
S1188 Spin-polarized ³⁷K β^+ Decay with TRINAT

 p_{37Ar} from TOF and MCP position, uniform \vec{E} (β^+ or e⁻ TOF trigger) β^+ detection for A_{β} Update Motivation
 High-energy physics progress
 2nd-class currents: unique contribution from
 nuclear β decay
 Competition in β decay

- Experimental improvements, projected uncertainty budgets:
 - Spin Polarization (common)
 - **A**_{recoil}
 - A_{β}
- Status, Request, TRINAT plans

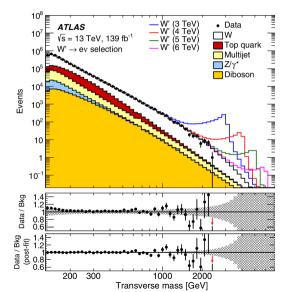
extras

TRlumf Neutral Atom Trap collaboration:

P. Shidling A. Ozmetin (Ft) D. Melconian

A. Gorelov J.A. Behr M.R. Pearson Undergrad A. Afanassieva

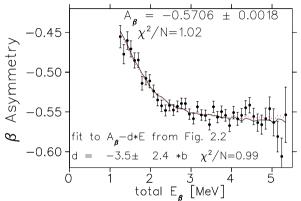
Supported by NSERC, NRC through TRIUMF, DOE **M. Anholm will finish Ph.D. analyzing** $A_{\beta}[E_{\beta}]$ **J. McNeil will do requested** A_{recoil} for his Ph.D.



J. McNeil

UNIVERSITY MANITOBA M. Anholm G. Gwinner

Quasi-direct limits from high-energy colliders: update


LHC13 $\sigma[p + p \rightarrow e + \text{missing } p_{\perp}]$ is related to $n \rightarrow p + e + \nu$ by EFT (to scale the momentum transfer dependence, etc.) see Gonzalez-Alonso, Naviliat-Cuncic, Severijns, Prog Par Nuc Phys 104 165 (2019):

 ← 13 TeV data:
 ATLAS expected 3, saw 2
 Phys Rev D 100 052013 2019
 CMS expected 2.5 events, saw 2 JHEP06 128 2018

LHC won't say more until \sim 2025 Experiments should now show complementary discovery potential

\circledast 2nd-class currents: unconstrained by $pp ightarrow e + p_{\perp}$

"2nd-class" weak interactions violate g-parity (charge symmetry) when quarks are combined by QCD into nucleons.

"Induced tensor" $d \approx 0$ in isobaric mirror decay.

• "To provide for 2nd-class currents it would be necessary... to introduce 2 pairs of quarks and to suppose that each is a doublet under strong interactions..." Holstein and Treiman, PRD 13 3059 (1976)

↑ A strongly interacting dark sector?

Complementary to other nuclear β decay (Sumikama PRC 2011) in models with two strong-interaction couplings, where 2nd-class currents change with nucleus (Wilkinson EPJA 2000)

BABAR set best 3rd-generation constraints PRL 2009 $au^-
ightarrow \omega \pi^-
u_ au$

extras

Nuclear and neutron β decay progress

Some highlights from INT workshop Nov 2019

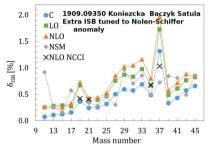
 V_{ud} radiative corrections, including as a function of E_{β} , heighten interest

PERKEO III has made a large advance in neutron A_{β} , along with a Fierz term measurement.

aSPECT disagrees in neutron a_{β} by 2.8 σ with PERKEO III

ANL ⁸*Li*, ⁸*B* β decay in a Paul trap continues to make progress

New techniques to measure the β energy spectrum to search for the Fierz term including implantation in detectors (Naviliat-Cuncic) and cyclotron resonance microwave emission (Garcia U.W.).


WISArD: WITCH magnet, β -delayed proton decay of ³²Ar, proton energy shift with β^+ . Test run arXiv:1906.05135. Uses catcher foil, so backscattering...

