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ABSTRACT

Low energy nuclear β-decay experiments have been instrumental in shaping our

understanding of the weak interaction and the development of the standard model.

Today these experiments continue to help our understanding evolve by measuring

the predictions of the standard model to even greater levels of accuracy. Recently

an experiment to measure the standard model β-asymmetry correlation parameter,

Aβ, was carried out at TRIUMF.

This experiment is the first time that a measurement of Aβ has been made in 37K.

Additionally it is the first time that Aβ, in any isotope, has ever been measured mak-

ing use of a source of cold atoms provided by a magneto-optical trap. The experiment

was carried out by the TRINAT (TRIUMF neutral atom trap) collaboration.

In order to make this measurement the 37K atoms had to be highly spin polarized

and this was done via optical pumping. In the course of the data analysis a large

difference between the response of the rate-equation model and the optical Bloch

model to the presence of misaligned magnetic field was observed. The resolution of

this model difference is ongoing and a well motivated approximate polarization of

0.99±0.01 has been used as a place holder to allow the analysis to be carried through

to completion.

Assuming this final number for the polarization for the atoms we find Aβ(0) =

−0.5639±0.0094, in agreement with the standard model predicted value of −0.5706±

0.0007. If we do not assume the polarization number is correct our result will be

PAβ = −0.5583±0.0109 This value of Aβ corresponds to a ρ value of ρ = 0.553+0.034
−0.021.

Combining this measurement with measurements from other T=1/2 mirror transi-

tions a value for |Vud| = 0.9723±0.0017 is calculated. This measurement interpreted
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in the framework of the manifest-left right symmetric model excludes masses of M2

above 230 GeV at the 90% confidence level at ζ = 0.

iii



DEDICATION

For Jessica, Kingston, and Truman

iv



ACKNOWLEDGEMENTS

Thanks to the people who made this dissertation possible. In particular I would

like to acknowledge the hard work of Konstantin Olchanski, Alexandre Gorelov,

John Behr and Dan Melconian. Without the hardwork of these four individuals this

project never would have been completed.

I would also like to thank my wife Jessica and son Kingston who had to endure

a miserable year living in a tiny basement in Vancouver instead of our nice house in

Texas, and Truman who came along to join us at the end.

v



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Simple Physical Picture of Observable . . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Physics of the Decay of 37K . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Simple Overview of the Experiment . . . . . . . . . . . . . . . . . . . 10
1.5 The Author’s Contribution . . . . . . . . . . . . . . . . . . . . . . . . 14

2. THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Jackson, Treiman, Wyld and the Standard Model . . . . . . . . . . . 16
2.1.1 A Toy Beta Energy Spectrum . . . . . . . . . . . . . . . . . . 18
2.1.2 The Form of Aβ Assuming the Standard Model . . . . . . . . 19

2.2 Interpreting a Measurement of Aβ in the Context of the Standard Model 25
2.3 Modification to the Standard Model due to Right-Handed Currents . 27

2.3.1 The Manifest Left-Right Symmetric Model . . . . . . . . . . . 29
2.3.2 The Non-Manifest Left-Right Symmetric Model . . . . . . . . 34

2.4 Model Constraints and Exclusion Plots . . . . . . . . . . . . . . . . . 38
2.4.1 Exclusion Plot Construction . . . . . . . . . . . . . . . . . . . 38

2.5 Other Constraints on Right-Handed Currents . . . . . . . . . . . . . 41
2.5.1 Unitarity of the CKM Matrix . . . . . . . . . . . . . . . . . . 41
2.5.2 Unpolarized Longitudinal Polarization . . . . . . . . . . . . . 42
2.5.3 Polarized Longitudinal Polarization . . . . . . . . . . . . . . . 42
2.5.4 Muon decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.5 Expected Limits From 37K . . . . . . . . . . . . . . . . . . . . 44

vi



2.5.6 Limits in the Non-Manifest Model . . . . . . . . . . . . . . . . 45

3. GEANT SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 GEANT4 Simulations of the Experiment . . . . . . . . . . . . . . . . . 47
3.2 Kinematic Constraints and the Mandelstam Variables . . . . . . . . . 47
3.3 Event Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Recoil-Order Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 The Fermi Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 The Geometry Definiton . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7 Experimental Cloud Input Into GEANT4 . . . . . . . . . . . . . . . . . 60
3.8 Testing With GEANT4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.9 Multithreading in 37K Simulations . . . . . . . . . . . . . . . . . . . . 67
3.10 Future Work with GEANT4 . . . . . . . . . . . . . . . . . . . . . . . . 70

4. EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Design Against Major Systematics . . . . . . . . . . . . . . . . . . . . 73
4.2 Geometry Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 The Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Silicon Carbide Mirrors . . . . . . . . . . . . . . . . . . . . . . 76
4.2.3 Electrostatic Hoops . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 Scintillator Detectors . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 Silicon Detectors . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.3 Shakeoff Electron MCP . . . . . . . . . . . . . . . . . . . . . . 93
4.3.4 Ion MCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5. POLARIZATION MEASUREMENT . . . . . . . . . . . . . . . . . . . . . 106

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Polarization Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 A Simple Polarization Calculation . . . . . . . . . . . . . . . . 107
5.2.2 Rate Equation Model . . . . . . . . . . . . . . . . . . . . . . . 112
5.2.3 Optical Bloch Model . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 The Photoionization Data . . . . . . . . . . . . . . . . . . . . . . . . 117
5.4 Difference Between the Models . . . . . . . . . . . . . . . . . . . . . . 123
5.5 Polarization Experiments with 41K . . . . . . . . . . . . . . . . . . . 129

5.5.1 Effect of Temperature on Polarization . . . . . . . . . . . . . . 131
5.5.2 Summary of Offline Experiments . . . . . . . . . . . . . . . . 132

5.6 Final Value of the Polarization . . . . . . . . . . . . . . . . . . . . . . 132

vii



6. DATA ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.1 Cleaning and Preparing the Data . . . . . . . . . . . . . . . . . . . . 134
6.1.1 Equal Time In Each Polarization State . . . . . . . . . . . . . 134
6.1.2 Energy Spectrum From Waveforms . . . . . . . . . . . . . . . 136
6.1.3 Timestamp Mismatch . . . . . . . . . . . . . . . . . . . . . . 143
6.1.4 Energy Agreement Algorithm . . . . . . . . . . . . . . . . . . 151
6.1.5 Cleaning the MCP Time Signals . . . . . . . . . . . . . . . . . 151

6.2 Asymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.2.1 The Super-Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.2.2 Super-Ratio Uncertainty . . . . . . . . . . . . . . . . . . . . . 156
6.2.3 Why the Super-Ratio is Super . . . . . . . . . . . . . . . . . . 158

6.3 Asymmetry as a Function of Cycle Time . . . . . . . . . . . . . . . . 159
6.4 Timing Coincidence Between the Scintillators and the Electron MCP 161
6.5 Asymmetry as a Function of Angle . . . . . . . . . . . . . . . . . . . 161
6.6 Asymmetry as a Function of β Energy . . . . . . . . . . . . . . . . . 165

6.6.1 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . 171
6.6.2 The Final Result . . . . . . . . . . . . . . . . . . . . . . . . . 178

7. FUTURE PROSPECTS AND SUMMARY OF RESULTS . . . . . . . . . 183

7.1 Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.1.1 Size and Position Sensitivity of Electron MCP . . . . . . . . . 183
7.1.2 Increase Polarization Diagnostics . . . . . . . . . . . . . . . . 184
7.1.3 Higher Electric Field . . . . . . . . . . . . . . . . . . . . . . . 186
7.1.4 Improved GEANT4 Simulations . . . . . . . . . . . . . . . . . . 186
7.1.5 Blind Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

APPENDIX A. STRIP DETECTOR CALIBRATIONS . . . . . . . . . . . . 206

APPENDIX B. SCINTILLATOR CALIBRATIONS . . . . . . . . . . . . . . 212

APPENDIX C. MIRROR SPECIFICATION . . . . . . . . . . . . . . . . . . 215

viii



LIST OF FIGURES

FIGURE Page

1.1 Polar β probability distribution . . . . . . . . . . . . . . . . . . . . . 3

1.2 The dependence of decay rate on angle and energy for fixed Aβ . . . . 4

1.3 Energy level diagram of 37K . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Map showing all of the sources from which the standard model pre-
diction of Aβ is derived . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Model of experimental geometry . . . . . . . . . . . . . . . . . . . . . 11

2.1 A simple kinematic β energy spectrum . . . . . . . . . . . . . . . . . 19

2.2 Comparison of exclusion contours with published results . . . . . . . 40

2.3 Predicted exclusion contour levels from 37K compared with other ex-
periments assuming the manifest left-right symmetric model . . . . . 44

2.4 Predicted exclusion contour levels in non-manifest case . . . . . . . . 46

3.1 General interaction schematics . . . . . . . . . . . . . . . . . . . . . . 48

3.2 A schematic of the event generation algorithm in the GEANT4 code . . 51

3.3 Energy dependence of Aβ due to recoil-order effects . . . . . . . . . . 52

3.4 Comparison of different Fermi functions . . . . . . . . . . . . . . . . . 56

3.5 Nuclear radii in the area of 37Ar . . . . . . . . . . . . . . . . . . . . . 57

3.6 GEANT4 file size comparison . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Scattering from mirror substrates . . . . . . . . . . . . . . . . . . . . 60

