the narrow feature are easily observable, and the signature of the 
BEe is a strong shift arising from the strong interatomic interactions associated 
with the condensate. The magnitude of the shift is found from the non-linear term 
of the Gross-Pitaevski equation, Eq. 17.3. BEe in H enjoys the special advantage 
that the atomic structure is so well known that calculation of Vinl in Eq. 17.3 can 
be done much more accurately. 

17.3.2 First-Order Coherence Experiments in BEC 

One of the earliest experiments performed with a BEe was to observe deBroglie 
wave interference fringes [334]. A sample ofNa atoms was collected and trapped 
in a MOT, cooled in molasses, and confined in an elongated magnetic trap related 
to the Ioffe trap (see Sec. 10.2). Then an intense beam from an Ar ion laser was 
focused into the center of the trap, and even though the resulting light shift was 
small because of the huge detuning, it was large enough to form a barrier that 
could split the very cold trapped atoms into two separated samples. Then these 
were evaporatively cooled to form independent BEe's, and released from the trap 
to fall under gravity. It took,....., 40 ms for the BEe's to expand sufficiently to overlap 
one another, and during this time they fell ,....., 8 mm under gravity. 

The atomic cloud was imaged dispersively so as not to disturb it, and it displayed 
bright interference fringes with a spatial period appropriate to the experimental 
geometry (see Fig. 17.2). The phase of the fringes varied unpredictably from trial 
to trial as might be expected from independent coherent wave sources. This can be 
understood by considering the pulse-to-pulse variation of the phase of interference 
fringes of the light from two independent pulsed lasers. Furthermore, if the barrier 
between the BEe's was made small enough to permit tunneling between them, 
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FIGURE 17.2. OeBrogJie wave interference fringes produced by allowing two independent 
BEC's to run into one another (figure from Ref. 335). The atoms in the BEC's are dropped 
from the trap, and as they fall they expand and overlap, producing the fringes. 

then a relatively stable phase feature was observed (but not measured because of 
limitations imposed by vibration). 

In summary, the atoms in a BEC have a spatial coherence that derives from their 
momentum coherence, and this can be observed by interfering two independent 
BEC's. This experiment was the first step toward coherent atom optics using a 
BEC as a source. 

The next step in the study of atoms in a BEC was the demonstration of an 
output coupler for them. This was done by the same group [336], using the same 
kinds of rf transitions that produced the evaporative cooling (see Chapter 12). 
Instead of completely inverting the atomic spins with a 7r -pulse of rf radiation, the 
experimenters applied a pulse that gave a much smaller inversion. This means that 
the atoms were placed in a superposition consisting mostly of the trapping state, 
but with a small component of a non-trapping state. Of course, this small fraction 
of the atoms was removed from the BEC, but most of the atoms remained trapped 
in the condensate. 

These pulses of atoms could be repeated many times, slowly depleting the pop­
ulation of the BEe. The trapping state was the M F = -1 sublevel of the F = 1 
hfs ground state of Na, and the rf transitions populated both the M F = 0 and + 1 
sublevels. The first of these simply fell away and was easily photographed, but 
the second is a strong field seeker and was therefore repelled quickly from the 
trapping region. But each separate pulse of atoms was internally coherent and this 
coherence could enable interference so that a collision of two pulses should show 
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fringes. This output is analogous to a pulsed laser output, and many people refer 
to this experiment as the birth of the atom laser [336]. 

A different type of extraction of atoms from a BEe was demonstrated by the 
NIST group [337]. They employed the recoil-induced resonances of the type 
described near the end of Sec. 13.9, but using counterpropagating laser beams 
[253-256]. Atoms undergo a single cycle of absorption from one beam followed 
by stimulated emission from the other, and thus have a precisely controlled mo­
mentum change. By choosing the strength of the interaction, the authors could 
select a small fraction of the atoms in the condensate to be ejected, and then re­
peat the process periodically. Thus atoms were kicked by ±2Itk, and were ejected 
in opposite directions from the condensate. Furthermore, repetition of the laser 
pulse could split each of the ejected packets of atoms into two others, one with 
momentum ±41tk and one with O. A third pulse would allow two packets that 
had followed different sequences of momentum kicks to overlap, and evidence for 
interference between them was observed. In a related experiment, the magnetic 
field of their TOP trap (see Sec. 10.4.3) caused these packets of atoms to follow 
curved trajectories, and stroboscopic-like traces of their orbits could be followed 
with the technique of imaging the atoms. 

17.3.3 Higher-Order Coherence Effects in BEe 

There have been a number of tests that dramatically confirm the bosonic character 
of the particles in the observed BEC's, and show excellent corroboration of the 
theoretical pictures. One of these derives from the collisional losses that occur 
in the BEe by the formation of alkali metal dimers that are no longer trapped. 
This can only happen in three-body collisions, but such collisions are strongly 
suppressed for atoms in a BEe because all the atoms have the same wavefunctions 
and thus are not "moving" relative to one another to have collisions. 

The correlations of the positions of atoms in a BEe is expressed in terms of 
the same correlation functions that are used to describe the intensity correlations 
of light, for example, in the famous Hanbury-Brown and Twiss experiment. The 
second order correlation coefficient g(2) is a measure of such intensity correlations 
for atoms, but dimerization cannot occur in two-body collision whose rate would 
be proportional to g(2) • Thus the observation of atomic density correlations by loss 
from a BEe would have to depend on the third order coefficient, g(3) ,corresponding 
to three-body collisions [338]. 

The density-dependent loss of atoms from a BEe is relatively easy to sort out 
from the density-independent part by measurement of the decay rate of the sample. 
The measurements of Ref. 338 showed that the density-dependent part indeed 
derived almost solely from three-body collisions. The presence of atomic density 
correlations in a BEe was then extracted from the data by comparing the loss 
rates for a sample of atoms both in and not in a condensate, but having the same 
density. This was accomplished by cooling Rb atoms to a temperature just above 
the condition of Eq. 17.2, measuring the density-dependent loss rate, and then 
comparing this with a sample of atoms that had been cooled well into the BEe 
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regime. The ratio of the two measured values of the decay rates was found to be 7.4 
± 2.6, vastly different from unity, and this is in agreement with various theoretical 

models that give g~~C/g~~rmal = 3! = 6 [338]. 
Another confirmation of the theory for BEe comes from a measurement of 

the dynamics of the formation of the condensate from a vapor of super-cooled 
atoms [339]. In this experiment, a vapor of Na was brought to nearly the threshold 
of the condition of Eq. 17.2, and then suddenly cooled to well below this. The 
atoms began forming a condensate, and the rate of populating it was not limited 
to the cooling rate as in previous experiments. Instead it depended only on the 
dynamics of BEe formation. 

When bosons interact with one another, there is a tendency for them to undergo 
transitions that result in growth of the population of the states that already have 
higher populations. It is said that bosons "like to clump together" in the same state, 
and stimulated emission of light in a laser is one often cited example of this. In 
a similar way, it might be expected that cold atoms that can occupy only discrete 
states of a trap would collide in such a way that they would be driven into the most 
populated trap state. Thus if a small BEe had formed by some nucleation process, 
then the rate of atoms going into the BEe ought to be enhanced. 

In the experiments of Ref. 339, the population of the condensate was found to 
grow rapidly and then level off, but the approach to steady state was definitely 
not exponential. Instead it followed part of an "tan -I" -shaped curve, starting out 
slowly, growing rapidly, and then leveling off. This suggests that population of the 
BEe is not a relaxation recovery from the transient of the sudden cooling, but in 
fact arises from bosonic stimulation. 

17.3.4 Other Experiments 

One of the more interesting questions pertaining to BEe is how such a sample of 
material moves under the influence of a force. From the first experiments, it's clear 
that a BEe falls ballistically under gravity. It's also expected that it would oscillate 
harmonically as a rigid body if perturbed in a harmonic trap, and this too has been 
tested [140,340]. In general, the nature of higher order modes of motion, such as 
breathing or deformation, can be found from solutions of the highly non-linear 
equation Eq. 17.3, which are generally not simple. For example the frequency of 
the quadrupole deformation oscillation (e.g., from vertical to horizontal ellipsoid) 
depends on the number of atoms in the BEe because the potential term in Eq. 17.3 
is multiplied by N. 

In a series of experiments [140,340-343] several authors in two groups have 
made extensive studies of the collective excitations ofBEC's. The excitations were 
produced by shaking or squeezing the trap in a phase sensitive way, at or near the 
frequencies corresponding to the various modes of oscillation. It was found that the 
oscillation frequencies of various modes can indeed be predicted by Eq. 17.3, and 
these do not follow any simple, general rules. The measurements have compared 
the motion of BEe's, vapors of trapped atoms that were too hot to condense, and 
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mixtures. The damping of the oscillations of BEC's was found to be much less 
than that of ordinary vapors, as expected. 

