©TRIUMF Precision measurement of the nuclear polarization of laser-cooled, optically pumped ³⁷K

37 K polarization

- Motivation: spin-polarized β decay
- Direct Optical pumping

Our polarization method also provides a continuous probe

Complication: Coherent population trapping. Easy to kill.

• Measurement of ³⁷K polarization

New J. Phys. 18 (2016) 073028

B Fenker^{1,27}, J A Behr⁹, D Melconian^{1,27}, R M A Anderson³, M Anholm^{1,4}, D Ashery⁹, R S Behling^{1,6}, I Cohen³, I Craiciu³, J M Donohue³, C Farfan¹, D Friesen³, A Gorelov³, J McNeil³, M Mehlman^{1,2}, H Norton³, K Olchanski³, S Smale⁴, O Thériault², A N Vantyghem³ and C L Warner³

- ¹ Cyclotron Institute, Texas A&M University, 3366 TAMU, College Station, TX 77843-3366, USA
- ² Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77842-4242, USA
- 3 TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- ⁴ Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- ⁵ School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ⁶ Department of Chemistry, Texas A&M University, 3012 TAMU, College Station, TX 77842-3012, USA

In support of our ^{37}K \textit{A}_{β} result JH.00007 Ben Fenker et al.

³⁷K spin-polarized experiments ³⁷K A_{β} result JH.00007 Ben Fenker et al.

Isobaric mirror decay has helicity-driven null

 $W(\theta) \approx 1 + a\cos(\theta_{\beta\nu})$

- 10,000 atoms trapped P measured in-situ on ³⁷K
- by atomic method
- ion + shakeoff e⁻ for A_{recoil}

³⁷K polarization

LL

e

Polarized

5

6

RIUMF AC MOT to turn off trap MOT's 7 G/cm Bquad off to 1% of its value in 100 μ s: CurA (CurB=: B=1% of MOT at 100 us _ 4Y= 8. EOM 0P Ó 2 3 t [ms]

M. Anholm, M.Sc. thesis, UBC 2011

[®]™^{IUMF} How to spin-polarize a nucleus with a laser: Part I

Polarize atom by Direct Optical Pumping **Biased random walk** Simple example: J' = 1/2σ+ J = 1/2m₁= -1/2 m₁ =+1/2 $\sigma +$ $P(m=1/2) = 1 - (2/3)^{N}$ after N steps 0.9 0.8 Need 12 photons absorbed to

get to 99% of maximum.

WTRIUMF Direct Optical Pumping, *I*=3/2

• optimize with ⁴¹K, almost same hyperfine splitting as ³⁷K $\vec{F} = \vec{J}_{atom} + \vec{I}_{nucleus}$ H_{hyperfine} = - $\vec{\mu_N} \cdot \vec{B_e} = A \vec{I} \cdot \vec{J}$ Spin flips: $\sigma^+ \rightarrow \sigma^-$; small frequency shift (-2 MHz) to compensate Zeeman shift

WTRIUMF Fluorescence Diagnostic ⁴¹K

- single-photon counting
- burst of fluorescence as atoms are optically pumped
- \bullet Modelled with rate equations including stray B_{\perp} field and imperfect \textbf{S}_3
- Used to optimize parameters for use in ³⁷K

Coherent Population Trapping is bad

But easy to remove by counter-propagating beams and by RF detuning

WTRIUMF Quantifying Polarization from excited state population

Tail \sim few % of peak \Rightarrow We need tail/peak to \sim 10% accuracy to extract *P* to \sim 0.1%

We can't quite extract *P* by inspection: $\Delta F = 0$ for Larmor precession

Same centroid *P* from 2 approaches: Rate eqs for classical populations $\frac{dN_i}{dt} = -R_{ii}N_i + R_{ij}N_j + \lambda N_j$ **Optical Bloch Eqs include B**_⊥ rigorously $\frac{d\rho}{dt} = \frac{1}{i\hbar} [H, \rho] + \lambda$ We measure S_3 and float B_{\perp} $(S_3 = -0.9958(8), -0.9984(13),$ +0.9893(14), +0.9994(5))