3.8 Experimental data showing the extent of the cloud . . . . . . . . . . 62

3.9 GEANT4 typical events . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.10 Sorted list of volume names that most strongly scatter positrons . . . 66

ix



3.11 Architecture of analyzer program . . . . . . . . . . . . . . . . . . . . 69

3.12 Comparison of electric fields . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Two views of the experiment . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Design considerations for different mirror angles . . . . . . . . . . . . 78

4.3 The hoop and ion micro channel plate assembly before installation in
the chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Charge state time distributions . . . . . . . . . . . . . . . . . . . . . 83

4.5 Scintillator design and testing . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Detailed layout and axis choice for silicon detectors . . . . . . . . . . 88

4.7 Schematic showing the detector cabling . . . . . . . . . . . . . . . . . 90

4.8 Strip detector information . . . . . . . . . . . . . . . . . . . . . . . . 92

4.9 The shakeoff electron micro channel plate . . . . . . . . . . . . . . . . 94

4.10 The ion micro channel plate with mask and delay line anode . . . . . 96

4.11 Timing diagram of the experiment . . . . . . . . . . . . . . . . . . . . 98

4.12 NIMIO32 trigger firmware part 1 . . . . . . . . . . . . . . . . . . . . 100

4.13 NIMIO32 trigger firmware part 2 . . . . . . . . . . . . . . . . . . . . 101

4.14 NIMIO32 trigger firmware part 3 . . . . . . . . . . . . . . . . . . . . 102

4.15 Electronics diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 Schematic of photoionization process during optical pumping . . . . . 108

5.2 Two level system to demonstrate the density matrix . . . . . . . . . . 115

5.3 Test of photoionization technique using 41K . . . . . . . . . . . . . . 118

5.4 Relative timings of photoionization events . . . . . . . . . . . . . . . 120

5.5 Photoionization timing shift after run 996 . . . . . . . . . . . . . . . 121

5.6 Photoionization events ordered by optical pumping time . . . . . . . 123

x



5.7 Comparison of the the polarizations output from the rate equation
model and the optical Bloch model for a varying value of misaligned
magnetic field here referred to as Bbad . . . . . . . . . . . . . . . . . 124

5.8 A typical fit of the optical pumping spectrum . . . . . . . . . . . . . 125

5.9 The values of the polarization returned from the fits . . . . . . . . . . 127

5.10 Sublevel populations given by the two OP models . . . . . . . . . . . 128

5.11 A schematic of the offline polarization measurement setup . . . . . . 130

5.12 A schematic of polarization light injection optics mounted on the 19.5◦

optical pumping arms . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1 Fake asymmetry as a function of energy left in the scintillator pro-
duced by unequal time in each polarization state . . . . . . . . . . . . 135

6.2 The macroscopic timing filter applied to the data . . . . . . . . . . . 136

6.3 Different views of waveform data . . . . . . . . . . . . . . . . . . . . 138

6.4 This is a typical waveform fit that was obtained using Eq. 6.1 . . . . 139

6.5 A schematic view of different waveform energy extraction algorithms . 141

6.6 Spectrum differences between the digital charge integrating and peak
sensing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.7 Comparison of strip firing across detector . . . . . . . . . . . . . . . . 144

6.8 The effect of silicon detector coincidence condition on the scintillator
energy spectrum before fixing the data stream mismatch . . . . . . . 145

6.9 Silicon energy gated on scintillator energy before fixing the data stream
mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.10 Comparison of the energy spectrum of 37K with that of 90Sr . . . . . 147

6.11 Diagnosis of the timestamp mismatch . . . . . . . . . . . . . . . . . . 148

6.12 A schematic of the algorithm to correct the timestamp mismatch . . . 150

6.13 Ion - photodiode timing spectrum showing many poorly understood
peaks broken out by hit number . . . . . . . . . . . . . . . . . . . . . 153

xi



6.14 Asymmetry between the scintillators as a function of cycle time . . . 160

6.15 Relative timing between the scintillator and the electron MCP . . . . 162

6.16 Simulated cos θ distribution for silicon detectors . . . . . . . . . . . . 163

6.17 These are heatmaps of β hits on the bottom silicon detectors during
polarized time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.18 Asymmetry for two slices in cos θ . . . . . . . . . . . . . . . . . . . . 166

6.19 The scintillator energy spectrum. . . . . . . . . . . . . . . . . . . . . 167

6.20 Summery of Aβ fitting procedure . . . . . . . . . . . . . . . . . . . . 170

6.21 Some asymmetry plots showing the effect of different systematic un-
certainties considered . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.22 The effect of different conditions on the energy spectra and fits . . . . 176

6.23 Interpretation of our measurement of Aβ in the framework of the stan-
dard model and in the framework of right-handed current model. . . . 180

6.24 Projected limits from future experiments measuring the correlation
parameters Aβ and Bν at the 0.1% level of precision. . . . . . . . . . 181

A.1 This is a typical GEANT4 fit to a silicon strip spectrum . . . . . . . . . 207

B.1 Upper scintillator calibration fit with GEANT4. . . . . . . . . . . . . . 213

xii



LIST OF TABLES

TABLE Page

2.1 The standard model correlation coefficients that enter into experi-
ments with polarized nuclei . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Definition of manifest left-right symmetric model parameters for the
neutron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 All of the input values that are needed to calculate recoil order effects
for 37K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Trap position and movement by polarization state . . . . . . . . . . . 63

4.1 Energy loss in scintillator wrapping materials tested . . . . . . . . . . 87

5.1 Some different coincidence peak timing cuts tried . . . . . . . . . . . 121

6.1 Error budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.1 Strip detector calibration lower Y . . . . . . . . . . . . . . . . . . . . 208

A.2 Strip detector calibration lower X . . . . . . . . . . . . . . . . . . . . 209

A.3 Strip detector calibration upper Y . . . . . . . . . . . . . . . . . . . . 210

A.4 Strip detector calibration upper X . . . . . . . . . . . . . . . . . . . . 211

B.1 Scintillator calibrations . . . . . . . . . . . . . . . . . . . . . . . . . . 212

xiii



1. INTRODUCTION

Nuclear β-decay experiments played a critical role in the development of the

standard model of particle physics (SM). In a classic paper on the subject of β-

decay, Lee and Yang proposed that there was no evidence to support the assertion

that parity was conserved in β-decay [1]. In the paper they also proposed several

experiments that would definitively answer this question. Two of the proposed ex-

periments were carried out, one by Wu [2] and the other by Garwin [3]. Both showed

that parity is violated in β decay. Building on this foundation, modern experiments

continue to make ever more precise measurements of parity violation in nuclear β-

decay and continue to test SM predictions and provide constraints on physics beyond

the SM [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

At Canada’s national laboratory for particle and nuclear physics (TRIUMF),

the TRIUMF neutral atom trap collaboration (TRINAT) has a mature program

to measure SM asymmetry parameters [15] from the beta decay of atoms confined

in a magneto-optical trap (MOT). A MOT is an ideal source for radioactive decay

experiments because the atoms are thermally cold (∼ 1 mK) and spatially confined

(∼ 1 mm3) by the combined action of a magnetic field and laser light, eliminating

scattering from any containing volume. In the research proposal submitted as part

of my preliminary examination it is stated that the goal of this project is to make

a ∼ 1% measurement of the SM β-asymmetry parameter, Aβ, of 37K confined in

a MOT and spin polarized by means of optical pumping (OP). At the 1% level of

precision our measurement would be the third most precise measurement of Aβ in

any system. This project is meant to be a spring board to propel the TRINAT

experimental program on to making the most precise measurement of Aβ in any

1



system at the 0.1% level or beyond. In this work I will describe what was done to

achieve this stated goal and report the result of our effort.

1.1 Simple Physical Picture of Observable

It is important that we connect the the concept of β-asymmetry to its physical

interpretation. Intuitively, Aβ can be understood to be a measure of the likelihood

of a β-particle being emitted in a direction relative to the direction of the original

nuclear spin. If we can develop an understanding of the simple physical picture it will

greatly facilitate the understanding of all the rest of this work. The next equation is

a simplified version of the decay rate of polarized atoms:

differential decay rate ∼ 1 + AβP
v

c
cos θ. (1.1)

In this equation P is the average polarization vector that represents the expectation

value of the nuclear spins projected on a common axis, v/c is a relativistic factor, and

θ is the polar angle between the nuclear spin and the momentum vector of the emitted

β. If we consider that βs with a few MeV of kinetic energy have v/c ≈ 1 and assume

for the sake of simplicity that P = 1, we can see that the decay rate in this case only

depends on the value of Aβ and the angle with respect to the polarization direction.

Shown in Fig. 1.1 is a graphical representation of the probability of a β being emitted

at some angle θ with respect to the original nuclear polarization axis while making the

two previously stated assumptions. It is so important to understand the relationship

between Aβ and the observed β spectrum that I have included a second graphical

representation of Eq. 1.1 as Fig 1.2. In this representation, instead of showing the

probability, I show the change in decay rate from the rate at 90◦and have not made

the assumption that v/c = 1 so that we can see how the asymmetry changes with

the energy of the emitted β.