There have also been experiments that test the propagation of sound waves 
in a BEe, and in particular the observation of the purely quantum mechanical 
phenomenon called second sound. For normal sound the superfluid and normal 
components of the density fluctuations in the condenstate are in the same direction. 
For second sound, these components are in opposite directions and cancel. There 
are no density fluctuations, but there is still transport of energy from the second 
sound through the sample. Several observations were found to be inconsistent 
with direct applications of the theory, and the measurements currently present a 
challenge to the calculations of the detailed behavior of BEe's. 

In a totally different series of experiments, unrelated to the excitations discussed 
above, BEC's of atoms in two different magnetic substates have been formed in the 
same trap. Each ofthe two ground state hfs levels ofRb has a magnetic sublevel with 
maximum trapping coefficient, and both of these can be trapped simultaneously. In 
a recent experiment with such a double population in a trap, only one of these was 
evaporatively cooled and it condensed into a BEe [344]. Because of the different 
g-factors (see Eq. 4.4), these rftransitions can be selective for one or the other state. 
Measurements on the other population showed that it, too, had condensed because it 
had been cooled by interaction with the first population. Such sympathetic cooling 
had previously been demonstrated with trapped ions, but not with neutral atoms. 
The experimenters could observe the two BEC's simultaneously in the trap because 
they were separated in space by the imbalance between the same gravitation force 
but different magnetic trapping forces on both of them. Such experiments pave the 
way for making BEe with atoms that can be trapped but not cooled easily, as well 
as for molecules. 



18 
Dark States 

18.1 Introduction 

As the techniques oflaser cooling advanced from a laboratory curiosity to a tool for 
new problems, the emphasis shifted from attaining the lowest possible steady-state 
temperatures to the study of elementary processes, especially the quantum mechan­
ical description of the atomic motion. In the completely classical description of 
laser cooling, atoms were assumed to have arbitrary position and momentum that 
could be known simultaneously. However, when atoms are moving sufficiently 
slowly that their deBroglie wavelength precludes their localization to less than 
)"/271:, these descriptions fail and a quantum mechanical description is required, 
as discussed in Chapter 15. 

One special area of interest is the study of dark states, atomic states that can 
not be excited by the light field. Some atomic states are trivially dark, that is, they 
can't be excited because the light has the wrong frequency or polarization. The 
more interesting cases are superposition states created by coherent optical Raman 
coupling. A very special case are those superpositions whose excitable component 
vanishes exactly when their external (deBroglie wave) states are characterized 
by a particular momentum. Such velocity selective coherent population trapping 
(VSCPT) has been a subject of considerable interest since its first demonstration in 
1988 [345]. VSCPT enables arbitrarily narrow momentum distributions and hence 
arbitrarily large delocalization for atoms in the dark states [346]. 

The quantum description of atomic motion requires that the energy of such 
motion be included in the Hamiltonian. The total Hamiltonian for atoms moving 
in a light field would then be given by 
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FIGURE 18.1. The kinetic energies accessible to atoms moving freely (no spatially varying 
light shift). The horizontal lines mark the momentum values that correspond to integer 
values of the recoil momentum hk. 

'H = 'Hatom + 'Hrad + 'Hint + 'Hkin, (18.1) 

where 'Hatom describes the motion of the atomic electrons and gives the internal 
atomic energy levels, 'Hrad is the energy of the radiation field and is of no concern 
here because the field is not quantized, 'Hint describes the excitation of atoms by 
the light field and the concomitant light shifts, and 'Hkin is the kinetic energy Ek 
of the motion of the atoms' center of mass. This Hamiltonian has eigenstates of 
not only the internal energy levels and the atom-laser interaction that connects 
them, but also of the kinetic energy operator 'Hkin == p2 12M. These eigenstates 
will therefore be labeled by quantum numbers of the atomic states as well as the 
center of mass momentum p. For example, an atom in the ground state, Ig; p), 
has energy E g + p2/2M which can take on a range of values. Figure 18.1 shows 
the continuum of kinetic energy values for both ground and excited states, with the 
integer momentum values marked as lines. Because p2 = (-p)2, all these kinetic 
energy states are doubly degenerate in 1 D except for p = O. (In this chapter, 
momentum is measured in units of hk.) 

18.2 VSCPT in Two-Level Atoms 

To see how the quantization of the motion of a two-level atom in a monochromatic 
field allows the existence of a velocity selective dark state, consider the states 
of a two-level atom with single internal ground and excited levels, Ig; p) and 
Ie; pi). Two ground eigenstates Ig; p) and Ig; p") are generally not coupled to 
one another by an optical field except in certain cases. For example, in oppositely 
propagating light beams (1 D) there can be absorption-stimulated emission cycles 
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FIGURE 18.2. Schematic diagram of the transformation of the eigenfunctions from the 
internal atomic states Ig; p} to the eigenstates I±}. The coupling between the two states 
Ig; p} and Ig; p"} by Raman transitions mixes them, and since they are degenerate, the 
eigenstates of 7t are the non-degenerate states I±}. 

that connect Ig; p} to itself or to Ig; P ± 2}, depending on whether the stimulated 
emission is induced by the beam that excited the atom or by the other one. 

In the first case, the states of the atom and field are left unchanged, but the 
interaction shifts the internal atomic energy levels thereby producing the light shift 
(see Sec. 1.2.1). In the second case, the initial and final Ek of the atom differ by 
±2 (p ± I) 1 M so energy conservation requires p = =F 1 (the energy of the light field 
is unchanged by the interaction since all the photons in the field have energy hw(). 
Thtis energy conservation corresponds to Raman resonance between the distinct 
states Ig; -I} and Ig; +I}, and is therefore velocity selective. The coupling of 
these two degenerate states by the light field produces off-diagonal matrix elements 
ofthe total Hamiltonian 1l of Eq. 18.1, and subsequent diagonalization of it results 
in the new ground eigenstates of 1l given by (see Fig. 18.2). 

I±} == (Ig; -I) ± Ig; +I}) Iv'l. (18.2) 

The excitation rate ofthe eigenstates I±} given in Eq. 18.2 to Ie; O} is proportional 
to the square of the electric dipole matrix element il given by 

I(e; 0Iill±}12 = I(e; Olillg; -I} ± (e; Olillg; +1}1 2/2. (18.3) 

This vanishes for I-) because the two terms on the right-hand side of Eq. 18.3 are 
equal since il does not operate on the external momentum of the atom (dotted line 
of Fig. 18.2). Excitation of I±} to Ie; ±2} is much weaker since it's off resonance 
because its energy is higher by 4hwr = 2h2 k2 1 M, so that the required frequency 
is higher than to Ie; O}. The resultant detuning is 4wr = 8E (y 12), and for E '" 0.5, 
this is large enough so that the excitation rate is small, making I-} quite dark. 
Excitation to any state other than Ie; ±2} or Ie; O} is forbidden by momentum 
conservation. Atoms are therefore optically pumped into the dark state I-} where 
they stay trapped, and since their momentum components are fixed, the result is 
VSCPT. 

A useful view of this dark state can be obtained by considering that its compo­
nents Ig; ±I} have well defined momenta, and are therefore completely delocal­
ized. Thus they can be viewed as waves traveling in opposite directions but having 
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FIGURE 18.3. Calculated force vs. velocity curves for different laser configurations showing 
both the avemge force and a typical set of simulated fluctuations. Part (a) shows the usual 
Doppler cooling scheme that produces an atomic sample in steady state whose energy width 
is hy /2. Part (b) shows VSCPT as originally studied in Ref. 345 with no damping force. 
Note that the fluctuations vanish for fJ = 0 because the atoms are in the dark state. Part 
(c) shows the presence of both a damping force and VSCPT. The fluctuations vanish for 
fJ = 0, and both damping and fluctuations are present at fJ t= o. 

the same frequency, and therefore they fonn a standing deBroglie wave. The fixed 
spatial phase of this standing wave relative to the optical standing wave fonned by 
the counterpropagating light beams results in the vanishing of the spatial integral 
of the dipole transition matrix element so that the state cannot be excited. This 
view can also help to explain the consequences of p not exactly equal ± 1, where 
the deBroglie wave would be slowly drifting in space. It is common to label the av­
erage of the momenta of the coupled states as the family momentum, ~, and to say 
that these states fonn a closedfamily, having family momentum ~ = 0 [345,347]. 

