- The most accurate *A*_β measurement Agrees with theory prediction
- Constraints on:

Weak interaction changes within nuclei Non-SM lepton helicities: Left-right symmetric models. 4-fermi contact Lorentz 'scalar', 'tensor'

TRlumf Neutral Atom Trap collaboration:

S. Behling B. Fenker

intro

- M. Mehlman
- P. Shidling

A. Gorelov J.A. Behr

M.R. Pearson

ing Undergrad

D. Melconian E. Broatch G. Gwinner S. Supported by NSERC, NRC through TRIUMF, Israel Science Foundation, DOE, State of Texas

J. McNeil

D. Ashery I. Cohen

Lepton helicity \rightarrow angular distribution

← This decay pattern needs non-S.M. chirality

I=3/2 \rightarrow I=3/2:

Leptons can't increase nuclear spin any further

One experimental discovery of parity violation

Wu, Ambler, Hayward, Hopper, Hobson, PR 105 (1957) 1413

Wauters 2010 PRC $A_{60Co} = -1.014 \pm 0.020$ [SM -0.987 ± 0.009]

Here A_{β} isn't 1 or -1 or a clean fraction there are 2 operators:

'Fermi' changes n to p

'Gamow-Teller' changes n to p and nucleon spin

au, *Q*, and branch \Rightarrow decay strength $\mathcal{F}t$ We know the Fermi $\mathcal{F}t_0$ from the $0^+ \rightarrow 0^+$ decays, so from $\mathcal{F}t$ we can get the Gamow-Teller strength:

 $\mathcal{F}t$ (Shidling PRC 2014) \Rightarrow

$$\rho = C_A M_{GT} / C_V M_F = 0.5768 \pm 0.0021$$

 $\Rightarrow A_{\beta}[SM] = -0.5706 \pm 0.0007$ main uncertainty is experimental branching ratio

³⁷K isobaric mirror decay: a 'heavy neutron'

A_G physics

 $\Rightarrow A_{\beta}[SM] = -0.5706 \pm 0.0007$ Dominant uncertainty is exp. branching ratio 1st-order recoil-order from E&M moments: Induced tensor $d_1 \approx 0$, Small $\mu \Rightarrow$ small weak magnetism

Recoil-order + Coulomb + finite-size corrections $\Rightarrow \Delta A_{\beta} \approx -0.0028 (E_{\beta}/E_0)$ Holstein RMP 1975

37 K A_B

Isospin mixing contributes 0.0004 uncertainty from shell model

extras

j.a.behr triumf cap17

DFT for isospin mixing has improved its functional Using weighted average for δ_c would $\Rightarrow 0.0004 \rightarrow 0.0005$

intro

³⁷K 8x10⁷/s

TiC target 1750°C

70 µA protons 500 MeV H⁻ (0.5 Tesla)

®TRIUMF TRINAT lab: "tabletop experiment"

- β , recoil nucleus
- shakeoff e⁻ for TOF trigger

This decay pattern is helicity-forbidden if the ν goes straight up, independent of Gamow-Teller/Fermi ratio.

 \bullet 2.8 $\times10^{-3}$ of events in main peak are background from non-trapped atoms

• Conservatively assume polarized between 0 and 100%. \rightarrow A_{β} \times (1.0014 \pm 0.0014)

• These will be removed by MCP position info when we increase to design *E* field