³⁷K: TAMU *Ft* progress: theory status

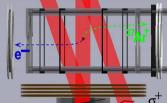
 $3/2^{+}$ $3/2^{+}$ $5/2^{+}$ 1.93(33) $7/2^{-}$ 42 ppm $3/2^{+}$ 97.99(14) 37_{Ar}

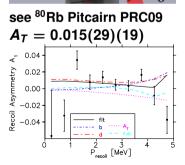
 $\mathcal{F}t$ (Shidling PRC 2014) = 4576 ± 8 s Ozmetin et al. TAMU Branch to 5/2⁺ improved \rightarrow PRELIM 4585±4 s \sim 0.0005 for V_{ud} from A_{recoil} becomes possible

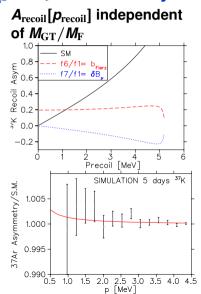
 $CVC \Rightarrow most important$ Q_{pc}=6.14746(20) corrections: $\mu \Rightarrow \mathbf{b}_{WM}$ (small for $\pi d_{3/2}$) Induced tensor $d_1 \approx 0$ for isobaric mirror $Q \Rightarrow$ largest 2nd-order recoil + Coulomb + finite-size \Rightarrow $\Delta A_{\beta} \approx -0.0028 (E_{\beta}/E_0)$ Holstein BMP 1975 Our deduced V_{ud} from ³⁷K A_{β} agrees with Haven Severijns arXiv 1906.09870 using Behrens and Bühring formalism

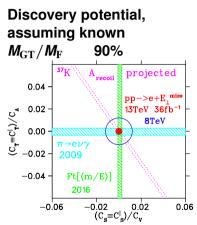
DFT with extra isospin breaking tuned to fix Nolen-Schiffer differs from Towner 2008 in ³⁵Ar, ³⁷K Stroberg,Holt are applying in-medium similarity renormalization group

RIUMF Polarization=0.991(1) \rightarrow projected 0.9960(5) 0.25 mm SiC-backed mirrors \rightarrow							
Source	ΔΡ σ	$[imes 10^{-4}] \sigma^+$	$\Delta T \ \sigma^-$	$[imes 10^{-4}] \sigma^+$	ΔΡ σ ⁻	pellicles for less β^+ scattering	
SYSTEMATICS Initial T Global fit v. ave S_3^{out} Uncertainty Cloud temp Binning B_z Uncertainty Initial P Require $\mathcal{I}_+ = \mathcal{I}$ Total Systematic STATISTICS	3 2 1 2 1 0.5 0.1 <u>0.1</u> 5 7	3 2 0.5 1 3 0.1 <u>0.1</u> 5 6	10 7 11 3 4 2 0.4 <u>0.1</u> 17 21	8 6 5 2 3 7 0.4 <u>0.2</u> 14 17	PROJ 2 1 0 1 0 0.5 0.1 0 2.5 4	 PCTFE viewport seals Lower-frequency AC-MOT Double OP power: fight Larmor precession Better spin flips TnLC 	


Patient undergrads lead most of these improvements • Uncertainty $\propto (1 - P)$


7/13

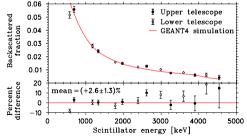

3x more photoionizing light


8/13

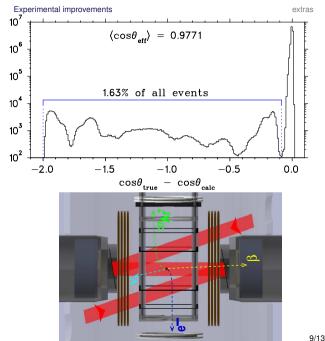
TRIUMF $A_{\text{recoil}} \propto A_{\beta} + B_{\nu}$ in ³⁷K decay $A_{\text{recoil}}[p_{\text{recoil}}]$ independent of $M_{\text{or}}/M_{\text{recoil}}$

Completed upgrade to 1 kV/cm, fine-tuning polarization: plan to be ready in October 2020.