In the usual case of laser cooling, atoms are subject to both a damping force and 
to random impulses arising from the discrete photon momenta hk of the absorbed 
and emitted light. These can be combined to make a force vs. velocity curve as 
shown in Fig. 18.3a. Even in the present case, atoms with ~ "I- 0 are always subject 
to the light field that optically pumps them into the dark state and thus produces 
random impulses as shown in Fig. 18.3b. There is no damping force in the most 
commonly studied case of a real atom, the J = 1 ~ 1 transition in He*, because 
the Doppler and polarization gradient cooling cancel one another as a result of a 
numerical "accident" for this particular J = 1 ~ 1 case. 

Figures 18.3a and b should be compared to show the velocity dependence of the 
sum of the damping and random forces for the two cases of ordinary laser cooling 
and VSCPT. Note that for VSCPT the momentum diffusion vanishes when the 
atoms are in the dark state at ~ = 0, so they can collect there. In the best of both 
worlds, a damping force would be combined with VSCPT as shown in Fig. 18.3c. 
Such a force was predicted Ref. 348 and was first observed in 1996 [349]. 

18.3 VSCPT in Real Atoms 

Real atoms have multiple intemallevels that include the effects of the magnetic, 
hyperfine, and other sublevels. The strength of their optical interactions depends 
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FIGURE 18.4. The magnetic sublevels of the J = 1 --+ 1 transition can be coupled by 
circularly polarized light in four different ways. However, the M J = 0 --+ 0 transition is 
forbidden, and therefore optical pumping quickly empties the J = 0 sublevel. Thus the only 
remaining transitions are those two indicated by the arrows, and they are the ones involved 
in VSCPT. 

on the light polarization and on these other quantum numbers (see Sec. 4.5). For 
the present purpose, only the multiplicity of the magnetic sublevels associated with 
J =1= 0 will be important. A particularly beautiful example of dark states appears in 
the J = I --+ 1 transition, where the optical selection rules associated with llM J 
produce an analog of the hypothetical state I-} that is perfectly dark. 

18.3.1 Circularly Polarized Light 

The most well-studied example occurs in this J = 1 --+ 1 transition with coun­
terpropagating beams of opposite circular polarization. This is designated the 0'+­
a-configuration because the light induces llMJ = ±l transitions when the quan­
tization axis is chosen parallel to k of one of the light beams so that there is no 
z-component of the optical electric field. Decay from the excited MJ = 0 state 
to the ground M J = 0 state is forbidden by the selection rules, so the ground 
M J = 0 state is emptied by optical pumping, and the only populated ground states 
are MJ = ±1. Then the llMJ = ±1 transitions can populate only the excited 
M J = 0 state, thus forming a "A" system of levels as shown in Fig. 18.4. Although 
this optical arrangement is similar to that used in the magneto-optical trap (Mar) 
discussed in Sec. 11.4, there is a very important difference: the transition scheme 
for a Mar generally uses a J --+ J + 1 angular momentum scheme, carefully 
chosen to exploit the Zeeman effect, and this J --+ J + 1 scheme precludes dark 
states [350]. 

The two ground states having M J = ± 1 can be coupled by a Raman transition 
requiring the participation of both light beams, and thus their momenta must be 
different by ±2 in units of lik. Moreover, the resulting superposition states, desig­
nated 1 ±} as above, constitute entangled states, a case of very special importance to 
be discussed later in this chapter. For the case where the 0'+ (0'-) beam propagates 
in the positive (negative) z-direction, the superposition states are given by 

(18.4) 

where the subscripted quantum number denotes M J and the other one denotes 
the atomic momentum. As for the two-level atom case discussed above, one of 
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FIGURE 18.5. Measured velocity distribution of He* atoms driven on the 23 SI ~ 23 PI 
transition at A = 1.083 /-tm by counterpropagating beams, linearly polarized at 90° to one 
another, for a 20 /-tS interaction time. The intensity was 120 /-tW/cm2 (each beam) and the 
laser was on resonance. 

the states given in Eq. 18.4 is dark, and in this case it is 1+) because the Clebsch­
Gordan coefficients for the two transitions that couple the ground states of different 
MJ have opposite signs. 

The state Ig+l; +1) cannot be excited by the a+ light because there is no 
excited state with MJ = +2. Thus excitation must be by the a- beam that can 
only change its momentum to zero, and correspondingly for the state I g -I; -1). 
Therefore these two ground states can be coupled only through the excited state 
leo; 0) because the positive-going a+ light increases both the linear momentum 
and M J by one unit, and vice versa. 

Clearly the two states that are mixed together to form I±) in this case have the 
same total energy because they are both degenerate ground states, and their equal 
but opposite momenta result in the same Ek. Thus the mixture is also a stationary 
state of the total Hamiltonian H ofEq. 18.1. If the family momentum SJ is not zero, 
then the two states that are mixed do not have the same Ek, and so neither of the 
states I ±) are stationary states ofH. An atom originally in the dark state 1+) would 
then evolve into 1-) from which it can be excited. The subsequent spontaneous 
emission would change its momentum in an unpredictable way, but possibly toward 
a value of SJ closer to zero. As a result, atoms with SJ =1= 0 continue to interact with 
the light field until they are optically pumped by random walk in momentum space 
into the dark eigenstate 1+), and then the optical excitation ceases. Measuring the 
velocity distribution of an ensemble of atoms in 1+) produces two distinct peaks 
at p = ±1 as shown in Fig. 18.5, and this is the usual VSCPT as it was first 
observed [345]. 
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FIGURE 18.6. Construction of the dark state for linearly polarized light from the states 
MJ = ±I and p = ±l. 

18.3.2 Linearly Polarized Light 

Dark states in linearly polarized light are more complicated because each beam 
can drive both !:1MJ = ±l transitions. Of course, one could always simplify the 
description by choosing a quantization axis parallel to one of the optical electric 
fields, but this results in an additional complication. It arises because for a single 
linearly polarized light beam driving a J = I ---+ 1 transition, there is always 
an uninteresting, velocity-independent dark state corresponding to the forbidden 
MJ = 0 ---+ 0 transition. To avoid confusion with this dark state, the z-axis 
is chosen parallel to k as before. The selection rules now dictate!:1M J = ± 1 
because Z ..1 i. 

Then the velocity-independent dark state of the beam traveling in the +z direc­
tion can be visualized by considering that such light mixes the states I g - I; p} and 
Ig+l; p} only via a single excited state leo; p + I} as shown in Fig. 18.6 (the 
excited state leo; p - I) is not coupled by a beam traveling in the +z direction). 
The mixing forms two new superposition states, and one of them is dark just as 
above. Needless to say, the darkness property of this state is velocity independent, 
and corresponds to the forbidden M J = 0 ---+ 0 transition. 

Such a superposition state that is dark to linearly polarized light at some par­
ticular angle () needs to be indicated by a different ket that must also include the 
family momentum ~ in the specification of the state. Thus the superposition dark 
state is no longer simply 1+ } (or I-) for a two level atom), but instead the state that 
is dark to vertically polarized light is denoted by I~; () = O} D, where the subscript 
"D" denotes a dark state, and for a horizontally polarized beam, the corresponding 
dark state is I~; 7r /2} D. More generally, the state that is dark to a single beam of 
light linearly polarized at an angle () from the vertical is 

I~; (}}D = (e-illlg+ l ; ~) + eilllg_l; ~}) /../2. (18.5) 
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Such a state is dark for any value of fiJ. Note that any pair of states IfiJ; e} D and 
Is;>; e'} D having Ie -e'l = 7r /2 are orthogonal, including IfiJ; O} D and IfiJ; 7r /2} D. 

States such as Is;>; O} D and IfiJ; 7r /2} D cannot each be dark to two beams 
of different polarizations. However, counterpropagating orthogonally polarized 
beams (lin 1- lin) can produce a dark state by coupling two such states IfiJ; O} D 

and Is;>'; 7r /2} D into a further superposition, where fiJ - fiJ' = ±2. For vertically 
(horizontally) polarized light traveling in the +z (-z) direction, the dark state 
superposition is indicated by kets with both polarization angles as 

Dlpl == IfiJ; 0, 7r/2}D == (ifiJ + 1; O}D + IfiJ - 1; 7r/2}D) /h (18.6) 

as shown in Fig. 18.6. Now three arguments are needed to specify the new dark 
state Dlpl: the family momentum fiJ and both of the angles associated with each of 
the two component dark states. Here the family momentum fiJ is again the average 
of the two states comprising Dlpl, and corresponds to the excited state momentum. 
The state Dlpl can not be excited, independent of the value of fiJ. Its first component 
IfiJ + 1; O} D can be excited only by the horizontally polarized beam (chosen to be 
traveling in the -z direction) so absorption causes the momentum to be decreased 
to fiJ, and correspondingly for the second component, IfiJ' - 1; 7r /2} D. 