2
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Figure 1.1: Polar β probability distribution. This is a polar probability distribution
plot in the polar angle, θ, for β particles emitted in a given decay with respect to
the zenith direction defined by the nuclear polarization vector so that the distance
from the origin at each point is the probability of a β being emitted at that angle
θ. Aβ does not affect the azimuthal, φ, distribution of decay products and in φ the
angular distribution is symmetric. For Aβ = 0 the decay is isotropic in θ and there
is no angular preference for the β. In the case of Aβ = −1 the probability that a β
will be emitted in the direction of the nuclear polarization goes to zero. A positive
sign of Aβ would reflect the plots across the “probability in Z = 0” line so that the
βs would prefer to go in the direction of the nuclear polarization instead of against
it.
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Figure 1.2: The dependence of decay rate on angle and energy for fixed Aβ. The
β distribution at 90◦ does not change with Aβ as seen in Fig. 1.1. Therefore it is a
useful reference point to look at the percent change in the likelihood of observing a
a β particle for different angles and energies. This plot has been specialized to 37K
where the endpoint energy is 5.1 MeV and the SM value of Aβ = –0.570.
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1.2 Motivation

A measurement of Aβ can be be interpreted in a couple of different contexts

to gain access to different physics questions. The first question to answer is if the

experimentally measured value match the SM predicted value. As the SM has been

rigorously tested in so many areas we expect the answer to this question to be

yes. If a deviation from the SM predicted value was observed it could be a sign of

new physics. Finding a single deviation from the standard model would be exciting

but would need to be validated. At the level of precision that we were aiming for

in this experiment we are not going to approach the 5σ deviation limit needed to

claim a discovery. To get to that limit we would need to make at least a ∼ 0.01%

measurement of Aβ. Two orders of magnitude better than the current experiment.

Until we reach that level of precision there are other useful ways to interpret

our results. One way to do this would be to combine our result with results from a

similar set of nuclei in such a way that systematic errors in one result get washed out

by averaging over the set while at the same time increasing the signal to noise ratio

of the physics signature. Recently it was shown that an evaluation of |Vud| could be

carried out for a set of T = 1/2 mirror transitions, including 37K [16], that would

be complimentary to the much more precise evaluation done using superallowed

0+ → 0+ [17] decays.

It is not necessary to assume the framework of the SM when interpreting our

measurement of Aβ. In this case another model can be assumed. One example of

another model that could be used is a left-right symmetric model in which right-

handed currents can exist. In this case our measurement of Aβ will be able to place

constraints on the parameters of this model.
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1.3 Physics of the Decay of 37K

Before drilling down to the particular physics in question it would be beneficial to

review some basic β-decay terminology. A similar review of the material presented

here can be found in any nuclear physics textbook with the author consulting these

[18, 19, 20, 21] in the preparation of this manuscript. One of the first important

things to know is how to classify a particular transition as either Fermi, Gamow-

Teller, or mixed Fermi/Gamow-Teller. Before we mention the selection rules it is

important to know why being able to classify a given transition is helpful. If we

know that a given transition is pure Gamow-Teller, for instance, then we know that

there is no vector component in the interation, and this makes calculating the SM

correlation parameters trivial as will be shown later on. Additionally if we know

that a given transition is mixed, then the calculation is more work and requires

additional input. There are some other important things to keep in mind about

the terminology. The first is that all three of the previously mentioned classes –

namely Fermi, Gamow-Teller, or mixed Fermi/Gamow-Teller – are the three types

of β-decays that make up the set known as “allowed decays”. Allowed decays are

those for which the change in nuclear spin from the initial to the final state denoted

as, ∆J , is equal to 0 or ±1 and there is no change in parity from the initial to

final nuclear state. All other beta decays are termed forbidden and there are degrees

of forbiddeness. In this context forbidden does not mean that a transition cannot

occur, but instead that it will simply occur more slowly. Another aspect that must

be considered when classifying decays is the change in the isospin, ∆T , between the

parent and daughter. We are now prepared to learn the selection rule for classifying

a decay as Fermi, Gamow-Teller, or mixed Fermi/Gamow-Teller. A Fermi decay is

6



distinguished by,

∆J = 0,∆T = 0, and no parity change. (1.2)

Alternatively a Gamow-Teller decay is distinguished by,

∆J = 0,±1,∆T = 0,±1, excluding J = 0→ 0, and no parity change. (1.3)

The third classification mixed Fermi/Gamow-Teller are simply the decays that satisfy

both Eq. 1.2 and Eq. 1.3 simultaneously.

The main 97.89% branch of the β+ decay of 37K to 37Ar is J = 3/2+ → J ′ =

3/2+ [22]. An energy level diagram from 37K is shown in Fig. 1.3. Both parent

and daughter state have T = 1/2. From the aforementioned selection rules we

can see that it is a mixed Fermi/Gamow-Teller transition. At this point it is also

worth mentioning that the decay 37K→37Ar is a mirror transition. Mirror nuclei

are isobaric nuclei that have their number of protons and neutrons interchanged.

For example 22Ne 22Na 22Mg are isobars, but 22Ne and 22Mg are mirrors of one

another. Mirror nuclei are special in that their level schemes should be identical

except for modifications due to the presence of isospin non-conserving forces, such as

the Coulomb interaction [24] and this is a reflection of the underlying symmetry in

the nuclear structure. The whole point in mentioning this is to point out that from

a theoretical point of view corrections for mirror nuclei can be more easily calculated

because of the simpler nuclear structure.

A good reference that shows explicitly how the SM correlation parameters are

calculated for a set of T = 1/2 mirror transitions is given by Ref. [25] along with

details about the theoretical corrections. A simple schematic diagram summarizing
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Figure 1.3: Energy level diagram of 37K. Unless denoted by a percent sign the units
for the β and γ branching ratios are given in parts per million. The two levels
highlighted in red are the levels that we are interested in. The main branch that
we will measure is to the ground state of 37Ar. It is a mixed transition and to
make a standard model prediction we need to have a value of ρ. The 2% branch
is a pure Gamow-Teller transition therefore does not need a value of ρ to make a
standard model prediction of Aβ = −0.6. The half-life of potassium 37K was taken
from our group’s recent measurement [23]. The branching ratios, spins, and energies
were taken from [22]. Our group recently undertook an experiment to update the
branching ratio measurements but the results were not ready for publication at this
time.
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Figure 1.4: Map showing all of the sources from which the standard model prediction
of Aβ is derived. Until recently the largest uncertainty in the SM model prediction
of Aβ for 37K was derived from the contribution of the uncertainty from the half-
life [25]. For this reason a more precise measurement of the half-life was made at the
Texas A&M University Cyclotron Institute [23].

their technique and showing all of the dependencies of the SM prediction of Aβ is

shown in Fig. 1.4. For β+ mirror transitions the expression for Aβ in the limit of

zero momentum transfer is:

Aβ =
ρ2 − 2ρ

√
J(J + 1)

(1 + ρ2)(J + 1)
, (1.4)

where J is the nuclear spin, and the value ρ is defined as,

ρ ≡ CAMGT/CVMF . (1.5)

CA (CV ) are the axial-vector (vector) coupling constants and MGT (MF ) the Gamow-

Teller (Fermi) matrix elements. Eq. 1.4 is sufficiently complete in terms of the physics

that it encapsulates to be referred to as the SM prediction of Aβ at zero β kinetic

energy. We will see in Chapter 3 that are also small corrections called recoil-order
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effects that modify the value of Aβ as a function of the kinetic energy of the emitted

β.

1.4 Simple Overview of the Experiment

Not all isotopes are equal. Some are more interesting to study because they

present enhanced sensitivity to certain physics. Others are more often studied be-

cause they are easier to make and work with. Here is a summary of the most

important points about 37K that make it both an interesting and practical case to

study.

Isobaric Analog Decay Recoil-order corrections can be computed.

97.89% Branching Ratio Small background from decays to non-analog states.

1.2365 s Halflife Can be made and transported effectively. Reasonable count rates.

Low losses from the trap.

Aβ Never Measured Adding another case to SM test.

Bν Previously Measured Allows for consistency checks.

Alkali Metal Electronic structure suitable for trapping in a MOT.

Hyperfine structure similar to 41K Trap development can be done offline.

The experiment was carried out at the ISAC facility at TRIUMF. 37K was pro-

duced by bombarding a TiC target with 40 µA of 500 MeV protons from the TRI-

UMF main cyclotron and up to 3.8× 107 37K/s [26] were extracted and transported

at 60 keV to the TRINAT end station where it was neutralized and confined using a

double-MOT system. In order to understand how the experiment works it is neces-

sary to understand the geometry of the experimental setup. A simplified version of

this is shown in Fig. 1.5b. Initially the radioactive atoms are confined and cooled in

the center of the large vacuum volume by the combined action of AC-MOT lasers [28]

(not shown) and an oscillating 1 kHz magnetic field produced by the magnetic field
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37K Ion Beam
From ISAC
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Recoil Ion
MCP

Shake-off
Electron MCP

H
oops

(a) Schematic of the TRINAT two MOT system

Strip Detector

(b) Schematic of geometry elements in the 2nd trap.

