Precision measurement of the nuclear polarization of laser-cooled, optically pumped 37K

- Motivation: spin-polarized β decay
- Direct Optical pumping
 - Our polarization method also provides a continuous probe
 - Complication: Coherent population trapping. Easy to kill.
- Measurement of 37K polarization

New J. Phys. 18 (2016) 073028

In support of our 37K A_β result JH.00007 Ben Fenker et al.
TRIUMF

\[^{37}\text{K spin-polarized experiments} \]

\[^{37}\text{K} \ A_\beta \ \text{result JH.00007 Ben Fenker et al.} \]

- 10,000 atoms trapped
- \(P \) measured in-situ on \(^{37}\text{K}\) by atomic method
- ion + shakeoff e\(^{-}\) for \(A_{\text{recoil}} \)

Isobaric mirror decay has helicity-driven null

\[W(\theta) \approx 1 + a \cos(\theta_{\beta\nu}) \]

\[a = (A_\beta - B_\nu)P - a_{\beta\nu} + 2c/3 = 1 \text{ or } 0 \text{ indep. of } M_{GT}/M_F \]
AC MOT to turn off trap

MOT's 7 G/cm Bquad off to 1% of its value in 100 µs:

B=1% of MOT at 100 us

How to spin-polarize a nucleus with a laser: Part I

Polarize atom by Direct Optical Pumping

Biased random walk

Simple example:

\[J' = 1/2 \]

\[J = 1/2 \]

\[m_J = -1/2 \quad m_J = +1/2 \]

\[P(m=1/2) = 1 - \left(\frac{2}{3}\right)^N \] after \(N \) steps

Need 12 photons absorbed to get to 99% of maximum.
Direct Optical Pumping, $I=3/2$

- Biased random walk
- σ^\pm light
- $4S_{1/2} \rightarrow 4P_{1/2}$ transition

- Optimize with ^{41}K, almost same hyperfine splitting as ^{37}K

\[\vec{F} = \vec{J}_{\text{atom}} + \vec{I}_{\text{nucleus}} \]
\[H_{\text{hyperfine}} = -\mu_N \cdot \vec{B}_e = A \vec{I} \cdot \vec{J} \]

Spin flips: $\sigma^+ \rightarrow \sigma^-$

Small frequency shift (-2 MHz) to compensate Zeeman shift
Fluorescence Diagnostic ^{41}K

- Single-photon counting
- Burst of fluorescence as atoms are optically pumped
- Modelled with rate equations including stray B_\perp field and imperfect S_3
- Used to optimize parameters for use in ^{37}K
Coherent Population Trapping is bad

But easy to remove by counter-propagating beams and by RF detuning

\[F=2 \quad \rightarrow \quad F=1 \]
\[4P_{1/2} \quad \Gamma = 6 \text{ MHz} \]
\[\Delta m = \pm 1 \]

\[m = -2 \quad -1 \quad 0 \quad 1 \quad 2 \]

\[\Rightarrow B_z = 2.339(10) \text{ G} \]
Quantifying Polarization from excited state population

Tail \sim \text{few \% of peak} \Rightarrow \text{We need tail/peak to \sim 10\% accuracy to extract} \ P \text{ to \sim 0.1\%}

We can’t quite extract \(P \) by inspection: \(\Delta F = 0 \) for Larmor precession

Same centroid \(P \) from 2 approaches:

Rate eqs for classical populations

\[
\frac{dN_i}{dt} = -R_{ji}N_i + R_{ij}N_j + \lambda N_j
\]

Optical Bloch Eqs include \(B_\perp \) rigorously

\[
\frac{d\rho}{dt} = \frac{1}{i\hbar} [H, \rho] + \lambda
\]

We measure \(S_3 \) and float \(B_\perp \)

\((S_3 = -0.9958(8), -0.9984(13), \text{+}0.9893(14), \text{+}0.9994(5)) \)
Optical pumping and probing 37K

- Photoionize
 - $\sim 1\%$
 - Does not change polarization

![Diagrams showing optical pumping and probing processes involving 37K.](image)
Polarization fit to all 37K data