The velocity dependence arises because the superposition Dlpl can be a station­
ary state of the Hamiltonian 1i of Eq. 18.1 only if (s;> + 1)2 = (fiJ - 1)2 and thus 
fiJ = O. For this case there is again a closed family of states because atoms cannot 
be transferred out of the three orthogonal states, IfiJ + 1; O) D, IfiJ - 1; 7r /2} D, 

and the unmixed excited state having p = 0 and M J = 0 except by spontaneous 
emission. Thus the stationary dark state Dlpl represents a velocity selective trapped 
state, and atoms collect in it [347]. 

18.4 VSCPT at Momenta Higher Than ±hk 

A most interesting effect occurs with two linearly polarized counterpropagating 
beams with their electric fields at an angle e to one another (one beam is still 
vertically polarized). The state IfiJ; O} D is still dark to the vertically polarized 
beam, but it is not orthogonal to the state that is dark to the other beam, Is;>; e} D 

(orthogonality requires Ie - e'l = 7r /2 as discussed above). Nevertheless, there is 
a dark state superposition 

I . 0 e} = IfiJ + 1; O}D + IfiJ - 1; e}D 
fiJ, , D J2 e ' - cos 

(18.7) 

where the normalization constant is not h because the states are not orthogo­
nal. The components of this superposition are not part of a closed family because 
IfiJ; 0, e} D is a stationary state of the Hamiltonian only for fiJ = O. Such superpo­
sition states offer new insights into VSCPT and related phenomena. 

The lin-angle-lin optical field considered here can also couple the two indepen­
dent dark (but not stationary) states that have fiJ = ± 1 
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1+1; 0, O}D = 12; O}D + 10; O}D (18.8a) 
J2 - cosO 

1-1; 0, O}D = 10; O}D + 1-2; O}D 
J2 - cosO 

(18.8b) 

that have the same average energy ~2 12M. The superposition of these two dark 
states is also dark, and is given by 

10(2); 0, O}D == 1+1; 0, O}D :;;.1- 1; 0, O}D. (18.9) 

The momentum distribution of this state 10(2); 0, O} D consists of peaks at P = 0 
and ±2, a total of three peaks. The relative phase of the superposition in Eq. 18.9 
is chosen to be Jr (negative sign) because this allows near cancellation of the 
middle peak at P = 0, leaving just the two side peaks at p = ±2 [351]. Even 
though the two states I ± 1; 0, O} D may each be readily pumped to the excited state 
through their mixing that arises because they're not stationary, 10(2); 0, (J) D has a 
far lower mixing rate because it is nearly an eigenstate having Ek = 4liwr • This is 
because its largest components have p = ±2 and therefore the same energy. Exact 
cancellation of the p = ° component is only possible for (J = 0, but that case has 
only velocity-independent dark states. 

The two momentum states having p = ±2 comprising the superposition in 
Eq. 18.9 cannot be coupled by a Raman transition involving a single excitation­
stimulated emission cycle because their momenta differ by ±4Iik. Instead, a four­
photon Raman transition is required to conserve momentum, corresponding to 
a higher-order process in VSCPT. This is a rare example of using higher-order 
non-linear optical effects to produce dark states and laser cooling. 

Population accumulates in the state given by Eq. 18.9, producing peaks in 
the momentum distribution at ±2. Also in this lin-angle-lin laser field, the state 
I~; 0, (J}D given in Eq. 18.7 is perfectly dark for ~ = 0, and population also 
accumulates in it producing the well-studied peaks at p = ± 1 [348]. Both of these 
long-lived states are populated by a random walk in momentum space, and each of 
them can be readily observed in an experiment with appropriate interaction time. 
Thus there would be four very narrow (FWHM :::: lik) peaks expected in the mea­
sured momentum distribution. Such a distribution has been observed in metastable 
He driven on the 23 S I -+ 23 PI transition using light of wavelength ).. = 1.083 Mm 
as shown in Fig. 18.7 [351]. 

18.5 VSCPT and Bragg Reflection 

A completely new view of VSCPT has emerged from more careful consideration 
of the motion of such dark state atoms in the spatially periodic field of oppositely 
propagating light beams [352]. As Fig. 18.8 shows, dark state atoms traveling with 
longitudinal momentum Pi make an angle (jJ with the optical wavefronts, and their 
deBroglie wavelength is 
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FIGURE 18.7. Measured He* velocity distributions after 20 J-ts interaction time for 1= 1.6 
m W/cm2 and zero detuning with counter-propagating beams linearly polarized at 30°. The 
four-peaked structure is quite evident, and each peak has width less than hk. 

h 
(18.10) Ad8 = ~. 

Vp~ + 1 

Since sin cp = 1/ J p~ + 1, it is clear that 

Ad8 = 2d sin cp, (18.11) 

where d == A/2 is the spatial periodicity of the light field, and momentum is in 
units of lik. Equation 18.11 is exactly the equation for Bragg reflection, but its 
interpretation in this context is indeed most astounding [352]. Here the deBroglie 
"matter" wave is Bragg reflected by the spatially periodic optical field: matter 
and field have been interchanged from the usual case of Bragg reflection of an 
electromagnetic field by crystalline planes of atoms! 

The usual case of X-ray Bragg reflection can be viewed as arising from multi­
center scattering of radiation by atoms at each lattice site in a crystal. It follows 
that propagation of the reflected wave can occur only in the preferred direction 
defined by Eq. 18.11. Such waves are the only ones not diffusively scattered by 
atoms in the lattice. The equivalent view of atoms in dark states is simply that the 
de8roglie wave fields propagate without scattering (i.e., no spontaneous emission) 
in the light field only when the atoms are indeed in dark states. 

Finally, note that this Bragg reflection description of dark states is enhanced by 
the high velocity states described in Sec. 18.4. Equation 18.11 describes the lowest 
order Bragg reflection, but for a state such as 10(2); 0, ()) D, it is only necessary to 
put a factor of 2 on the left-hand side. The notion is readily generalizable to any 
order n of Bragg reflection. Consider atoms entering a light field with any integer 
value of transverse momentum Pn (in units of lik). The dark state associated with 
this motion can not undergo spontaneous emission, so the only interactions with 
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FIGURE 18.8. The relationship between dark states and Bragg reflection is shown by 
considering the trajectories of atoms with transverse momenta ±hk as shown. The total 
atomic momentum is the vector sum of this transverse momentum with the longitudinal 
momentum Pi and the corresponding deBrogJie wavelength relation is just Eq. 18.11 (see 
Ref. 352). 

the light field are stimulated emissions. This leaves the frequency, and hence the 
energy of the light field unchanged, so that conservation of energy requires that 
p;, be unchanged. Therefore the trajectories of atoms are either unchanged or 
reflected. If the longitudinal momentum is zero, the reflection corresponds exactly 
to the edge of a Brillouin zone. This type of atomic mirror is discussed in Sec. 15.5. 

18.6 Entangled States 

One of the most interesting aspects of dark state physics arises from the entangle­
ment of motional and internal states. This leads to the opportunity for fundamental 
studies of many topics whose basis is at the heart of quantum mechanics, such 
as the well-known Einstein-Podolsky-Rosen paradox, Schrodinger's cat, quantum 
communications, and quantum computing. The key feature of entangled states is 
embodied in the form ofEq. 18.4. Here I±) is written as a sum of products, and it 
can be shown that is not possible to find a basis where this state can be described 
as an outer product. Moreover, a generalization ofEq. 18.4 in which the two com­
ponents of I±) are combined with arbitrary relative amplitudes and a phase factor, 
eia , can never be measured exactly because it requires two independent parameters 
to specify the state (e.g., longitude and latitude on the Bloch sphere), and a single 
measurement perturbs the system so that a second one is unreliable. 

Clearly dark state entanglements with multilevel neutral atoms offer several ad­
vantages over related optical experiments. First, atoms arrive as discrete objects, 
unlike optical fields with the notorious difficulties of producing Fock states. Per­
haps more important, the number of Hilbert spaces that are available, as well as 
their dimensionality, can each be larger than two. 