Figure 1.5: Model of experimental geometry. Fig. 1.5a is a schematic of the two
MOT system [27]. The incoming ion beam is stopped in a neutralizer. A very small
fraction of the neutral 37K is trapped in a 1st trap and these atoms after cooling are
pushed over the the 2nd trap where the experiment takes place. Fig. 1.5b is a cut
away view with important parts of the 2nd trap geometry labeled. To give a sense
of scale the laser beams are 2.4 cm in diameter. The polarization axis is defined
by the propagation direction of the laser beams because of this the strip detectors
and scintillators which together comprise the β detectors are placed along this axis.
The direction of the polarization vector, right or left, along the polarization axis is
controlled by the circular polarity of the laser light.
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coils. Then the atoms are released from the confining field and are polarized through

the action of the optical pumping laser, shown in Fig. 1.5b, and a static 2.5 G mag-

netic field produced by the same coils that produced the MOT field. After ≈ 100 µs

of optical pumping, the nuclear spins of the ensemble of atoms are almost perfectly

aligned with the β-detection axis. This is when we start counting. The polarization

of the atoms can by flipped by changing the polarity of the OP light and is done

every 16 s. The β-detection axis is defined by the propagation direction of the laser

beams and for this reason our detectors, silicon strip detectors backed by plastic

scintillators, are placed along this axis as shown in Fig. 1.5b.

An experiment was performed earlier by the TRINAT collaboration to measure

Aβ in 37K. However, the experiment suffered from a large background: atoms escaped

from the trap and adhered to surfaces inside the chamber, and would depolarize

before decaying. This large background of valid – albeit unpolarized – β decays

reduced the asymmetry signal from the polarized atoms in the trap. To reduce this

background a shakeoff electron detector, pioneered at Berkeley [29] and tested in a

previous TRINAT experiment, was added as a coincidence condition that allowed us

to trigger off of events that originated in the trap and exclude most of the unpolarized

background. Shakeoff electrons from a decay were swept by the 350V/cm field onto

an MCP and its time was recorded. The MCP used for this task was only 40 mm

in diameter. This means that most electrons originating from places other than the

trap cannot reach it and in this manner we can exclude most of the unpolarized

background.

In Eq. 1.1 we saw a simplified decay rate, ω, for the 37K atoms. In the simplified

context that we are working under we will make an assumption to further our concep-

tual understanding of the experiment: The assumption is that cos θ = cos(0) for the

detector pointed to by the angular momentum vector of the nuclei and cos θ = cos(π)
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for the other detector. In this case Aβ can be extracted from the observed asymmetry

in the two detectors for a given polarization direction:

Aβ ≈
ω+ − ω−

ω+ + ω−

( c
v

)( 1

P

)
. (1.6)

Where ω± is the rate of βs observed in the detector that is in the direction of (+)

or opposite (−) the direction pointed to by the original nuclear spin vector. The

reason for showing Eq. 1.6 was to point out that to measure Aβ we need three

things. First, we need a measurement of the polarization of the atoms, P . Second,

we need a measurement of the the kinetic energy of the β to obtain v/c. Third,

we need the observed asymmetry as seen by our detectors. There are other terms

that make a non-negligible contribution (for example, the alignment term will sum

in the denominator), but they will be accounted for in the final data analysis and

are not shown here for the sake of simplicity. In addition, our final analysis will

use the super-ratio instead of the naive asymmetry shown in Eq. 1.6. The super-

ratio can be thought of as a ratio of ratios and is shown in detail in Section 6.2.1.

The asymmetry computed via the super-ratio uses not only information from both

detectors but uses the additional information gained by changing the spin direction.

The reason for using the super-ratio is that more sources of systematic uncertainty

cancel out; such an analysis was used recently in extracting Aβ from the decay of

ultra-cold neutrons [30].

In experiments of this type, knowledge of the polarization is the most critical

aspect because it enters into the final decay rate multiplied by, Aβ, the quantity that

we are trying to measure. It is possible to measure in situ the polarization of the

atoms independent of the asymmetry by selectively ionizing valence electron from

the excited state in the optical pumping transition. This technique was successfully
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used in this experiment to measure photoions. When fitting this data a large model

dependent systematic uncertainty was observed. This subject is covered in depth in

chapter 5.

1.5 The Author’s Contribution

My first contribution to this project was to engineer a new experimental chamber.

Much consideration was given to every aspect of the of its design. The chamber that

had been in place at TRINAT had served well for many years but was initially

optimized for an experiment with 38mK that had neither optical pumping lasers nor

optical pumping aligned beta detectors. Additionally because of its small size, the

old chamber would have limited us to detectors of very small solid angle coverage.

In addition to these mechanical limitations, trapping technology has progressed and

the newly designed chamber allowed us to take advantage of some of those advances,

specifically an AC-MOT [28]. This redesign was therefore a crucial step to allow the

TRINAT collaboration to move into a new era of precision measurements.

The second major contribution that I made to the project was the development

of a realistic GEANT4 model of the experimental setup. The GEANT4 simulations were

used in all phases of the experiment. They were used in the design phase to make

choices about construction materials and distances. They have also been used in the

final analysis to fit the experimental results in order to extract our physics result.

The third major contribution that I made to the experiment was the develop-

ment of the data acquisition system along with the commissioning of the detectors.

This included optimizing the scintillator signal by determining the optimal length

of the lightguides and determining which wrapping material to use, and how much

µ-metal shielding was needed. It also included testing the silicon detectors and

debugging the position-sensitive readout and implementing the algorithms to deter-
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mine the energy from the digitized waveforms. It also involved the creation of a fast

field programmable gate array (FPGA) trigger and the mechanical alignment of the

detectors.

The fourth major contribution was in the analysis of the collected data. From

the beginning of this project a follow-up had been planned. The analysis of this data

set allowed us to learn about the major systematic errors that we need to correct and

mitigate in the follow-up experiment in order to make a truly precision measurement.

15



2. THEORETICAL BACKGROUND

Discoveries in β-decay theory have been instrumental in the creation and devel-

opment of the SM. It will not be possible in the present work to give a complete

review of the entire history of β-decay or an extensive review of the SM. I will limit

my discussion in this section to the part of the SM and some of the most common

extensions of the SM as they pertain to a measurement of Aβ.

2.1 Jackson, Treiman, Wyld and the Standard Model

One of the classic papers in the field of beta decay was written by Jackson,

Treiman, Wyld in 1957 [31] and built off of the groundbreaking work of Lee and

Yang from the previous year [1]. In it the authors considered a number of possible

experiments and wrote down decay rates for them considering all of the possible

Lorentz-invariant forms of the weak interaction in allowed β decay, namely vector,

axial-vector, scalar, and tensor. The authors give decay rates for different experi-

ments considering the possible presence of all of these interactions.

One of the decay rates that they give is for an experiment using what they called

“oriented” nuclei. Throughout this work I will use almost exclusively the similar but

not exactly equivalent term “polarized”, the distinction being that an atom can have

its spin aligned along the polarization axis in one of two possible ways. Polarization

is the expectation value of the spin directions projected on a given axis. In our case

this axis is defined by the optical pumping laser beams. It is possible that if 50%

of the atoms have their spins aligned along this axis in one direction and the other

50% have their spins pointed along the axis in the other direction, the alignment or

orientation of the atoms would be 100% but the polarization would be 0%. On the

other hand if 100% of the atoms have their spins pointed in the same direction along
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this axis then the polarization would be 100% and this also implies the orientation

would still be 100%. The decay rate as given in Jackson’s paper for experiments

involving polarized nuclei is,

ω(〈J〉|Ee,Ωe,Ων)dEedΩedΩν =
1

(2π)5
|~pe|Ee(E0

e − Ee)2dEedΩedΩνξ

{
1 + aβν

~pe · ~pν
EeEν

+bFierz
me

Ee
+ calign

[
~pe · ~pν
3EeEν

− (~pe · ĵ)(~pν · ĵ)
EeEν

][
J(J + 1)− 3〈( ~J · ĵ)2〉

J(2J − 1)

]

+
〈 ~J〉
J
·
[
Aβ

~pe
Ee

+Bν
~pν
Eν

+D
~pe × ~pν
EeEν

]}
.

(2.1)

Let us start the process by identifying all of the terms in the equation. ω is

the decay rate of the polarized atoms. The dEedΩedΩν multiplied by ω means that

this is a differential decay rate, or in other words that to determine the rate itself

we must integrate over some area of the electron energy spectrum and some piece

of solid angle. This rate is for polarized atoms, where 〈 ~J〉 denotes the expectation

value of nuclear spin vector and ĵ is a unit vector in the direction of 〈 ~J〉. Along these

same lines also notice that in the equation there are terms for the magnitude of the

nuclear spin J and vector values for the nuclear spin ~J . In later chapters when we

talk about measuring the polarization of the atoms, the number that we are trying

to measure corresponds to 〈 ~J〉/J . As mentioned in the previous paragraph there is

a distinction between polarization and alignment. The term,

[
J(J + 1)− 3〈( ~J · ĵ)2〉

J(2J − 1)

]
, (2.2)

is the alignment. The vectors ~pe and ~pν are the electron and neutrino 3-momentum

and Ee and Eν are their total energies. The value denoted E0
e is the endpoint energy
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of the β particle. The other terms ξ, aβν , bFierz, calign, Aβ, Bν , and D are all special

values that are defined in the paper. These parameters describe in a general way the

β-decay mediated by the weak interaction. Since the authors went out of their way to

allow for all possible interactions, when we invoke the standard model assumptions

some of these terms are identically zero. The rest were incorporated into the standard

model and have definite predictions for their values. We will see in the next section

how to calculate such a prediction in an effort to understand what we are assuming

when we do so. A table showing the SM predicted values for these values is shown

in Table 2.1.