Transverse field (B_x) common to all: 124(8) mG

σ^- Polarization State

$S/N_A = 4.7(6)$

σ^+ Polarization State

$S/N_B = 4(1)$

$S/N_C = 6(3)$

$S/N_D = 4.6(7)$

$S/N_E = 6(3)$

Counts / 20 µs

Counts / 10 µs

Counts / 10 µs

Counts / 10 µs

Counts / 4.0 µs

Time [µs]

Time [µs]
Uncertainty Budget for 37K Polarization

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta P \times 10^{-4}$</th>
<th>$\Delta T \times 10^{-4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEMATICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial T</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Global fit v. ave</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>S_3^{out} Uncertainty</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Cloud temp</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Binning</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>B_z Uncertainty</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Initial P</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Require $\mathcal{I}+ = \mathcal{I}-$</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total Systematic</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>STATISTICS</td>
<td>7</td>
<td>21</td>
</tr>
</tbody>
</table>

- $P(\sigma^+) = +0.9913(8)$
- $T(\sigma^+) = -0.9770(22)$
- $P(\sigma^-) = -0.9912(9)$
- $T(\sigma^-) = -0.9761(27)$

\rightarrow B. Fenker

JH.00007 37K A_β
Precision measurement of the nuclear polarization of laser-cooled, optically pumped 37K

- Direct Optical pumping provides a continuous probe
- Measurement of 37K vector polarization and tensor ‘alignment’

$$P(\sigma^+) = +0.9913(8) \quad T(\sigma^+) = -0.9770(22)$$
$$P(\sigma^-) = -0.9912(9) \quad T(\sigma^-) = -0.9761(27)$$

$1-P = 0.87\%$, known to $\approx 10\%$ of its value

In support of our 37K A_β result JH.00007 Ben Fenker et al.
Improvements in progress

- trim stray B field gradients better
- improve S_3, flipping, ($S_3=-0.9958(8), -0.9984(13), +0.9893(14), +0.9994(5)$) and gradients.
- add flipping of B_z
- higher-power 355 nm photoionizing laser by 3x to improve statistics
- gentler RAC-MOT with lower-frequency half-sinusoid to dissipate 1/10 the power while maintaining confinement (L. Lawrence, McMaster, Poster EA.00150)

Lower E_B threshold (0.5 MeV) by changing mirrors from 0.25 mm SiC to 0.012 mm mylar ‘pellicles’
Polarization by data set

Nuclear Polarization

A B C D E

Field [V cm\(^{-1}\)]

\(t_{OP}\) [\(\mu s\)]

\(\sigma^-\) \(\sigma^+\)
Polarization time dependence

41K data also suggest a 1 millisecond B_{quad} component.

Materials: 316L, 316LN, Ti, glassy carbon electrodes.
What elements can be laser cooled?

- H
- Li
- Na
- K
- Rb
- Cs
- Fr
- He
- Ne
- Ar
- Kr
- Xe
- Mg
- Ca
- Sr
- Ba
- Dy
- Er
- Yb
- Al
- Cr
- Ag
- Hg

- Trapped in MOT
- Radioactives trapped
- Long–livedRad.
- Plans

Here Be slain Dragons

37 K polarization
Viewport birefringence

Characterizing viewport birefringence allows prediction of S_3 in center given S_3 in and out.
1/2-sinusoid dissipates less power and keeps confinement.

Liam Lawrence, McMaster U., poster CEU at DNP, Oct 14 downtown.
\(\beta\) decay geometry and optical pumping

- **AC MOT turns off Bquad fast**
 - \(< 1\% \) after 0.1 ms
- **Trap and optical pumping share Z axis**: Larger \(\beta^+ \ d\Omega\)
- **\(\beta^+\) passes through**
 - 0.25mm SiC mirror substrates
- **atomic \(e^-\) coincidences**: measure \(A_{\text{recoil}}\), remove backgrounds
Optics Techniques

- Combine 769.9nm D1 and 766.49 D2 with angle-tuned 780 nm laser-line filter
- Flip spin state with liquid crystal variable retarder
- Relieve stress-induced birefringence with PCTFE (Neoflon) viewport seals

\[S_3 = -0.9958(8), -0.9984(13), +0.9893(14), +0.9994(5) \]