As an example, note that the primary element in quantum computing is the 
quantum controlled NOT gate because it can be combined with rotations to enable 
any computational operation. Such a gate can be realized directly with the states 
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that are entangled in VSCPT. This is because two independent Hilbert spaces, the 
external motion and the internal M J levels, are entangled in the state. Therefore 
a measurement of one determines the other. This neutral atomic beam version 
of a controlled NOT gate is complementary to one realizable with trapped ions, 
while retaining the relatively high isolation from environmental decoherence (the 
momentum states are naturally very robust, and the internal states are composed 
entirely of ground levels). 
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Appendix A 
Notation and Definitions 

TABLE A.I: Notation and Definitions 

Parameter Definition Description Section Page 

A dB/dz Magnetic field gradient 10.2 139 

A/'m'/m (/'m'lYlq 11m) Angular part, dipole moment 4.5.1 51 

ex Identification of state, apart from an- 4.4 48 
gular momentum 

fJ Damping coefficient 3.3.1 35 

D(E) Density of states 12.3 168 

/) W/-Wa Laser detuning 1.2 5 

Eo Electric field amplitude 1.2 5 

f(r, t) Electric field operator 1.2 5 

£ Polarization of the light field 1.2 5 

continued on next page 
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continued from previous page 
Parameter Definition Description Section Page 

e wrlY Ratio recoil frequency to natural 5.1 59 
width 

F J+I Total angular momentum, atom 4.1 40 

F Force on two-level atom 3.1 30 

:F -d1t/dr Force operator 3.1 30 

:F v(jl. E) Force operator 8.5 107 

Y llr: Spontaneous decay rate, linewidth 2.16 22 

Y' yJl +so Linewidth, power-broadened 2.4 26 

yp YPee Scattering rate 2.4 25 

Y log(T'1 T) I log v Decrease in temperature 12.3 168 

r {JIM Damping rate 3.3.1 35 

1tjk (t/>j 11t'It/>k) Coupling matrix element between 1.1 4 
states j and k 

I Nuclear spin 4.1 40 

Is rrhc/3),,3r: Saturation intensity 2.4 25 

j l+s Total angular momentum, electron 4.1 40 

J L+S Total angular momentum, electrons 4.1 40 

L Orbital angular momentum, elec- 4.1 40 
trons 

l Orbital angular momentum, elec- 4.1 40 
tron 

l Partial wave 14.2 200 

)" 2rrclwi Optical wavelength 1.2 5 

continued on next page 



Appendix A. Notation and Definitions 267 

continued from previous page 

Parameter Definition Description Section Page 

feu) Maxwell-Boltzmann distribution 5.2 61 

/-L' (geMe - ggMg)/-LB Effective magnetic moment 6.2.2 77 

/-Leg e(elrlg) Dipole moment 4.5.1 50 

n Principal quantum number, electron 4.1 40 

n N/V Atom density 12.1 165 

v N'/N Fraction of atoms remaining in trap 12.3 168 

1/ Design parameter, Zeeman slower 6.2.2 77 

1/ Utrap / kB T Ratio trap depth to kinetic energy 12.3 168 

{J)a {J)eg Atomic resonance frequency 1.2 5 

(J) jk (J) j - {J)k Transition frequency 1.1 4 

{J)I Laser frequency 1.2 5 

{J)D -k·jj Doppler shift 1.2.4 13 

{J)r hk2/2M Recoil frequency 5.1 59 

n -eEo(elrlg} /h Rabi frequency 1.2 5 

n' Jn2 + 82 Generalized Rabi frequency 1.2 6 

<I> (r, fJ) Magnetic potential 13.3.1 181 

Rc (C3/h I81)1/3 Condon point 14.4.1 207 

P IW}(WI Density operator 2.1 17 

Pij (I/J;!plI/Jj) Density matrix element 2.1 18 

p(r, p, t) Phase space density 5.5 68 

continued on next page 
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continued from previous page 
Parameter Definition Description Section Page 

p ).3 n dB Phase space density 12.1 165 

.. 
Electron coordinate 1.1 3 r 

'R ileg . E+/h Rabi operator 8.5 107 

'Rl'm'lm {n'I'llr Ilnl} Radial part, dipole moment 4.5.1 51 

S Spin angular momentum, electron 4.1 40 

S Spin angular momentum, electrons 4.1 40 

S so/(1 + (28/y)2) Saturation parameter, off-resonance 2.4 25 

So 21Q12/y2 Saturation parameter, on-resonance 2.4 25 

'I: l/y Lifetime of excited state 2.2 22 

T M{v2}/kB Temperature 5.1 58 

TD hy/2kB Doppler temperature 5.1 58 

Te 7r Mk~p/16u2kB Evaporative cooling limit 12.4.3 174 

Tr h2k2/MkB Recoil temperature 5.1 59 

v .J3kBT/M Thermal velocity 5.2 63 

Vc y/k Capture velocity 5.1 58 

VD .Jhy/2M Doppler velocity 5.1 58 

Vr hk/M Recoil velocity 5.1 59 

Vvsr ±wz/2k Velocity for VSR-resonances 8.9 118 

~ l/s) + I/S2 + I/S3 Scale trapping potential 12.3 167 



Appendix B 
Review Articles and Books on Laser 
Cooling 

Special Issues of Regularly Published Journals 
Special Issue Ref. 
W.D. Phillips, Ed. Laser Cooled and Trapped Atoms 353 
- Probably the first special issue, filled with original ideas 

P. Meystre and S. Stenholm, Eds., The Mechanical Effects of Light 40 
- One of the earliest major special issues 

S. Chu and C. Wieman, Eds., Laser Cooling and Trapping of Atoms 41 
- An early special issue of major importance 

H.C.W. Beijerinck and B. J. Verhaar, Eds., Dynamics of Inelastic Colli- 354 
sions of Electronically Excited Atoms 
- Proceedings of a Dutch conference 

1. Mlynek, V. Balykin, and P. Meystre, Eds., Optics and Interferometry 282 
with Atoms 
- A special issue on Atom Optics 

E. Arimondo and H-A. Bachor, Eds., Special Issue on Atom Optics 355 
- A collection of articles spanning a broad range of topics 
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Books or Large Conference Proceedings 

Book Ref. 
V. Minogin and V. Letokhov, Laser Light Pressure on Atoms 356 
- A wide-ranging text that treats many high-intensity phenomena 

A. Kazantzev, G. Surdutovich, and V. Yakolev, Mechanical Action of 357 
Light on Atoms 
- Thorough, formal treatment of force calculations and other topics 

L. Moi, S. Gozzini, C. Gabanini, E. Arimondo, and F. Strumia, Eds., 358 
Light Induced Kinetic Effects on Atoms, Ions, and Molecules 
- Conference proceedings, commonly called LIKE 

A. Arimondo, W. Phillips, and F. Strumia, Eds., Proceedings of the Fermi 359 
School CXVII 
- Proceedings of a major summer school with very many articles 

V.I. Balykin and V.S. Letokhov, Atom Optics with Laser Light 360 
- Introduction to collimation, focussing, channeling and reflection by 
laser light 

A. Aspect, W. Barletta, and R. Bonifacio, Eds., Proceedings of the Fermi 361 
School CXXXI 
- Proceedings of a major summer school with very many articles 

P. Berman, Ed., Atom Interferometry 362 
- Several long excellent articles on atom optics 

General Review Articles 

Article Ref. 
C. Cohen-Tannoudji, Laser Cooling and Trapping of Neutral Atoms - 363 
Theory 
- A short, elegant theoretical summary of selected topics 

H. Metcalf and P. van der Straten, Cooling and Trapping of Neutral 364 
Atoms 
- This article was the predecessor of this book 

C.S. Adams, M. Sigel, and J. Mlynek, Atom Optics 365 
- Theoretical discussion of several topics in deBroglie wave optics 

C.S. Adams and E. Riis Laser Cooling and Trapping of Neutral Atoms 366 
- A wonderful article with crystal-clear descriptions and hundreds of 
references 
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Specialized Review Articles 

Article Ref. 
G. Nienhuis, Impressed by Light: Mechanical Action of Radiation on 367 
Atomic Motion 
- Very early formal treatment of optical forces, including light-induced 
drift 

V. Balykin and V. Letokhov, Laser Optics of Neutral Atomic-Beams 205 
- A compact early description of several phenomena and ideas 

P.S. Julienne, A.M. Smith, and K. Burnett, Theory of Collisions Between 262 
Laser Cooled Atoms 
- Cold collisions 

T. Walker and P. Feng, Measurements of Collisions between Laser- 261 
Cooled Atoms 
- Cold collisions, emphasis on trap loss collisions 

J. Weiner, Advances in Ultracold Collisions: Experimentation and The- 263 
ory 
- Cold collisions, emphasis on excited-state collisions 

A. Aspect, Manipulation of Neutral Atoms - Experiments 368 
- Short summary of some experimental results 

J. Thomas and L. Wang, Precision Position Measurement of Moving 369 
Atoms 
- Atomic position measurement, but important for optical forces 

H. Wallis, Quantum-Theory of Atomic Motion in Laser-Light 370 
- Thorough formal theoretical treatment of several important topics 

J.P. Dowling and J. Gea-Banacloche, Evanescent Light-Wave Atom Mir- 105 
rors, Resonators Wave-Guides, and Traps 
- Detailed description of evanescent wave effects 

W. Ketterle and N.J. van Druten, Evaporative Cooling of Trapped Atoms 199 
- Evaporative cooling 

P.S. Jessen and I.H. Deutsch, Optical Lattices 315 
- Optical Lattices 

There are also many review articles to be found in the proceedings of major serial 
conferences. The most notable of these are "International Conference on Atomic 
Physics, ICAP" whose proceedings are named Atomic Physics D, and the "Laser 
Spectroscopy Conference" whose proceedings are named Laser Spectroscopy D. 