2.1.1 A Toy Beta Energy Spectrum

At this point it will be profitable to the take a look at a smaller more manageable

piece of Eq. 2.1 and connect back to something that should be familiar to us. The

first piece includes the kinematic terms that come at the beginning of the equation:

ω0 =
1

(2π)5
|~pe|Ee(E0

e − Ee)2. (2.3)

The easiest way to understand what this function does will be to rearrange it in

terms of the kinetic energy of the emitted beta (Te) and to plot the result. The

rearranged equation is,

ω0(Te) =
1

(2π)5
(Te +me)(T

0
e − Te)2

√
(Te +me)2 −m2

e, (2.4)

and the plot showing the result using the value of T 0
e = 5.125461 MeV for 37K is

shown in Fig. 2.1. Looking at the plot we see the familiar shape of a β energy

spectrum. It is worth noting here that this is not the whole story about the β energy

spectrum. There is one important contribution to the shape of the β spectrum
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Figure 2.1: A simple kinematic β energy spectrum. From this simple beta spectrum
we can learn useful information such as the most probably beta energy that can be
found by taking the first derivative of Eq. 2.4 and setting it equal to zero and solving
for Te. The result of this operation is shown in Ref. [32] as equation A8 and A9.

that does not appear in Eq. 2.1: the Fermi function, F (Z,E). The Fermi function

modifies the simple beta spectrum shown in Fig. 2.1 to include the attractive or

repulsive Coulomb force experienced by β− and β+ respectively in the presence of

the charged daughter nucleus. Further discussion about the Fermi function appears

in Section 3.5, where we will explore how to actually calculate it. Meanwhile it is

sufficient to say that Eq. 2.3 is the beta energy spectrum and that Eq. 2.1 extends

this simple spectrum to also include information about the angle of the emitted beta

and neutrino.

2.1.2 The Form of Aβ Assuming the Standard Model

We will now return to Jackson’s polarized decay rate, shown in Eq. 2.1 and

examine the correlation coefficients. In this section we will focus on Aβ because

that was the focus of our experiment, but this section will serve as an archetype for
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Definitions From Jackson et al. Assuming the Standard Model

Correlation Coefficent
SM definition 37K J = 3/2

J ′ = J ; β+decay ρ = 0.5766± 0.0021

aβν
1− ρ2/3
1 + ρ2

0.667± 0.002

bFierz 0 0

calign
ρ2(2J − 1)

(1 + ρ2)(J + 1)
0.199± 0.001

Aβ
ρ2 − 2ρ

√
J(J + 1)

(1 + ρ2)(J + 1)
−0.5706± 0.0007

Bν
−ρ2 + 2ρ

√
J(J + 1)

(1 + ρ2)(J + 1)
−0.770± 0.002

D 0 0

Table 2.1: The standard model correlation coefficients that enter into experiments
with polarized nuclei. Also shown are their standard model predictions and values
for 37K. The value of ρ shown here was calculated using the input values given in
Ref. [25] except for the lifetime of 37K that was taken from Ref. [23].

20



how the SM predictions of all of the correlation coefficients could be derived. If we

examine a current paper on the topic of beta decay such as Ref. [16], we can find an

expression for Aβ that looks like this,

Aβ =
ρ2 − 2ρ

√
J(J + 1)

(1 + ρ2)(J + 1)
. (2.5)

Our goal by the end of this section is to get back to Eq. 2.5. We will begin with

Jackson’s equation A3 for ξ [31],

ξ = |MF |2(|CS|2 + |CV |2 + |C ′S|2 + |C ′V |2) + |MGT |2(|CT |2 + |CA|2 + |C ′T |2 + |C ′A|2).

(2.6)

The reason for starting here is that Jackson only gives an expression for Aξ so to

arrive at A we will need to divide by ξ. To understand what we are doing we need to

identify the terms. MF and MGT are the Fermi and Gamow-Teller matrix elements.

The Cis are the coupling constants for the different types of interactions with i = S

(scalar), V (vector), T (tensor), and A (axial-vector). There also exists the possibility

of pseudo-scalar contributions that would appear in Eq. 2.6, but only if, as Jackson

points out, the assumption that the recoiling ion can be treated non-relativistically

does not hold. Jackson further explains the primed coefficients arise from the parity-

nonconserving interactions introduced by Lee and Yang [33]. We will now apply

our first SM assumption namely that vector and axial-vector currents exist and that

tensor and scalar currents do not [34, 35]. The mathematical translation of this

assumption is to set CT = C ′T = CS = C ′S = 0. Doing this allows us to simplify ξ:

ξ = |MF |2(|CV |2 + |C ′V |2) + |MGT |2(|CA|2 + |C ′A|2). (2.7)
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The second assumption that we will make is that neutrinos are massless and

travel at the speed of light. In recent years the discovery of neutrino mass has meant

that we now know that this is not true. It is good to keep in mind that it is an

assumption made by the standard model and actually a very good one because the

neutrino mass is so small. For a spin 1/2 massless particle traveling at the speed of

light there are two possible helicity states: ±1. Where helicity is defended as ms/s

with the spin projection axis being chosen as the direction of travel of the particle.

We will call something right-handed with helicity = +1 if the spin points in the

direction of travel ms = 1/2 and we will call something left-handed with helicity

= −1 if the spin points against the direction of travel ms = −1/2. We will now go

one step further and make the assumption that all neutrinos are left-handed and all

anti-neutrinos are right-handed. This assumption is what we mean when we say that

parity is maximally violated [36, 20]. It is worth noting here that saying neutrinos are

massless and travel at the speed of light does not imply that they are all left-handed.

Saying that they are all left-handed however does imply that they are massless and

do travel at the speed of light. Helicity is only a Lorentz-invarient quantity if the

particles are massless and traveling at the speed of light. This is how we know

that the assumptions we made here are not 100% correct because neutrinos do have

mass and that means helicity is no longer a Lorentz-invarient quantity. Putting that

aside, in terms of the equation that we are currently examining, the mathematical

translation of our assumption is CV = C ′V and CA = C ′A.

There are some other sign conventions that have been used by various authors.

Notably as pointed out in Appendix A of Ref. [37] authors such as Herczeg follow

the γ matrix convention of [38]. This convention differs from that used by Jackson

and can mean that the signs of each operation needs to be kept track of carefully

if comparing between authors. Following through the steps shown here with an
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alternate formalization such as −C ′i = Ci would lead to the wrong sign for Aβ. In

the case of ξ it does not matter because of the absolute values, but in the case of

Aβξ it does. Applying our constraint with the appropriate sign for our situation to

ξ we arrive at the simplified version that we will use,

ξ = 2(|MF |2|CV |2 + |MGT |2|CA|2). (2.8)

We will now follow a similar procedure starting from Jackson’s equation A7 in

Ref. [39] for Aβξ given as,

Aβξ = 2

[
±|MGT |2λJ ′J

[
Re(CTC

′∗
T − CAC

′∗
A )

+
αZme

pe
Im(CTC

′∗
A + C

′

TC
′∗
A )
]

+δJ ′JMFMGT

√
J

J + 1

[
Re(CSC

′∗
T + C ′SC

∗
T − CVC

′∗
A − C ′VC∗A)

±αZme

pe
Im(CSC

′∗
A + C

′

SC
∗
A − CVC

′∗
T − C

′

VC
∗
T )
]]
. (2.9)

The ± is to distinguish between electron decay (upper) and positron decay (lower).

α is the fine structure constant and Z is the charge of the daughter nucleus. The

lower sign applies to the positron decay of 37K. λJ ′J is a spin dependent function

defined as equation A1 in Ref. [39] and δJ ′J is the Kronecker delta function. We

will make the same assumption about tensor and scalar currents as above: namely

CT = C ′T = CS = C ′S = 0

Aβξ = 2<

[
−|MGT |2λJ ′J(−CAC

′∗
A ) + δJ ′JMFMGT

√
J

J + 1
(−CVC

′∗
A − C ′VC∗A)

]
.