\bigotimes Scattered β 's

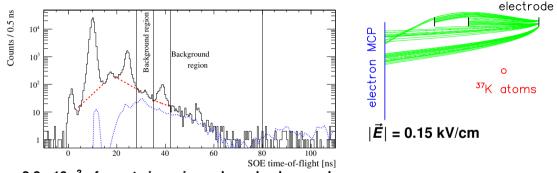

TEXAS A&M

counts


ď

Number

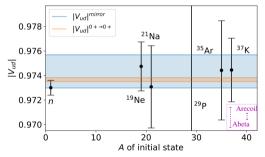
We can reduce the backscattering from SS collimator by lowering Z. We consider Cesic (carbon fiber reinforced silicon carbide ceramic) and covering the Cu coils



Extend to lower E_{β} , benchmark GEANT4 with higher statistics

Experimental improvements

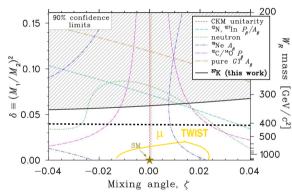
$rak{\partial}$ TRIUMF Background in eta - shakeoff e⁻ coincidence **B**IIIIII



- 2.8×10⁻³ of events in main peak are background from non-trapped atoms
- Conservatively assume polarized between 0 and 100%.
 - ightarrow **A** $_{eta}$ imes (1.0014 \pm 0.0014)
- These will be removed by MCP position info when we run at design *E* field 1 kV/cm

Motivation changes/additions $\Delta A_{eta} imes 1$	orimental improvements extras
Background (Correction 1.0014 1.0000) 8	$\frac{1}{10} \text{IF TEXAS ANY} \frac{37}{\text{K}} \text{A}_{\beta}$
β scattering [†] (Correction 1.0234 1.01) 7	3
Trap Position (typ. $\leq \pm 20 \mu m$) 4	2 Improvements ^{®TRIUMF}
Sail velocity (typ. $\leq \pm 30 \mu m/ms$) 5	3
Temperature (typ. \leq 0.2mK) & width 1	• Minimize Background by
BB1 Radius [†] 15 ^{+3.5} _{-5.5} mm 4	₄ sweeping away e [−]
Energy agreement ($3\sigma \leftrightarrow 5\sigma$) 2	2 with larger Ĕ
threshold ($60 \leftrightarrow 40 \text{ keV}$) 1	• Reduce scattering by 2
Scintillator threshold ($0.4 \leftrightarrow 1.0 \text{ MeV}$) 0.1	
Shakeoff electron t.o.f. region 3	with lower-Z materials
SiC mirror thickness [†] ($\pm 6\mu$ m) 1	0 Improve understanding
Be window thickness [†] (\pm 23 μ m) 0.1	• Reduced energy threshold
BB1 thickness [†] ($\pm 5\mu$ m) 0.	0.1 using pellicle mirrors
Scintillator or summed [†] 1	1 doing pendie minors
Scintillator calibration $(\pm 0.4 ch/keV)$ 0.	0.1 • Improve statistics
Total systematics 12	7
Statistics 13	6
Polarization 5	2
Total uncertainty 18	8

${}^{\textcircled{\sc l}}$ Physics of average ${\it A}_{eta}$


Deduced V_{ud} from mirror decays Hayen and Severijns, arXiv:1906.09870 (June 2019) including G-T radiative correction

We project to reach 0.0005 accuracy, as good as any $0^+ \rightarrow 0^+$ except ^{26m}Al. Assumes 5% isospin breaking

TEXAS A&M

as of Fenker et al. PRL 2018:

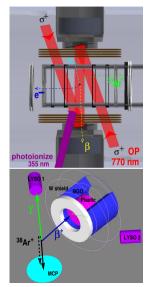
Right-handed V+A currents from nuclear and neutron β decay, in manifest left-right model Projection for 3x better A_{β}

RIUMF S1188 Request and TRINAT plans

We have used a few shifts to test apparatus: remaining 10 shifts expiring now.