Appendix C 
Characteristic Data 

In principle laser cooling can be used for any atom. In practice, it is necessary 
that the atom to be cooled has a transition for which enough laser power can be 
generated. Furthermore, one needs to scatter many thousands of photons on this 
transition, so spontaneous emission out of the excited state should be entirely to 
the ground or metastable state. Until now laser cooling has been used primarily 
for the following atoms: 

metastable noble gas atoms 
alkali-metal atoms 
alkaline-earth atoms 

132Xe* 

133cs 

138Ba 

Characteristic values for these elements together with Hand Cr are given in the 
following tables. 
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Atom transition I A liwa r y/2rr 

(nm) (eV) (ns) (MHz) 

IH 12S 1/2 - 22P3/2 1/2 121.57 10.199 1.60 99.58 

4He* 23S1 - 23P2 0 1083.33 1.144 98.04 1.62 

4He* 23S1 - 33P2 0 388.98 3.187 106.83 1.49 

7Li 22S 1/2 - 22P3/2 3/2 670.96 1.848 26.87 5.92 

8Be 21So - 21PI 0 234.93 5.277 1.46 108.88 

2oNe* 33P2 - 3303 0 640.40 1.936 18.79 8.47 

23Na 32SI/2 - 32P3/2 3/2 589.16 2.104 15.90 10.01 

24Mg 31So - 31PI 0 285.30 4.346 1.97 80.95 

4°Ar* 43P2 - 4303 0 811.75 1.527 27.09 5.87 

39K 42SI/2 - 42P3/2 3/2 766.70 1.617 26.13 6.09 

40Ca 4ISo-4IPI 0 422.79 2.933 4.60 34.63 

52Cr a7S3 - Z7P4 0 425.55 2.913 31.77 5.01 

84Kr* 53P2 - 5303 0 811.51 1.528 28.63 5.56 

85Rb 52SI/2 - 52P3/2 5/2 780.24 1.589 26.63 5.98 

88Sr 5ISo-5IPI 0 460.86 2.690 4.98 31.99 

132Xe* 63P2 - 6303 0 882.18 1.405 33.03 4.82 

133Cs 62SI/2 - 62P3/2 7/2 852.35 1.455 30.70 5.18 

138Ba 6ISo-6IPI 0 553.70 2.239 8.68 18.33 

TABLE C.l. Spectroscopic data for optical transitions used for laser cooling. Given are 
the atomic mass M, the wavelength A, the transition energy Ilwa, the lifetime of the upper 
state t', and the Iinewidth y. In the case of metastable helium, values for two transitions are 
given. 
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Atom age Is a max Wr /2rr: c 

(10- 15 m2) (mW/cm2) (106 mls2) (kHz) (10-3) 

IH 7.1 7244. 1019. 13391. 134.5 

4He* 560.4 0.17 0.469 42.46 26.2 

4He* 72.2 3.31 1.199 329.35 221.0 

7Li 215.0 2.56 1.577 63.15 10.7 

9Be 26.4 1097. 64.444 400.98 3.68 

2oNe* 195.8 4.22 0.829 24.33 2.87 

23Na 165.7 6.40 0.926 24.99 2.50 

24Mg 38.9 455. 14.824 102.17 1.26 

4°Ar* 314.6 1.44 0.227 7.57 1.29 

39K 280.7 1.77 0.256 8.71 1.43 

40Ca 85.3 59.9 2.569 27.92 0.81 

52Cr 86.5 8.50 0.284 21.20 4.23 

84Kr* 314.4 1.36 0.102 3.61 0.65 

85Rb 290.7 1.64 0.113 3.86 0.65 

88Sr 101.4 42.72 0.990 10.68 0.33 

132Xe* 371.6 0.92 0.052 1.94 0.40 

133Cs 346.9 1.09 0.057 2.07 0.40 

138Ba 146.4 14.12 0.301 4.72 0.26 

TABLE C.2. Characteristic values for the excitation of different elements with laser light. 
Given are the cross section for absorption age = 3)..2/2rr (see Eq. 2.28b), the saturation 
intensity Is = rrhe/3)..3, (see Eq. 2.24c), the maximum acceleration amax, the recoil 
frequency Wr and the ratio c = Wr / y. The values for the cross section and the saturation 
intensity apply for the strongest transition between magnetic sublevels. In most cases the 
maximum obtainable acceleration is of the order of 105 -I 06 mls2. 



276 Appendix C. Characteristic Data 

Atom Capture limit Doppler limit Recoil limit 

Vc Tc VD TD Vr Tr 

(mls) (mK) (cmls) (ilK) (cmls) (ilK) 

'H 12.11 17.77 443. 2389. 325. 1285. 

4He* 1.76 1.49 28.44 38.95 9.200 4.075 

4He* 0.58 0.16 27.25 35.75 25.6 31.61 

7Li 3.97 13.33 41.03 142.11 8.474 6.061 

9Be 25.58 709.4 155.23 2612. 18.8 38.48 

2oNe* 5.43 70.80 29.07 203.29 3.116 2.335 

23Na 5.90 96.18 29.47 240.18 2.945 2.399 

24Mg 23.09 1539. 82.04 1942. 5.830 9.80 

4°Ar* 4.77 109.33 17.12 140.96 1.230 0.727 

39K 4.67 102.23 17.66 146.16 1.335 0.836 

40Ca 14.64 1031. 41.57 831. 2.361 2.680 

52Cr 2.13 28.41 13.87 120.23 1.805 2.035 

84Kr* 4.51 205.47 11.50 133.40 0.586 0.346 

85Rb 4.66 222.12 11.85 143.41 0.602 0.370 

88Sr 14.74 2299. 26.94 768. 0.985 1.025 

132Xe* 4.25 286.83 8.54 115.64 0.343 0.186 

133Cs 4.42 312.14 8.82 124.39 0.352 0.198 

138Ba 10.15 1710. 16.28 439.96 0.522 0.453 

TABLE C.3. Limiting values for the velocity and temperature for laser cooling of different 
elements. Values for the velocity v and temperature T are given for the capture, Doppler 
and recoil limit. 
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Element Metastable level Exe. energy IP Lifetime 
(eV) (eV) (s) 

He 23S) 19.82 24.580 7900 
Ne 3s[3/2hep2) 16.62 21.559 20 
Ar 4s[3/2hep2) 11.55 15.755 60 
Kr 5s[3/2hep2) 9.915 13.996 85 
Xe 6s[3/2hep2) 8.315 12.127 150 

TABLE C.S. Constants for the various metastable noble gas atoms. 