(2.10)
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We will also make the same assumption of maximal parity violation , CV = C ′V and

CA = C ′A. We will now invoke our third assumption that time reversal symmetry

is not violated. Mathematically this is the same thing as saying that the coupling

constants Ci are all real and we can therefore drop the complex conjugates

Aβξ = 2

[
|MGT |2λJ ′J |CA|2 − 2δJ ′JMFMGT

√
J

J + 1
(CVCA)

]
. (2.11)

In order to find Aβ we divide Eq. (2.11) by Eq. (2.8) to get

Aβξ

ξ
=

2

[
|MGT |2λJ ′J |CA|2 − 2δJ ′JMFMGT

√
J
J+1

(CVCA)

]
2(|MF |2|CV |2 + |MGT |2|CA|2)

. (2.12)

Dividing the numerator and denominator by |CV |2|MF |2 we obtain

Aβ =

|MGT |2|CA|2
|MF |2|CV |2

λJ ′J − 2δJ ′J

√
J
J+1

MGTCA
MFCV

1 + |MGT |2|CA|2
|MF |2|CV |2

. (2.13)

We will now invoke the definition of ρ given in Eq. 1.5 to arrive at,

Aβ =
ρ2λJ ′J − 2δJ ′J

√
J
J+1

ρ

1 + ρ2
. (2.14)

Now for the case of all of the mirror transitions considered in [16] J ′ = J . Therefore

we can write λJ ′J as 1/(J + 1) and the value of Kronecker delta as 1 giving,

Aβ =
ρ2 1

J+1
− 2
√

J
J+1

ρ

1 + ρ2
,

Aβ =
ρ2 − 2ρ

√
J(J + 1)

(1 + ρ2)(J + 1)
. (2.15)
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which agrees with Eq. 2.5.

2.2 Interpreting a Measurement of Aβ in the Context of the Standard Model

In the last section we examined the assumptions that we make when using the

SM to calculate predictions of the correlation coefficients of polarized 37K. In this

section we will take a step back and look at how our measurement could be combined

with others to form a different test of the SM. One way to test the SM is to test

the unitarity condition of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing

matrix, which transforms quark mass eigenstates into quark weak eigenstates. The

formulation of this test can be written down using the elements of the first row of

the CKM matrix [40]:

|Vud|2 + |Vus|2 + |Vub|2 = 1. (2.16)

The test is most sensitive to the dominant terms |Vud| and |Vus| and their uncer-

tainties. The first term |Vud| is obtained by study of weak decays involving the lightest

quarks, and |Vus| from the decay of K-mesons. Much work has been done over many

years to measure |Vud| to a fantastic level of precision. Currently the strictest limit

placed on |Vud| comes from evaluation of the set of nuclear superallowed 0+ → 0+,

pure Fermi transitions [17]. Recently it was shown that a complimentary evaluation

could be carried out for a set of T = 1/2 mirror transitions, including 37K [16].

In this evaluation, exactly like the mixed decay of the neutron, it is necessary to

have an independent measurement of the Ft for the transition and of one of the SM

correlation parameters. Despite appearing in the review, 37K did not contribute sig-

nificantly to the final result because of the large 3% error in the neutrino asymmetry

parameter, Bν [15], used in the calculation. A 1% measurement of Aβ would be a

timely addition to the body of data used to calculate |Vud| in this manner as it can
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be used in conjunction with the value of Bν in the calculation and the value from

37K would contribute more meaningfully to the overall result.

The way that this is done is described in [16] for a set of T=1/2 mirror nuclei

and recently carried out specifically for the case of 37K in [23]. The first step of the

procedure is to define Ft0 as follows

Ft0 = FtC2
V |M0

F |2
(

1 +

(
fA
fV

)
ρ2
)
. (2.17)

In this equation Ft is the corrected ft value and includes corrections for radiative and

isospin-symmetry-breaking effects. M0
F is the isospin symmetry limit of the Fermi

matrix element and has a value of 1 for T = 1/2 mirror transitions. Additionally

fA and fV are the statistical rate functions for the axial and vector parts of the

interaction. The vector coupling constant, CV , has been introduced previously along

with ρ. If the vector current is conserved and the correction terms are valid, Ft0

should be the same across the whole set of T = 1/2 transitions. In order to use our

measurement of Aβ to extract the ρ we need to invert Eq. 2.15. During this inversion

we need choose the appropriate sign from the quadratic formula giving

ρ =
−
√
J(J + 1) +

√
J(J + 1) + (J + 1)Aβ − (J + 1)2A2

β

−1 + (J + 1)Aβ
. (2.18)

For each isotope in the set we calculate Ft0; then we will find the weighted average

of these and call this value Ft0 [16]. This quantity will be related to Vud in the

following manner:

V 2
ud =

K

Ft0G2
F (1 + ∆V

R)
(2.19)
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where K/(~c)6 = 2π3 ln 2~/(mec
2)5 = 8120.278(4) × 10−10 GeV−4s [23], the Fermi

constant GF/(~c)3 = 1.16637(1)× 10−5 GeV−2 [41], and ∆V
R is a radiative correction

calculated for the vector current. At the conclusion of this work, Sec. 6.6.2, these

equations are used with the value of Aβ that we measured to extract a value for |Vud|

from the set of T = 1/2 mirror transitions given in Ref. [16].

2.3 Modification to the Standard Model due to Right-Handed Currents

Let us suppose that the SM is not correct. In that case its predictions would

fail. Through the years experiments have sought to test the SM predictions to a high

degree of accuracy to see if the measured values and the calculated values agree. If

the agreement is good between the SM and experimentally measured values then this

restricts the validity of other models that produce a prediction in disagreement with

the measured values.

β-decay observables are no exception to this general pattern of prediction and

measurement and model refinement. In section 2.1.2 we saw some of the assump-

tions that were made in constructing our SM predications of the β-decay correlation

parameters. It is possible to construct other models where these same assumptions

are relaxed or simply do not apply. For example, what if we relaxed the assumption

that all neutrinos are left-handed and all anti-neutrinos are right-handed? What

effect would this have on β-decay? Mathematically this would mean that the value

of CV 6= C ′V since their equality implies maximal parity violation. The expression

for Aβ using the same definition of ρ from Eq. 2.13 and making the assumption that

CV 6= C ′V is

Aβ =
ρ2λJ ′J(1 +

|C′A|
2

|CA|2
)− 2δJ ′Jρ

√
J
J+1

(
C′A
CA

+
C′V
CV

)

(1 +
|C′V |2
|CV |2

) + ρ2(1 +
|C′A|2
|CA|2

)
. (2.20)
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We will be looking at this equation in more detail in the following sections. It is

important to understand some of the theory behind this equation and some of the

other theoretical consequences of this relaxation of the standard model assumptions.

One way of constructing such a model would be to extend the SU(2)L ⊗ U1 gauge

group of the electroweak sector of the SM to SU(2)R⊗ SU(2)L⊗U1 [42, 32, 43, 44].

Extending the SM in this manner would mean that there are at least three new gauge

bosons W±
R and Z ′. The WR and the WL, its standard model counterpart, are the

mediators of charged weak processes. These weak eigenstates are a superposition of

the the W mass eigenstates, W±
1 and W±

2 . Following the notation of Herczeg [45],

WL = W1 cos ζ +W2 sin ζ

WR = −W1 sin ζ +W2 cos ζ, (2.21)

where ζ is the mixing angle and we will define δ ≡ m2
1/m

2
2.

In the literature there is a class of models known as manifest left-right symmetric[46,

47, 48]. Such models assume that the details of the two different sectors are the same:

viz. the quark mixing matrix elements V L
ud = V R

ud, and the couplings of the interac-

tions gL = gR, and additionally they ignore any CP violation that would arise from

complex phases in the mixing. The difference in the decay rates under this model

arises from the mass difference between W1 and W2 and the degree of mixing ζ.

Historically such manifest left-right symmetric models were parameterized in terms

of two quantities x and y or rV and rA. I will explain these parameterizations in

detail in the next section.

Following the same pattern of increasing complexity followed to this point we will

further discuss another set of models that relax the assumptions that are made in

the manifest case and have V L
ud 6= V R

ud, gL 6= gR, and they also include the possibility
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of CP violating phases [32, 45, 49]. Luckily for us these models use the same Cis

that were introduced in Eq. 2.1 for their entry point and are thus more clear to how

right handed currents affect the measured observables in light of what has already

been shown here. In the next two sections I will lay out these two types of models

and show how they relate to one another.

2.3.1 The Manifest Left-Right Symmetric Model

One of the most concise and accessible explanations of the manifest left-right

symmetric model, specifically as it applies to the β-decay of free neutrons was written

by Abele [46]. The neutron is a good place to for us to start when looking at decay

observables because it is a mixed transition just like 37K. This means that in the

equations a λ will be present that will act as a place holder for our value ρ. This

similarity means that anything that we learn from neutron decay will be immediately

applicable to 37K after changing signs from e− to e+ decay and changing any spin

functions for J = 1/2 to use J = 3/2. In the paper Abele lays out expressions for

the decay observables in the neutron including Aβ, and Bν and how they would be

modified in the presence of right-handed currents. This is good because for 37K we

have a previous measure of Bν and are currently trying to make a measurement of

Aβ. The major difficulty that I encountered when using this paper was that most of

the equations written in the paper contain typographical errors or are simply wrong.