©TRIUMF Optical pumping and probing ³⁷K

xtras

WTRIUMF Polarization fit to all ³⁷K data

CALC Uncertainty Budget for ³⁷K polarization

Source	Δ <i>Ρ</i> [×10 ⁻⁴]		Δ <i>T</i> [×10 ⁻⁴		4]
	σ^{-}	σ^+	σ^{-}	σ^+	ε_
SYSTEMATICS					
Initial T	3	3	10	8	
Global fit v. ave	2	2	7	6	
S ₃ ^{out} Uncertainty	1	2	11	5	1
Cloud temp	2	0.5	3	2	=
Binning	1	1	4	3	
B _z Uncertainty	0.5	3	2	7	nhotoionize
Initial P	0.1	0.1	0.4	0.4	355 nm
Require $\mathcal{I}_+ = \mathcal{I}$	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>	<u>0.2</u>	
Total Systematic	5	5	17	14	
STATISTICS	7	6	21	17	
$P(\sigma^+) = +0.9913(8)$ $T(\sigma^+) = -0.9770(22)$					\rightarrow B .
$P(\sigma^{-}) = -0.9912(9) T(\sigma^{-}) = -0.9761(27)$					JH.00

ightarrow B. Fenker JH.00007 37 K A $_eta$

CALC Precision measurement of the nuclear polarization of laser-cooled, optically pumped ³⁷K

• Direct Optical pumping provides a continuous probe

• Measurement of ³⁷K vector polarization and tensor 'alignment'

$$P(\sigma^+) = +0.9913(8)$$
 $T(\sigma^+) = -0.9770(22)$
 $P(\sigma^-) = -0.9912(9)$ $T(\sigma^-) = -0.9761(27)$

1-*P* = 0.87%, known to \approx 10% of its value J.A. Behr, I. Craiciu, A. Gorelov, S. Smale, C.L. Warner, L. Lawrence, B. Fenker, R.S. Behling, M. Mehlman, D. Melconian, G. Gwinner, M. Anholm,

J. McNeil, D. Ashery, I. Cohen

WTRIUMF Improvements in progress

Lower E_{β} threshold (0.5 MeV) by changing mirrors from 0.25 mm SiC to 0.012 mm mylar 'pellicles'

- trim stray B field gradients better
- improve *S*₃, flipping, (*S*₃=-0.9958(8), -0.9984(13), +0.9893(14), +0.9994(5)) and gradients.
- add flipping of B_z
- higher-power 355 nm photoionizing laser by 3x to improve statistics
- gentler RAC-MOT with lower-frequency half-sinusoid to dissipate 1/10 the power while maintaining confinement (L. Lawrence, McMaster, Poster EA.00150)

RIUMF Polarization by data set

³⁷K polarization

RIUMF Polarization time dependence

 41 K data also suggest a 1 millisec B_{quad} component materials: 316L, 316LN, Ti, glassy carbon electrodes

What elements can be laser cooled?

Viewport birefringence

Characterizing viewport birefringence allows prediction of S_3 in center given S_3 in and out.

RIUMF gentler RAC MOT

eta decay geometry and optical pumping

- AC MOT turns off Bquad fast (< 1% after 0.1 ms)
 - Trap and optical pumping share Z axis: Larger $\beta^+ d\Omega$

- \bullet atomic e^- coincidences: measure $A_{\rm recoil},$ remove backgrounds
- β^+ passes through 0.25mm SiC mirror substrates

RIUMF Optics Techniques

Combine 769.9nm D1 and 766.49 D2 with angle-tuned 780 nm laser-line filter
Flip spin state with liquid crystal variable retarder
Relieve stress-induced birefringence with PCTFE (Neoflon) viewport seals (S₃=-0.9958(8), -0.9984(13), +0.9893(14), +0.9994(5))

