### Optical pumping of <sup>41</sup>K for $\beta$ decay

• Nuclear  $\beta$  decay experiments to test the standard model • Goal: laser-cooled, polarized <sup>37</sup>K atoms with vector polarization of > 99.9%, with knowledge of the polarization from atomic observables at 0.1% accuracy.

 Diagnostics: time dependence of excited state population after optical pumping light turns on, using single-photon fluorescence counting and nonresonant photoionization Achieved: Nuclear polarization 0.995±0.04

<sup>37</sup>K

F=1

**F=2** 

F=1

 $\sigma \pm$ 

 $\Delta m = +1/$ 

• Sensitive to  $\nu$  helicity: normal left-handed  $\nu$ does not allow these directions:

#### **Optical Pumping**

• optically pump  ${}^{37}$ K atoms for F=2 2 ms after AC MOT off •  $\sigma^{\pm} 4S_{1/2} \rightarrow 4P_{1/2}$  transition diode laser with RF injected, excites F=1 and F=2 from g.s. test with <sup>41</sup>K, almost same hyperfine splitting as <sup>37</sup>K  $\vec{F} = \vec{J} + \vec{I}$  $\mathbf{H}_{\text{hyperfine}} = - \vec{\mu_{\text{N}}} \cdot \vec{B_{\text{e}}} = \mathbf{A} \vec{I} \cdot \vec{J}$ 

#### **Fluorescence Diagnostic**

 single-photon counting burst of fluorescence as atoms are optically pumped Modelled with rate equations including stray B field and **imperfect** S<sub>3</sub>















···· optical pumping time  $\lfloor \mu s \rfloor$ 

## $\beta$ decay geometry and optical pumping



• AC MOT turns off Bquad fast (< 1% after 0.1 ms)• Trap and optical pumping share Z axis: Larger  $\beta^+ d\Omega$ 



 Combine 769.9nm D1 and 766.49 D2 with angle-tuned 780 nm laser-line filter • Flip spin state with liquid crystal variable retarder • Relieve stress from conflat viewports with fully annealed copper gasket (Stokes  $S_3 = 0.998$  so far)

# **Coherent Population Trapping is bad for us**

 Atoms trapped in the coherent dark state would have poor nuclear polarization  $\vec{S}$ • Signature: at t= 80  $\mu$ s, detune RF sidebands by 1 MHz • Eliminate CPT by counter-propagating beams and by RF detuning





**Optical pumping for** *β*-decay *C*. Farfan, TRIUMF; M. Anholm, UBC; S. Behling, D. Melconian, B. Fenker, Texas A&M; D. Friesen, G. Gwinner, U. Manitoba

 atomic e<sup>-</sup> coincidences: measure A<sub>recoil</sub>, remove backgrounds

•  $\beta^+$  passes through 0.25mm SiC mirror substrates

### Atomic physics in $\beta$ decay: Ar<sup>-</sup>

Ar<sup>-</sup> has a metastable state  $3s^2 3p^5 4p$ ,  $\tau$ =260 ns Unusual configuration: if populated in  $\beta^+$  decay, Ar<sup>-</sup> can move before releasing the electron. Since Ar<sup>-</sup> itself has an asymmetry in direction, this can generate a false  $\beta$  asymmetry By fixing  $\tau$  to the known value, we place an upper limit on



 With uniform |*É*|=350V/cm **Bquad of the MOT can** deflect electrons from the electron MCP

than sudden approximation calculations (Levinger these are optimal energies to break do not break double contribute much biological damage