We request to have 20 shifts total to:

- measure $A_{\beta}[E_{\beta}]$ 3-5 x better. At same time:
- *A*_{recoil} with sensitivity to '4-fermion contact' interactions complementary to

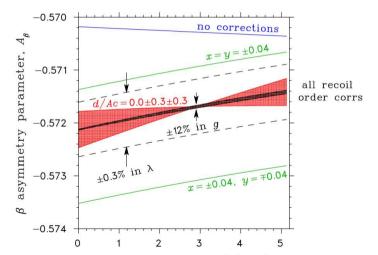

 $\pi \rightarrow e \nu \gamma, \pi \rightarrow e \nu$, and LHC $p + p \rightarrow e + E_{\perp}$ J. McNeil, UBC Ph.D. project

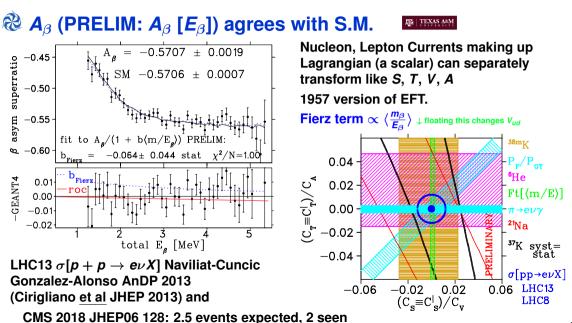
ullet S1810 92 Rb 0 $^-
ightarrow$ 0 $^+$ $E_{
u}$ $a_{eta
u}$

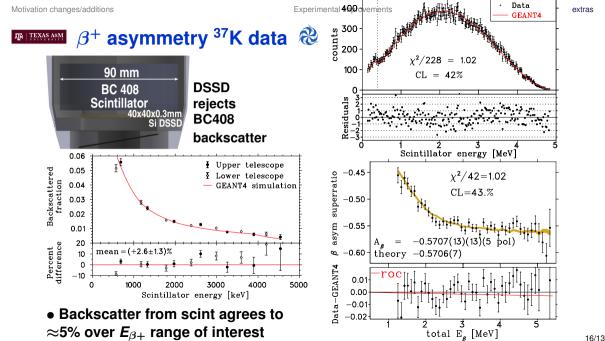
⁹²Rb was J. McNeil M.Sc.

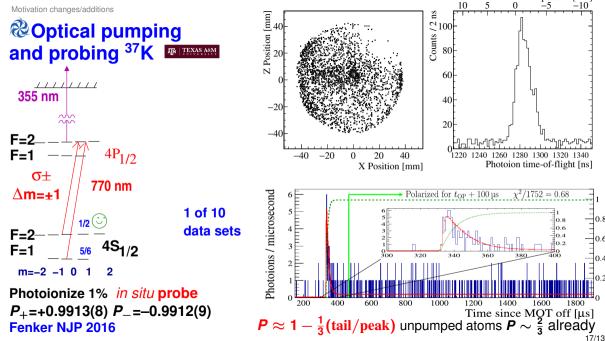
Looking for a student for 2 more cases.

• S1603 TRV $\beta \nu \gamma$ 3-momentum correlation Proceeding with undergrad γ -ray development. Recruiting a student.

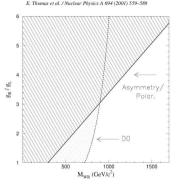


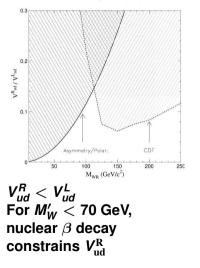

extras


³⁷K: recoil-order effects to 2nd order


from D. Melconian TRIUMF EEC 2008 proposal

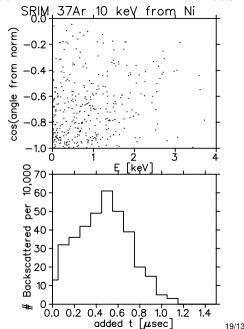
g is the 2nd-order electric quadrupole moment weak analog; it is known better now





TRIUMF 'Non-manifest' Left-Right models

 $g_R > g_L$: ${}^{37}\text{K} \Rightarrow g_R \lesssim$ 7.7 at 4 TeV (or $g_R <$ 4, at 2 TeV but LHC7 2 TeV 'bump' had $g \sim$ 0.5)


E. Thomas et al. / Nuclear Physics A 694 (2001) 559-589

RIUMF lons backscatter

- SRIM: \sim 5% 10 keV Ar backscatter from nichrome the \vec{E} field will re-collect ions
- \bullet F. Meyer et al. Phys. Scr. T92 182 (2001) experiment suggests \sim 10% remain ionized.

So \sim 0.1% of the ions could trigger events significantly later. Study by multiple hits?