Appendix D 
Transition Strengths 

The following diagrams show the transition strength for alkali-metal atoms for 
optical transitions from the ground state n2 SI/2 to the first excited states n2 PI/2,3/2. 
Since most alkali-metal atoms have a half-integer nuclear spin I, the diagrams are 
in the order 1= 1/2, 3/2, 5/2 and 7/2. The diagrams can be used for 

1 Element 
1/2 IH 

I 6Li 

3/2 7Li 23Na 39K 41K 87Rb 

5/2 85Rb 

7/2 133Cs 

For each value of I, diagrams are shown for the DI-line (left page) and D2-line 
(right page). The diagram at the top of each page is for 1l'-polarization, whereas 
the diagram on the bottom is for a + -polarization. The transition strength for a - -
polarization can be found by using the diagram for a+ -polarization and replacing 
all M's by - M. The transition strength is normalized for each line so that the 
strength of the weakest allowed transition becomes an integer. The strength is 
calculated using the square of /-Leg in Eq. 4.33. In order to compare the strength of 
the DI-line with the D2-line, the numbers for the DI-line have to be multiplied by 
a factor 2(1 = 1/2), 10(1 = 1),5(1 = 3/2), 140(1 = 5/2), or 105(1 = 7/2). The 
diagram for He* can be found on pg. 54. 
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Index 

absorption cross section, 27, 275 
adiabatic motion, 140, 141 
adiabatic rapid passage, 12-14 
adiabaticity, 146 
Aharonov-Casher effect, 229 
alkali-metal atom, 39-41,49,52,80, 

86,201,214,273,277,279 
alkaline-earth atom, 273 
amplitude gradient, 31 
amplitude modulator, 221 
angular momentum, 139 

orbital, 40, 43, 45 
spin, 40, 43, 45 
total,4O 

asymmetric anharmonic potential, 142 
atom interferometry, 219, 223, 227-

229 
atom laser, 248 
atom optics, 57, 70,179-198 

coherent, 247 
atomic beam brightening, 186-190 
atomic beam collimation, 90-94,105, 

135-136 
atomic beam deceleration, 73--86,135-

136 

atomic beam splitter, 223-224 
atomic cavity, 180 
atomic clock, 192-194 
atomic density, 68, 162,232 
atomic density correlation, 248 
atomic fountain, 185-186, 193-194, 

227 
atomic funnel, 188 
atomic lens, 181-185, 224, 227 
atomic lithography, 190 
atomic mirror, 80,124,180-181,225-

226 
atomicnanofabrication, 187,190-192 
atomic orbit, 140-143 
atomic polarizers, 226-227 
atomic sources, 224-225 
atomic time, 192 
atomic trampoline, 124, 180 

ballistic technique, 237, 245 
band structure, 238-239 
BEC, see Bose-Einstein condensa­

tion 
Berry's phase, 229 
bichromatic force, 131-135 
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Bloch equation, 24 
Bloch oscillation, 239 
Bloch sphere, 12, 13 
Bloch state, 238 
Bloch vector, 11-12, 13 
Bloch's theorem, 231 
Boltzmann equation, 171 
Bose-Einstein condensation, 138, 140, 

147, 165, 171, 175, 220, 
225,241-250 

first-order coherence, 246-248 
formation, 249 
higher order coherence, 248-249 
observation of, 244-246 
oscillation, 250 
phase of a, 246 
second sound, 250 
sound waves, 250 

bosonic stimulation, 249 
Bragg diffraction, 228, 235 
Bragg reflection, 225, 228, 238, 259-

261 
Bragg regime, 222, 223 
brightness, 91, 92, 94, 186 
brightness theorem, 70 
brilliance, 186 
Brillouin zone, 225, 238, 239, 261 
broadband slowing, 79 
butterfly trap, 148 

capture range, 58, 161 
centrifugal barrier, 201, 202, 211 
cesium, 76, 107, 112 
chaotic, 142 
chemical potential, 169 
chirp slowing, 76 
classical motion, 140, 143-145 
Clebsch-Gordan coefficient, 53, 10 1 , 

106 
clock, 192 
closed family, 254, 258 
cloverleaf trap, 148 
coherence, 18,25, 107, 127 
cold molecule, 217 
collision, 165, 193,248 

bad, 204 
excited state, 204, 207-218 
fine-structure changing, 208 
good, 204 
ground state, 204-206 
inelastic, 206 
optical, 209-213 
reactive, 203 
ultra-cold, 199-218 

collision rate, 165 
elastic, 173 

Condon point, 207, 211 
controlled Nor gate, 261 
cooling limit, 66-67,113-114 

capture, 58, 276 
Doppler, 58, 65, 82, 89, 90, 96, 

Ill, 113, 121,276 
evaporative, 174-175 
recoil, 59, 111, 114,276 

correlation function, 248 
cross section, 203, 206 

differential, 201 
total, 201 

crystallography, 233 
Cs, see cesium 
cycling transition, 49 
cylindrical microlens, 190 

damping coefficient, 35, 36, 65, 90, 
109 

damping force, 102-103, 106,254 
damping rate, 35 
dark states, 251-262 
deBroglie wave optics, 219-229, 254 

with gratings, 220-223 
Debye-Waller factor, 235 
density limit, 162 
density matrix, 15,17-27, 107, 109, 

110,118 
density of states, 168, 170 
density operator, 17, 18 
detailed balance, 173 
Dicke narrowing, 237 
diffraction, 220, 222 
diffuse light, 78, 79, 85 



diffuse slowing, 78-79 
diffusion coefficient, 65, 89, 109 
dipolar relaxation, 174 
dipole force, 8, 33, 123-136, 151, 

152,231 
fluctuations, 152 

dipole force lens, 190 
dipole force operator, 108 
dipole force rectification, 129-131 
dipole force trap, see optical trap, dipole 

force 
dipole matrix element 

angular part, 52-53 
geometrical part, 51 
physical part, 51 
radial part, 51-52 

dipole moment, 6, 21, 50,149 
dipole-dipole interaction, 202, 203, 

217 
dispersion coefficient, 201 
dispersive measurement, 245 
dissipative force, see scattering force 
dissipative process, 117, 179 
Doppler laser cooling, 100, 103, 109, 

113 
Doppler shift, 13,73-80,83,87,90, 

100, 127, 133, 135, 161, 
237 

Doppler temperature, see cooling limit, 
Doppler 

Doppler width, 195 
Doppleron, 128, 135 
dressed state, 9-10, 126, 127, 129, 

133,223 

Earnshaw's theorem, 137, 156 
egg-crate potential, 231 
Ehrenfest theorem, 29, 30 
Einstein coefficient, 6 
Einstein-Podolsky-Rosen, 261 
elastic collision, 166, 171, 174 
elastic collision rate, 168, 170 
electric dipole approximation, 5 
energy band structure, 155,236,238 
energy conservation, 222, 253 
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entangled state, 255, 261-262 
entropy, 60 
equilibrium state, 67 
ergodic, 167 
evanescent wave, 124, 180, 226 
evaporation 

speed of, 171-173 
evaporative cooling, 146, 165-175, 

244 
excited state decay, 14-16 
exciton, 243 

family momentum, 254, 256, 257 
far-off-resonance trap, see optical trap, 

far-off-resonance 
far-off-resonant lattice, 232 
Fermi Golden Rule, 4 
field quantization, 20, 21 
fine structure, 40, 53-56 
fine-structure changing collision, 209 
Fock states, 261 
Fokker-Planck equation, 57, 64, 66-

67,110,111,113 
force on two-level atoms, 29-37 

at rest, 31-34 
in motion, 34-37 

force operator, 30, 107, 108 
FORT, see optical trap, far-off-resonance 
fountain, see atomic fountain 
four-photon Raman transition, 259 
Fresnel zone plate, 227 
frozen Rydberg gas, 218 

gain, 197 
gamma function, 169 
Gaussian laser beam, 150 
geometrical optics, 70, 179 
Global Positioning System, 192 
gradient force, see dipole force 
gravitational acceleration, 227, 228 
gravitational field, 220 
gravito-optical trap, 126, 154, 180 
gravito-optics, 186 
Gross-Pitaevski equation, 242, 243 
gyroscope, 228 
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H, see hydrogen, 56 
He, see helium 
helium, 44, 45, 50, 76, 80, 135 
HeNe laser, 225 
hfs, see hyperfine structure 
high intensity optical molasses, see 

optical molasses, at high in­
tensity 

high-resolution spectroscopy, 138 
hydrogen,51,76,166 

spin-polarized, 243 
hyperfine state, 82, 86 
hyperfine structure, 40, 43, 49, 53-

56 

ideal gas, 168 
impact parameter, 201, 203 
index of refraction, 229 
inelastic collision, 173, 174 
interaction potential, 200, 203 
interference fringe, 246 
Ioffetrap, 139, 140, 144, 147,246 
ion trap, 194-195 
island of stability, 142 
isotope, 112, 119 

K, see potassium 
Kronig-Penney model, 220, 231 

A transition, 243 
Lande g-factor, 42, 77 
Landau-Zener model, 134,212 
Langevin model, 201, 202 
large period standing wave, 223 
laser cooling, 57-70 
launch velocity, 185 
length standard, 191 
Li, see lithium 
lifetime, 22, 217, 274 
light 

circularly polarized, 46, 48, 53, 
106 

linearly polarized, 46--48, 53 
light pressure force, see scattering force 
light shift, 7-8, 9, 33, 101, 102, 104, 

