\circledast Progress: S1603 Time-reversal violation in radiative eta decay

- Update: Motivation for this type of \mathcal{T}
- Update: our test of our experimental method (symbiotic with 92 Rb β - ν correlation)
- \bullet Reassure Beam Delivery that the target chemists know why the $^{37,38m}{\rm K}$ was better
- Summary and future shift plan wrt S1188

CTRIUMF

A. Gorelov J.A. Behr J. McNeil

D. Melconian

CALC WITH 3-momentum *T* **correlation: Our example**

When t
$$\rightarrow$$
 -t :
 $\vec{r} \rightarrow \vec{r}$ $\vec{p} \sim \frac{d\vec{r}}{dt} \rightarrow$ - \vec{p}

$$\vec{p_{\nu}} \cdot \vec{p_{\beta}} \times \vec{p_{\gamma}} = -\vec{p_{recoil}} \cdot \vec{p_{\beta}} \times \vec{p_{\gamma}}$$

$$\stackrel{t \to -t}{\longrightarrow} \vec{p_{recoil}} \cdot \vec{p_{\beta}} \times \vec{p_{\gamma}}$$
BGO -> GAGG
BGO -> GAGG
BGO -> GAGG

- We can test symmetry of apparatus with coincident pairs
- \bullet Not exact: outgoing particles interact \rightarrow 'final-state' fake ${\cal X}$

readiness, request

WTRIUMF Motivation review

• Once *P* was found to be maximally broken, many spin-dependent T-odd observables were proposed and measured to be $\lesssim 10^{-3}$ like $D\hat{J} \cdot \frac{\vec{p_{\beta}}}{E_{\beta}} \times \frac{\vec{p_{\nu}}}{E_{\beta}} R\vec{\sigma}_{\beta} \cdot \hat{J} \times \frac{\vec{p}_{\beta}}{E_{\beta}}$

- In contrast, our type of \mathcal{T} needs 3 independent momenta. E.g. proposed \mathcal{T} in $\pi^{\pm} \rightarrow e^{\pm}\nu e^{+}e^{-}$ [Flagg Phys Rev 178 2387 (1969)] was never done:
- Our exp. would be unique to 1st generation of particles

Harvey Hill Hill PRL 99 261601 (2007); EFT with SM interactions combined in the nucleon: goal was extra γ production by medium-energy ν 's OCD Weak E&M $\mathcal{L} = \frac{-4c_5}{m_{\rm urbor}^2} \frac{eG_F V_{ud}}{\sqrt{2}} \epsilon^{\sigma \mu \nu \rho} \bar{\boldsymbol{p}} \gamma_{\sigma} \boldsymbol{n} \bar{\psi}_{eL} \gamma_{\mu} \psi_{\nu L} \boldsymbol{F}_{\nu \rho}$ Gardner, He PRD 2013: looked for contributions to radiative n decay. Noticed QCD antisymmetry led to a scalar triple product of momenta \bigcirc : $|\mathcal{M}_{c5}|^2 \propto rac{lm(c_5 g_V)}{M^2} rac{E_e}{D_e k} (ec{p_e} imes ec{k_\gamma}) \cdot ec{p_
u}$ Needs non-SM QCD-like physics.

scale $M \sim 10$'s of MeV

Gardner further considered explicit models with new particles weakly coupled to SM, strongly interacting among themselves \rightarrow

measure 🙂

Other constraints

• Direct constraint from $n \rightarrow p \beta \nu \gamma$ branch $\propto |c_5|^2$ Bales PRL 2016: $3.4 \pm 0.2 \times 10^{-3}$ (theory 3.1×10^{-3}) $\Rightarrow \frac{\text{Im}(c_5)}{M^2} \leq 8 \text{MeV}^{-2} \Rightarrow {}^{37}\text{K} \text{ TRV}$ asym can be $\sim 1 \bigcirc$

WTRIUMF Readiness: beam

The beam readiness summary is correct: there was one TiC target that made $t_{1/2} \sim 1$ s yields $\sim 4 \times$ larger than others

Details: Target chemists ground the TiC much finer, improving release time. This is labor-intensive (it wore out two mortal-and-pestles!), but the target chemists expect this to be reproducible.

We've been quoting this number for yields for S1188 as well, with the same minimum/ideal/maximum acceptance.

CRIUMF S1603 can't run simultaneously with S1188 We've considered running S1603 first experiment at the same beamtime as our next ³⁷K spin-polarized S1188, but they are mutually incompatible (except for tests of both).

Issues include:

- One GAGG (blocking one viewport) fits in S1188 geometry, but could produce scattering asymmetries for precision S1188
- \bullet Our simplest symmetric geometry for S1603 involves 2 γ detectors, blocking too many optical ports for S1188
- The γ -ray singles trigger is needed for *T*-even pairs to test apparatus symmetry, but disturbs efficiency of other triggers, critical for precision S1188
- Polarized on/off duty cycle is inefficient for S1603: residual MOT polarization and changing cloud size are systematics for S1603

readiness, request

CALC S1603 \mathcal{T} in $\beta \nu \gamma$: Summary and shift request

Must have TiC target to make the isotopes that decay by the vector current i.e. Fermi operator, i.e. ³⁷K and/or 38m K, to look for this mechanism for \mathcal{T} .

We request as in the progress report:

Beyond the 3 shifts scheduled in August 2021, we project further test time will be done symbiotically with S1188 shifts– so we've dropped 3 test shifts from the new total:

• We request 12 shifts dedicated to S1603 for the first TRV 3-momentum asymmetry, using either ³⁷K or ^{38m}K. We project sensitivity to 0.05 to 0.1 asymmetries for few percent branches.

• We expect to be ready for these shifts in Oct-Dec 2021 or in 2022.

