Scintillation Detector Calibration and Optimization for Neutral Atom Trap

0

Melisa Ozen December 13, 2022

- **TRI**UMF's Neutral Atom Trap for Beta Decay (TRINAT)
- Physics beyond the Standard Model
- <u>Motivation</u>: Investigate timereversal symmetry breaking in radiative β decay [1].
- <u>Goal</u>: Achieve high precision measurements of the decay products.
- Calibrate and optimize the scintillation detectors used to detect γ and β decays.

Time reversal (symmetry) violation (TRV)

- 3 uncorrelated momenta (observables)
- A **scalar triple product** of momenta flips sign with the sign of time $p_1 \cdot p_2 \times p_3$
- A violation of time reversal symmetry would produce **a non-zero value**, but it is prevented by **momentum conservation** for normal beta decay

 ${}^{37}\mathrm{K} \rightarrow {}^{37}\mathrm{Ar} + \beta^+ + \nu$ $p_{\nu} = -p_{\beta} - p_{recoil} \Rightarrow p_{recoil} \cdot p_{\beta} \times p_{\nu} = 0$

• In radiative beta decay of trapped atoms, we look for a three-momenta state from a fourmomentum final state

 37 K \rightarrow 37 Ar + β ⁺ + ν + γ

 $p_{\beta} \cdot p_{\nu} \times p_{\gamma}$

Detector Assemblies

Organic scintillation detector

- Plastic scintillator with 90 mm Ø and 35 mm thickness
- Silicon Photomultiplier (SiPM) readout

The initial plastic scintillation detector assembly

Inorganic scintillation detector

- Gadolinium Aluminum Gallium Garnet (Gd₃Al₂Ga₃O₁₂)
- Two identical GAGG detectors: GAGG1 and GAGG2

+

0

Detector Calibrations ⁺

The differentiation method used to estimate the location of the Compton edge of 137Cs for the organic scintillation detector.

Organic scintillator:

 Estimating the location of the Compton edge of various γ sources through a differentiation method [2]:

$$R'(E) = X_1(E) + X_2(E)$$
$$X_1(E) = \alpha \cdot erfc\left(\frac{E-E_c}{\sqrt{2}\sigma}\right)$$
$$X_2(E) = \beta \cdot exp\left(-\frac{(E-E_c)^2}{2\sigma^2}\right)$$
$$\alpha \equiv \frac{1}{2}(2aE+b)$$
$$\beta \equiv -\frac{1}{\sqrt{2\pi}\sigma}\left[a(E_c^2+2\sigma^2)+bE_c+c\right]$$

R'(E): differentiated detector response function

E_c: Compton energy

[2]: Safari, M. J., F. Abbasi Davani, and H. Afarideh. "Differentiation method for localization of Compton edge in organic scintillation detectors." arXiv preprint arXiv:1610.09185 (2016).

0

Higher energy calibrations for plastic detector

Schematic for the AmBe experiment showing the GAGG detectors located at the sides of the plastic detector.

• ²⁴¹Am⁹Be (αn) \rightarrow ¹²C + n + γ (4.44 MeV)

+

- Looked for triple γ timing coincidences between the plastic and the two GAGG detectors to isolate the double escape peak
 - 4.44 1.022 = 3.42 MeV
 - Currently studying the origin of the lefthand side tail.

The double escape peak at 3.42 MeV from the AmBe source, isolated after energy and timing cuts.

Detector Optimizations

Energy resolution change for the GAGG detectors with the increasing bias voltage.

- SiPM bias voltage optimization:
 - 28V 30V optimal

+

0

- **Reflector material** change to optimize light sealing
 - Nitrocellulose with higher reflection coefficient than PTFE [3]
 - <u>3-layer PTFE: (8.4 ± 0.4)%</u>
 - <u>Nitrocellulose:</u> (9.3 ± 0.5)%
- **SiPM replacement** due to high bias current values from GAGG1
 - Energy resolution change: (8.4 ± 0.4)
 % → (9.1 ± 0.5) %
 - SiPM bias current might not be related to the energy resolution or dark current

Detector Optimizations Cont'd •

Before the crystal swap

- A difference in energy resolutions between the two GAGG detectors
- Swapped the GAGG crystals of the detectors → Swapped the average energy resolutions at 662 and 1333 keV :
 - GAGG1: (6.9 ± 0.5) %
 - GAGG2: (8.5 ± 0.5) %
- The **intrinsic crystal properties** highly affect the energy resolution of the scintillation detectors.

 60 Co $\pmb{\gamma}$ spectra for the GAGG detectors biased at 30V, before and after the crystal swap.

Energy resolution of the plastic detector

- Energy resolution determination for a plastic detector
 - Isolating the internal conversion (IC) electron peak
 - K-L-M shells of ²⁰⁷Bi at around **1 MeV**
 - Initial test: (11.8 ± 0.5) %

Gaussian distribution fitted to the energy peak of the IC electrons from the K, L, and M shells of ²⁰⁷Bi. 9

Plastic detector improvements

- New scintillator with 88 mm Ø and 58 mm Ø at the bottom
 - 30 mm thickness
 - 40-mm-thick light guide
- Energy resolution changes (at 1 MeV):
 - With the light guide + C-type SiPM: (21.0 ± 0.7) %
 - Without the light guide + C-type: (11.2 ± 0.3) %
 - With the new **housing design** + 0.5 gain:
 - J-type SiPM: (9.3 ± 0.3) %
 - C-type SiPM: (10.2 ± 0.4) %
- **Light guide** \rightarrow higher light loss, worse resolution
- Better detector design achieved with the housing design
- J-type SiPM with more light collection than C-type

The housing design for the plastic scintillation detector for installation around the atom trap. Courtesy of Alexandre Gorelov.

⁴⁵K test runs with radioactive beam

- Any **coincident particle pairs** can test the **apparatus symmetry**.
- **August run:**
 - 45 K recoil ion γ pair was not clean enough to test the apparatus symmetry for TRV
 - **Background** was too large even after an energy cut around the main 45 K γ photopeak at 1706 keV
- **December run:** •
 - Better trap light polarization achieved
 - Much **lower electron backgrounds** from the microchannel plates
 - Better signal-to-noise ratio ٠

Summary

- **Differentiation method** adopted to **calibrate** the organic scintillation detectors
- Double escape peak at 3.42 MeV from AmBe isolated through triple γ timing coincidences
- Optimized bias voltage for SiPMs at 28-30V
- **PTFE** as the **better reflector** for scintillator wrapping than **nitrocellulose**
- Average energy resolutions of (6.9 ± 0.5) % and (8.5 ± 0.5) % achieved for GAGG1 and GAGG2 at 662 and 1333 keV
- Up to (9.3 ± 0.3) % energy resolution achieved at 1 MeV for the plastic detector through a housing design and J-type SiPM
- Obtained **better signal-to-noise ratio** through trap optimizations for recoil ion- γ coincidence spectrum for the ⁴⁵K test runs

Acknowledgements

- My supervisor: John Behr
- Group members: Hannah Gallop, Alexandre Gorelov, Dan Melconian, Felix Klose, James McNeil, Brian Kootte, Iris Halilovic, and Michelle Khoo.