One of the goals of this chapter is to be able to write code to make exclusion

plots of the right-handed current model parameters based on currently available

experimental input. To give us confidence that our code is working correctly we will

need to be able to compare its results to published limits. In Abele’s paper there

is an exclusion plot of the parameters δ and ζ (see Eq. 2.21 and following). If I try

to reproduce his figure using the expressions listed in the paper it does not work.
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In order to reproduce his figure I had to make the corrections listed in Table 2.2

to his equations. I have listed references where appropriate to justify making these

changes. Before I show any of the results from the program I will show in detail

one of the correction exercises that I performed because we will use the result from

this section in the next section for comparison to non-manifest models and thus it is

critical to use the right expression for the comparison.

Abele, as shown in Table 2.2, uses the notation of Bég [47] who was the first

author to publish a paper about the right-handed current models applied to nuclear

β-decay. His notation uses rA, and rV . As mentioned earlier, other authors use x

and y, where rA = y, and rV = x. This notation was introduced the same year

by Holstein [48]. Throughout this section we will use the rV and rA notation from

Bég because it is easier to connect back to the vector and axial vector nature of the

interaction.

The correction that I intend to show is the expansion of rV and rA in terms of δ,

the mass ratio, and ζ, the mixing angle given. The expansion origin of the expansion

is Ref. [48]. We will show here how these expressions were derived. In the process

we will come up with a change in minus signs from what is shown in the reference.

The correct expressions that we will derive for rV and rA are

rV =
δ(1 + tan ζ)− tan ζ(1− tan ζ)

δ tan ζ(1 + tan ζ) + (1− tan ζ)
, (2.22)

rA =
δ(1− tan ζ) + tan ζ(1 + tan ζ)

−δ tan ζ(1− tan ζ) + (1 + tan ζ)
.

To show that my expressions are correct I will start at the beginning and lay

out explicitly everything that we need to now in order to arrive at Eq. 2.22. If one
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Definition Citation for Correction

ε =
1 + tan ζ

1− tan ζ

rV =
1 + ηV A
1− ηV A

,

rA =
ηAA + ηV A
ηAA − ηV A

ηAA =
ε2 + δ2

ε2 δ + 1

ηV A =
ε δ − ε
ε2 δ + 1

Aβ =
−2(λ2(1− r2A) + λ(1− rArV ))

ε2 δ + 1

Bν =
2(λ2(1− r2A)− λ(1− rArV ))

ε2 δ + 1

ft0
+→ 0+

fRτneutron ln 2
=

(1 + r2V ) + 3λ2(1 + r2A)

2(1 + r2V )

[47]

[50, 32]

Symmetry with Aβ

Algebra Error

Table 2.2: Definition of manifest left-right symmetric model parameters for the neu-
tron. The table also list citations for corrections to the expressions if they differ from
what is listed by Abele [46].
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examines [48] one sees that rV and rA are defined as follows,

rV =
1 + ηV A
1− ηV A

, (2.23)

rA =
ηAA + ηV A
ηAA − ηV A

.

It should be noted that sometimes in the paper Holstein writes ηV A and at other

times ηAV to mean the same thing. I believe the source of this confusion comes from

the fact that this paper is a comment on Bég’s paper where ηAV was defined. I

will use the Holstein notation. Since Holstein was only commenting on a previously

published paper he never defines the ηs in his paper and one is forced to look at the

Bég paper to discover their definitions:

ηAA =
ε2m2

2 +m1
2

ε2m1
2 +m2

2
, (2.24)

ηV A =
−ε(m2

2 −m1
2)

ε2m1
2 +m2

2
,

where ε is defined to be

ε =
1 + tan ζ

1− tan ζ
. (2.25)

Having all of the definitions in hand we will now begin the not too tedious process

of showing that Eqs. 2.23 are the same as Eqs. 2.22. We will start by dividing the

numerators and denominators of Eqs. 2.24 by m2
2 and employing the definition that

δ ≡ m1
2/m2

2

ηAA =
ε2 + δ

ε2 δ + 1
, (2.26)

ηV A =
ε δ − ε
ε2 δ + 1

.
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We will now insert the values from Eqs. 2.26 into Eqs. 2.23:

rV =
1 + ε δ−ε

ε2 δ+1

1− ε δ−ε
ε2 δ+1

, (2.27)

rA =
ε2+δ
ε2 δ+1

+ ε δ−ε
ε2 δ+1

ε2+δ
ε2 δ+1

− ε δ−ε
ε2 δ+1

.

Multiplying the numerators and denominators by ε2 δ + 1, we come to something

that is beginning to take a familiar form

rV =
ε2 δ + 1 + ε δ − ε
ε2 δ + 1− ε δ + ε

, (2.28)

rA =
ε2 + δ + ε δ − ε
ε2 + δ − ε δ + ε

. (2.29)

For brevity, we will only finish the exercise for rV since the reduction of the expression

for rA is similar. We start by inserting the values of ε from Eq. 2.25,

rV =
(1+tan ζ
1−tan ζ )2 δ + 1 + (1+tan ζ

1−tan ζ ) δ − (1+tan ζ
1−tan ζ )

(1+tan ζ
1−tan ζ )2 δ + 1− (1+tan ζ

1−tan ζ ) δ + (1+tan ζ
1−tan ζ )

. (2.30)

and then multiply the numerator and denominator by (1− tan ζ)2:

rV =
(1 + tan ζ)2 δ + (1− tan ζ)2 + (1− tan ζ)(1 + tan ζ) δ − (1− tan ζ)(1 + tan ζ)

(1 + tan ζ)2 δ + (1− tan ζ)2 − (1− tan ζ)(1 + tan ζ) δ + (1− tan ζ)(1 + tan ζ)
.

(2.31)

For the sake of completeness I will do the rest of the algebra: first

rV =
δ + 2δ tan ζ + δ tan2 ζ + δ − δ tan2 ζ − 1 + tan2 ζ + 1− 2 tan ζ + tan2 ζ

δ + 2δ tan ζ + δ tan2 ζ − δ + δ tan2 ζ + 1− tan2 ζ + 1− 2 tan ζ + tan2 ζ
,
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and then, combing terms, we come to the final result:

rV =
δ + δ tan ζ + tan2 ζ − tan ζ

δ tan2 ζ + δ tan ζ − tan ζ + 1
. (2.32)

A similar treatment given to rA yields a similar result:

rA =
δ − δ tan ζ + tan2 ζ + tan ζ

δ tan2 ζ − δ tan ζ + tan ζ + 1
. (2.33)

It is apparent the the two parts of Eq. 2.22 perfectly match Eq. 2.32 and Eq. 2.33

and we have established that indeed these are valid representations of rV and rA now

with the minus signs in the correct places.

2.3.2 The Non-Manifest Left-Right Symmetric Model

We will now examine the non-manifest models and try to understand how they

relate to the manifest model and to the SM. I used as a starting point the equations

found in Herczeg [49]. Combing Herzeg’s equations directly with those from Jackson

gives the wrong sign for Aβ and Bν . The problem as Severijns [37] explains is the

different choice of γ matrices. Consequently the equations that I will use will follow

γ matrix convention of Jackson and Severijns so there will be slight differences to

Herczeg’s equations. The thing that makes Herczeg’s approach so valuable is that

as a starting point for his work he begins by giving expressions for the coupling

constants given originally in Jackson [31]. This helps us to make the connection

back to what we saw in Sec. 2.1.2.

In order to tie everything together I will show that by enforcing the assumptions

made in the manifest model that the non-manifest model will collapse to the same

thing. Using this knowledge and the explicit connection to Eq. 2.1 written down by

Herczeg we will then be armed with the knowledge that we will need to be able to
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write down equations for how the SM correlation parameters would be affected by

the presence of right handed currents.

Starting with Herczeg’s equations for the SM coupling constants:

CV = gV (aLL + aLR + aRR + aRL),

C ′V = gV (aLL + aLR − aRR − aRL),

CA = gA(aLL − aLR + aRR − aRL),

C ′A = gA(aLL − aLR − aRR + aRL). (2.34)

Herczeg does not give explicit definitions for aLL, aLR, aRR, and aRL in his 2001

paper [49] but he does in his 1986 paper [45]. In this paper Herczeg gives the

definitions in two parts. We will combine them here for the sake of simplicity,

aLL =

[
gL

2

8m1
2

cos2 ζ +
gL

2

8m2
2

sin2 ζ

]
cos θL1 ,

aLR =

[
− gLgR

8m1
2

+
gLgR
8m2

2

]
cos ζ sin ζ ei(α+ω) cos θR1 , (2.35)

aRR =

[
gR

2

8m1
2

sin2 ζ +
gR

2

8m2
2

cos2 ζ

]
eiα cos θR1 ,

aRL =

[
− gLgR

8m1
2

+
gLgR
8m2

2

]
cos ζ sin ζ e−iω cos θL1 .