ir	httro 37 K A_{β} A_{β} physical sector $A_{$	ysics	extras	j.a.behr triumf cap17	
		ainties	R TRIUMF		
	Source $\times 10^{-4}$ [†: β scattering]	ΔA_{eta}	A_{eta} = -0.570	7 ±	
	Background (Correction 1.0014)	7	0.0013 (stat)) ±	
	Trap Position	4	0.0012 (syst) ±	
	Trap Sail velocity	5	0.0005 (pol)		
Trap Temperature & width		1	$= -0.5707 \pm 0.0018$		
	BB1 Radius [†]	4			
	BB1 Energy agreement	2	$A_{\beta}[SM] =$		
	BB1 threshold	1	-0.5706 + 0.0007		
	Scintillator threshold	0.3			
	GEANT4 physics list [†]	4	Better relati	ve	
	Shakeoff electon t.o.f. region	3	uncertainty	than	
	SiC mirror thickness [†]	1	¹⁹ Ne –0.0360	0±0.0008	
	Be window thickness [†]	0.9	[Calaprice 1	975]	
	Scintillator or summed [†]	1	and neutron		
	Scintillator calibration	0.1	0.1197+0.00	006	
	Total systematics	12		PRI 2013	
	Statistics	13		20121	
	Polarization	5		2013]	
	lotal uncertainty	18	rnysics $ ightarrow$		

¹Na

.2'O

. 15

+

 $|\mu|$

1²⁴A)

progeny)/A

.25

DN ٧e

.30

.978

.976

.974 > 3

.972

.970

.968

.966

.00

.05

 $(|\mu|)$

- <u>1</u>0

parent

 $0^+ \rightarrow 0^+$ determination of V_{ud} i.e. $\psi[n] \neq \psi[p]$ Salam and Strathdee Nature 1974: phase transitions at very high B fields could drive $V_{ud} \rightarrow 1$ Hardy Towner PLB 1975 applied to the ³⁵Ar A_{β} controversy. ¹⁹Ne Broussard DNP 2016

j.a.behr triumf cap17

Why the weak interaction is 'weak' at low energy

'more massive virtual particles are created for shorter times'

Propagator+vertices: $T \propto \frac{G_{X}(-g^{\mu\nu}+p^{\mu}p^{\nu}/M_{X}^{2})G_{X}}{p^{2}-M_{X}^{2}} \xrightarrow{p << M_{X}} \qquad n \qquad p \qquad X$ $T \propto \frac{G_{X}^{2}}{M_{X}^{2}} \Rightarrow \qquad p \qquad X$ • Decay rates $\propto \frac{G_{X}^{2}G_{X}^{\prime 2}}{M_{X}^{2}}$ or $\propto \frac{G^{2}}{M_{W}^{2}} \frac{G_{X}G_{X}^{\prime 2}}{M_{X}^{2}}$ if process interferes with W (couples to SM-handed ν) e.g. Fierz term $\propto \frac{m}{E_{\beta}}$

• IF $G_X \sim$ electroweak coupling, then 0.1% sensitivity in angular correlations $\rightarrow M_X \sim 6$ or 30 M_W

(or $g_B < 4$, at 2 TeV but LHC7 2 TeV 'bump' had $q\sim 0.5$)

intro

Ave A_{recoil} depends on ρ ; p dependence doesn't

extras

®TRIUMF TRIUMF Neutral Atom Trap: Near Future

We have measured the β asymmetry of ³⁷K decay to be A_{β} =-0.5707 \pm 0.0018

Agrees with theory -0.5706 ± 0.0007 , complements the best β decay measurements

We plan to measure $A_{\beta}[E_{\beta}]$ 3-5 x better, and A_{recoil} with sensitivity to '4-fermion contact' interactions complementary to $\pi \rightarrow e\nu\gamma, \pi \rightarrow e\nu$, and LHC $\rho + \rho \rightarrow e + E_{\perp}$

We also plan a TRV $\beta\nu\gamma$ 3-momentum correlation, first of its type in 1st-generation particles

Re[g_ -0.4 + -0.2 PRELIMINARY -0.05 0.Ò0 0.05 0.0 0.6 0.2 0.4 $Re[g_{a_{1}}^{s} = (C_{s} + C_{s}')/2]$ $(C_{\pi} + C_{\pi}^{\dagger})/C_{\star}$ the Fierz term is 'easier' to constrain but has more competition