109, Ill, 112, 114, 117, 

123, 124, 129, 130, 151, 
155, 196,223,231 

limit, see cooling limit 
lin-angle-lin, 258 
lin-perp-lin, see polarization gradi­

ent, lin 1.. lin 
linewidth, 26, 274 

power-broadened, 26, 75,89 
Liouville's theorem, 68-70 
lithium, 76 
lithography, see atomic lithography 
long-range molecular state, 217 
low saturation limit, 8 

magnetic dipole transition, 155 
magnetic hexapole lens, 138 
magnetic mirror, 181 
magnetic trap, 138-140,244 

quadrupole, 138,139, 141, 146, 
147 

magnetic trapping, 137-148 
magnetically induced laser cooling, 

100,104-105,118,121 
magneto-optical force, 164 
magneto-optical lens, 189 
magneto-optical trap, 156-164, 244 

atom capture, 159-162 
atom cooling, 158-159 

Maxwell-Boltzmann distribution, 61-
63,65,67,68 

metastable beam, 189-190 
metastable noble gas atom, 43-45, 

49,201,273,278 
micro lenses, 190 
microwave cavity, 155, 193 
microwave clock, 194 
MILC, see magnetically induced laser 

cooling 
mixing angle, 10 
momentum conservation, 222, 253 
momentum space, 63 
momentum space compression, 90, 

91 
Monte Carlo, 115 



Monte Carlo wave function method 
15,24 

MOT, see magneto-optical trap 
multilevel atom, 39-56, 97 

Na, see sodium 

, 

nanofabrication, see atomic nanofab-
rication 

navigation, 192 
Ne, see neon 
neon,44,45,49 
neutrality of matter, 187 
non-adiabatic, 99, 100, 105, 106, 117 
non-linear optical effect, 259 
non-linear optics, 195-198 
nuclear spin, 40 
number of modes, 21 

OBE, see optical Bloch equation 
OM, see optical molasses 
optical Bloch equation, 23-24, 115, 

118 
optical brightening, 91 
optical crystal, 232 
optical Earnshaw theorem, 156 
optical lattice, 225, 231-239 
optical molasses, 36, 87-97, 100, 109, 

111-113,126,127,188,237, 
244 

lin -1 lin, 237 
at high intensity, 123, 126-128 

optical potential, 155 
optical pumping, 86, 99-106, 116, 

117,162,163,255 
optical transition, 50-52 
optical trap, 149-164 

orbit 

blue detuned, 153-155 
dipole force, 150-155 
far-off-resonance, 151 
hybrid dipole radiative, 152-153 
microscopic, 155 
radiation pressure, 156 
single beam, 150-152 

atomic,147 
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orbital frequency, 141 

paraxial domain, 185 
partial wave, 167,201,203,211 
partial wave analysis, 200 
PAS, see photo-associative spectroscopy 
pendulOsung, 228 
periodic potential, 231, 233, 236 
permanent magnet, 148, 188 
perturbation theory, 3-4 
phase conjugate reflection, 198 
phase fluctuation, 233 
phase gradient, 31 
phase shift, 201, 204 
phase space density, 68-70, 165, 168, 

170,175 
phase space volume, 132 
phase transition, 243 
photo-associative spectroscopy, 213-

218 
photon recoil, 59, 227 
Planck spectrum, 241 
Poincare plot, 142, 143 
polarization, 45-47, 229 
polarization gradient, 46, 47, 100, 102, 

104, 111, 113, 117, 120-
122 

lin -1 lin, 46, 47, 102 
a+ -a-, 47, 110, 120, 122 

polarization gradient cooling, 108, 114 
lin -1 lin, 100-103, 109, Ill, 

122 
a+ -a-, 106-107, 111 

potassium, 76 
potential scattering, 200-204 
power broadening, 24-27 
pure state, 18-20 

quadrupole field, 156 
quadrupole-quadrupole interaction, 202 
quantization axis, 255, 257 
quantum beat, 227 
quantum behavior, 203 
quantum computing, 261 
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quantum state of motion, 111, 113, 
138,145-148,155,219,220, 
235-238,252 

quantum threshold, 203 
quantum view of laser cooling, 239-

240 

Rabifrequency,5,50, 107, 108, 132 
vacuum, 21 

Rabi two-level problem, 4-6, 23 
radiance, 186 
radiation pressure force, see scatter-

ing force 
radiative escape, 208, 209 
Raman cooling, 114, 225 
Raman transition, 114, 118-121, 196, 

238,253 
Raman-Nath regime, 222 
Ramsey fringes, 194 
Ramsey oscillation, 227 
random walk, 63-65, 66, 89, 95,113, 

256,259 
rate coefficient, 210 
Rb, see rubidium 
reactive force, see dipole force 
recoil energy, 89 
recoil frequency, 35, 59, 228, 275 
recoil temperature, see cooling limit, 

recoil, 112 
recoil velocity, 73 
recoil-induced resonances, 197 
redistribution force, see dipole force 
reduced mass, 200 
resonances, 118 
rf spectroscopy, 144, 145, 193 
rf transition, 175 
rotating frame transformation, 7 
rotating wave approximation, 5-7, 152 
rovibrational state, 215 
rubidium, 76,107,112,119 
Russell-Saunders, 40, 43 
RWA, see rotating wave approxima­

tion 
Rydberg atom, 79-80,117,149,180, 

218,226 

s-wave, 167 
s-wave scattering, 202 
Sagnac effect, 228 
saturation, 24-27 
saturation intensity, 25, 275 
saturation parameter, 25, 26 
scattering force, 32, 151, 152 
scattering length, 167, 171, 194,204, 

205,242 
negative, 242 

scattering rate, 25, 26 
Schrodinger's cat, 261 
second 

definition, 192 
second-order Doppler effect, 193 
selection rule, 47-50 
self-assembled monolayer, 190 
sheet of light, 94 
single mode, 224 
Sisyphus laser cooling, 102, 105, 106, 

116-118, 128, 129 
sodium, 40, 41, 76, 80, 82,95,96, 

107 
spatial compression, 91 
spectral brightness, 186 
spherical unit vector, 50 
spin alignment, 163 
spin relaxation, 174 
spontaneous decay rate, 22 
spontaneous emission, 14,15,17,19, 

20-22,32,49,63,74,85, 
101, 102, 113, 114, 117, 
123, 124, 126, 127, 129, 
132,212,214,221,223 

standing wave, 45, 155 
Stark compensation, 85 
Stark shift, 77-79,181 
Stark slowing, 77-78 

Rydberg, 79-80 
stationary state, 256, 258 
statistical mixture, 18-20 
steady-state, 58 
Stem-Gerlach, 138 
stimulated emission, 14,74,88,117, 

123,126,127, 131, 197 



stopping length, 75 
sub-Doppler laser cooling, 99-122 

theory, 107-111 
surface scattering, 187 
survival rate, 210 
sympathetic cooling, 250 

temperature, 58-59, 67, 96, 97 
tetrahedral configuration, 234 
tetrahedral symmetry, 163 
thermal eqUilibrium, 58, 61, 67 
thermodynamics, 166, 168, 172 
three-body collision, 248 
time orbiting potential, 147 
time-of-flight, 80-82, 86 
time-orbiting potential, 147 
TOF, see time-of-flight 
TOP, see time-orbiting potential 
totally internally reflected, 180 
transient molecule, 214 
transition amplitude, 4 
transition rate, 4 
translational partition function, 211 
transverse motion, 85 
trap depth, 166 
trap loss, 207-208 
trap stability, 140 
trapped ion, 262 
trapping potential, 167, 168 
trapping time, 138 
two-color spectroscopy, 217 
two-frequency light field, 128, 129, 

131,132 

uncertainty principle, 114 

vacuum, 138, 141, 143 
vacuum field, 14, 15 
vacuum fluctuation, 20 
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van der Waals interaction, 201 
vapor cell Mar, 161 
velocity 

average, 62 
most probable, 63 
root mean square, 63 
thermal,76 

velocity compression, 90 
velocity selective coherent popula­

tion trapping, 225, 251,256, 
259-261 

in two-level atom, 252-254 
velocity selective resonance, 110, 118, 

119, 120-122 
vibrational level, 155,206,237,238 
VSCPT, see velocity selective coher­

ent population trapping 
VSR, see velocity selective resonance 

Wigner threshold, 206 
Wigner-Eckart theorem, 50, 53 
Wigner-Weisskopf theory, 20 

X-ray Bragg reflection, 260 
X-ray diffraction, 235 

Zeeman shift, 42, 77, 78, 84, 118, 
161 

Zeeman slowing, 77 
Zeeman-tuning, 80 
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