-0.05

For scalars coupling to wrong-chirality ν , we compete with our own ^{38m}K β-ν Gorelov 2005

intro 37 K A_{β}		A _B physics	S	extras	j.a.behr triumf cap17					
RIUMF Polarization Improvements RITEXISAN										
SYST $ imes$ 10 ⁻⁴	ΔP		Δ	T						
	σ^{-}	σ^+	σ^{-}	σ^+	• pellicle					
Initial T	3	3	10	8	mirrors:					
Global fit v. ave	2	2	7	6	less β^+					
S ^{out} Uncertainty	1	2	11	5	scattering					
Cloud temp	2	0.5	3	² define 7						
Binning	1	1	4	³ trim B o	iradients					
B _z Uncertainty	0.5	3	2	7						
Initial P	0.1	0.1	0.4	0.4 Improve	e S ₃ flipping					
Require $\mathcal{I}_+ = \mathcal{I}$	0.1	0.1	<u>0.1</u>	0.2 and gradi	ents					
Total SYSTEMATIC	5	5	17	14 ● add flip	ping of <i>B_z</i>					
STATISTICS	7	6	21	17 • higher-	oower					
B. Fenker New J. Phys 18 073028 photoionizing laser										
2016				• gentler	RAC-MOT					
$P(\sigma^+) = +0.9913(8)$ $T(\sigma^+) = -0.9770(22)$ • Uncertainty \propto										
$P(\sigma^{-1}) = -0.9912(9) T(\sigma^{-1}) = -0.9761(27)$ (1-P)										

MSSM and β decay correlations

Profumo, Ramsey-Musolf, Tulin PRD 75 075017 2017 $C_S+C'_S$ can be 0.001 in MSSM in 1-loop order including mixing

FIG. 2. Feynman diagrams relative to supersymmetric contributions giving rise to anomalous amplitudes in β decay processes.

Include mixing of:

• left and right sfermions (this is where β decay can help; constraints are said to be few)

• sfamily mixing (already tightly constrained, e.g. by $\mu \rightarrow e \gamma ...$) Effective 4-fermi scalar and tensor couplings are generated that contribute to **b**_{Fierz} and spin correlation observables like **B**_{ν} as large as 0.001.

Weakly-coupled W' still has electric charge

Does $\sigma e^+ + e^- \rightarrow W^+ + W^-$ double for W'? Depends on the cut for W: typically this cut (explicitly listed in PDG) excludes low-mass W because of serious background

nucleon form factors

Herczeg Prog Part Nucl Phys 46 (2001) 413 pointed out need for form factors

n $\mathbf{g}_{g_s} = \mathbf{g}_{g_s} =$

 \rightarrow (2016) PRD 94 054508

 $g_s = 0.97 \pm 0.12 \pm 0.06, \ g_T = 0.987 \pm 0.051 \pm 0.020$

 g_{s} =1.02 \pm 0.10 Gonzalez-Alonso, Camalich PRL 112 042501 (2014) isospin symmetry

"2nd-class" weak interactions would violate isospin symmetry when quarks are combined by QCD into nucleons. "Induced tensor" *d* is near zero in isobaric mirror decay.

j.a.behr triumf cap17

This result is complementary to other nuclear β decay (Sumikama PRC 2011) in models where 2nd-class currents change with system (Wilkinson EPJA 2000)

Babar set best 3-generation constraints PRL 2009

 $au^-
ightarrow \omega \pi^-
u_ au$

What elements can be laser cooled?

intro

$$\begin{aligned} \mathbf{A}_{\text{obs}}^{\text{SR}}(\mathbf{E}_{e}) &= \frac{1 - s(\mathbf{E}_{e})}{1 + s(\mathbf{E}_{e})} = \mathbf{A}_{\text{obs}} \\ \mathbf{s}(\mathbf{E}_{e}) &= \sqrt{\frac{r_{1}^{-}(\mathbf{E}_{e})r_{2}^{+}(\mathbf{E}_{e})}{r_{1}^{+}(\mathbf{E}_{e})r_{2}^{-}(\mathbf{E}_{e})}} \end{aligned}$$

Gay, T.J. and Dunning, F.B. Rev. Sci. Instrum. 63 (1992) 1635

A_B physics

extras

j.a.behr triumf cap17

B. Plaster et al. PRC 86 (2012) 055501