These expressions involve two CP violating phases ω and α. In principle, CP

violation could exist in this sector. However, our current object is to show the

equivalence of the two models under a specific set of assumptions and, since the

manifest model assumes no CP violation, we set both ω and α to zero here. We will

also rewrite cos θ
(L/R)
1 as V

(L/R)
ud following the example of [17]. We rewrite Eq. 2.35
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using these modifications, which yields

aLL =

[
gL

2

8m1
2

cos2 ζ +
gL

2

8m2
2

sin2 ζ

]
V L
ud, (2.36)

aLR =

[
− gLgR

8m1
2

+
gLgR
8m2

2

]
cos ζ sin ζ V R

ud, (2.37)

aRR =

[
gR

2

8m1
2

sin2 ζ +
gR

2

8m2
2

cos2 ζ

]
V R
ud, (2.38)

aRL =

[
− gLgR

8m1
2

+
gLgR
8m2

2

]
cos ζ sin ζ V L

ud. (2.39)

Since our present intent is to check the consistency between the manifest and non-

manifest models it is useful to put them into the same form. We do this by using

the rV and rA notation that we used in the last section. We find a definition for

constructing rV and rA in terms of Eq. 2.35 in [51]:

rV =
aRR + aRL
aLL + aLR

, (2.40)

rA =
aRR − aRL
aLL − aLR

. (2.41)

Expanding all of the definitions of aLL, aLR, aRR, and aRL in Eq. 2.40 - 2.41 we come

to,

rV =

[
gR

2

8m1
2 sin2 ζ + gR

2

8m2
2 cos2 ζ

]
V R
ud +

[
− gLgR

8m1
2 + gLgR

8m2
2

]
cos ζ sin ζ V L

ud[
gL 2

8m1
2 cos2 ζ + gL 2

8m2
2 sin2 ζ

]
V L
ud +

[
− gLgR

8m1
2 + gLgR

8m2
2

]
cos ζ sin ζ V R

ud

, (2.42)

rA =

[
gR

2

8m1
2 sin2 ζ + gR

2

8m2
2 cos2 ζ

]
V R
ud −

[
− gLgR

8m1
2 + gLgR

8m2
2

]
cos ζ sin ζ V L

ud[
gL 2

8m1
2 cos2 ζ + gL 2

8m2
2 sin2 ζ

]
V L
ud −

[
− gLgR

8m1
2 + gLgR

8m2
2

]
cos ζ sin ζ V R

ud

.
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We now continue to apply more of the assumptions of the manifest left-right model;

viz. V R
ud = V L

ud = Vud and gL = gR = g. Applying these conditions allows for the

cancellation of many extra terms,

rV =

[
1

m1
2 sin2 ζ + 1

m2
2 cos2 ζ

]
+

[
− 1
m1

2 + 1
m2

2

]
cos ζ sin ζ[

1
m1

2 cos2 ζ + 1
m2

2 sin2 ζ

]
+

[
− 1
m1

2 + 1
m2

2

]
cos ζ sin ζ

, (2.43)

rA =

[
1

m1
2 sin2 ζ + 1

m2
2 cos2 ζ

]
−

[
− 1
m1

2 + 1
m2

2

]
cos ζ sin ζ[

1
m1

2 cos2 ζ + 1
m2

2 sin2 ζ

]
−

[
− 1
m1

2 + 1
m2

2

]
cos ζ sin ζ

.

From here on out the process is simple algebra. So we multiply by m1
2/m1

2 and

rearrange to come up with,

rV =
sin2 ζ + δ cos2 ζ − cos ζ sin ζ + δ cos ζ sin ζ

cos2 ζ + δ sin2 ζ − cos ζ sin ζ + δ cos ζ sin ζ
, (2.44)

rA =
sin2 ζ + δ cos2 ζ + cos ζ sin ζ − δ cos ζ sin ζ

cos2 ζ + δ sin2 ζ + cos ζ sin ζ − δ cos ζ sin ζ
.

Finally we divide the numerators and denominators by cos2 ζ and use the relation

that (sin ζ)/(cos ζ) = tan ζ to come to our final result,

rV =
tan2 ζ + δ − tan ζ + δ tan ζ

1 + δ tan2 ζ − tan ζ + δ tan ζ
, (2.45)

rA =
tan2 ζ + δ + tan ζ − δ tan ζ

1 + δ tan2 ζ + tan ζ − δ tan ζ
. (2.46)

These expressions are exactly the same as those given in Eq. 2.32 and Eq. 2.33.

We therefore conclude that, if this model framework is used and the assumptions

of the manifest left-right symmetric model are applied, that Herczeg’s more general
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expressions collapse to those derived by Holstein and Bég.

We have now shown that the manifest left-right symmetric model is a subset of

the more general non-manifest models. Knowing how the coupling constants change

in the presence of right handed currents, Eq. 2.34, we could plug these equations

into Eq. 2.20 to come up with a value of Aβ in the presence of right-handed currents.

We could also plug these coupling constants into the equations given by Jackson [31]

and follow the procedure in Sec. 2.1.2 to show how any of the correlation coefficients

would be modified. In the next section we use what we have learned here to make

a program that will make exclusion plots for the right-handed current parameters δ

and ζ, by comparing experimentally measured values to the predictions returned by

these models.

2.4 Model Constraints and Exclusion Plots

In this section we will use the math that we saw in the last section to make

visual representations of the current status of experiments. We will not just look at

the expected constraints coming from our experiment with 37K but we also want to

compare with other experiments in different systems.

2.4.1 Exclusion Plot Construction

As mentioned earlier in Sec. 2.3.1 Abele [46] used all of the available measurements

from neutron β-decay at the time of publication to produce an exclusion plot showing

the phase space for δ and ζ that could be ruled out by the measurements at the level

of precision of the available measurements.

How are such graphs made? The algorithm that is listed here is for the case of a

mixed transition where you have a ρ value that will also change as a function of δ and

ζ. Not all of the other limits have a ρ dependence and in that case the minimization

step can be skipped.
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1. Make a grid of δ and ζ values.

2. Choose a pair of δ and ζ.

3. Calculate the right-handed current modified values of Aβ, Bν and any other

observable that you have a measure of, using your best guess for ρ.

4. Check the χ2 value defined as
∑

observables
(Valueexperimental−ValueCalculated)

2

σ2
experimental

.

5. Minimize the the χ2 by varying ρ.

6. Record ρ value for the δ, ζ pair.

7. If more δ, ζ pairs remain unused go to 2.

8. Find minimum χ2 for all points sampled.

9. Find confidence interval contours by adding the appropriate amount to the

minimum value found in 8.

In an effort to validate the program I tried to recreate the exclusion plot of right-

handed current parameters appearing in Abele’s paper. In my first attempt I simply

used the expressions listed in his paper. That did not work. This disagreement is

what led me to the further investigation that ultimately produced the expressions

that I have listed in Table 2.2. Using these equations the figure was successfully re-

produced. The second step in the validation process was then to use the more general

non-manifest expressions given in Herczeg that we discussed in the last section. I set

the starting conditions such that my program would use the same manifest left-right

symmetric model assumptions with the more general equations. As we showed in the

last section, the two answers should be the same and this was a pure software test to

try and test for bugs. In this case I also successfully produced Abele’s figure. These
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Figure 2.2: Comparison of exclusion contours with published results. The lines on
the plots are the contours that correspond to exclusion at the 90% confidence levels.
The purpose of making these figures is to gain confidence that our program is working
correctly by reproducing published results. Fig. 2.2a should be compared with Fig. 2
of [46] and Fig. 2.2b should be compared with Fig. 2 of [52]. By eye both figures
are identical to their corresponding reference. It is interesting that using the recent
neutron numbers excludes the standard model. As explained in Ref. [52] this is due
to conflict over the neutron lifetime.

tests however were all suspect because as shown I had reason to disbelieve some of

Abele’s equations and this also meant that I had to suspect his figure also. Therefore

the next step in the validation process was to find more published examples and to

compare with them. Along with limits arising from other sources, Severijns, in a re-

cent review, [52] published similar exclusion plots. Those produced by my program

agree with his. See Fig. 2.2 for two example comparison cases.

Having made successful comparisons to published results we are now satisfied

that we have both the physics and programming right. We can now return to what

we would really like to do and that is estimate the exclusion intervals that we can

expect by successfully making a measurement of Aβ in 37K. We will also see how our
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measurement compares with limits set by other experiments.

2.5 Other Constraints on Right-Handed Currents

In the proceeding sections a great amount of time was spent getting into the

details of the story to be able to fully appreciate the assumptions that went into each

of the calculations. This was a useful exercise because, now that we have developed

some understanding about how the equations work and how to manipulate them, I

will write down some equations for other constraints on right handed currents and

we will be able to understand them in the proper context.

In a recent review article, N. Severijns has organized the limits on right handed

currents in the framework of a manifest left-right symmetric model arising from

nuclear β decay [52]. I will attempt to build on his work here and additionally

show the constraints arising from muon decay and the expected results from this

experiment.

2.5.1 Unitarity of the CKM Matrix

In addition to what we have already seen of Herczeg’s work in Eq. 41 of his

paper [49] he gives an expression for the elements of the first row of the CKM matrix,

|Vui|2expt ' |Vui|2(1 + 2Re a′LL) (i = d, s, b). (2.47)

This allows us to place a constraint on the presence of right handed currents if we

have a measure of these elements. John Hardy and Ian Towner have provided us

with the necessary information to make such a constraint, see Equation 36 and 37

of [17], and the constraint is,

0.99995± 0.00061 = 1 + 2Re aLR. (2.48)
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What is the effect of the constraint from Eq. 2.48? A visualization is shown as the

pink lines in Fig. 2.3. This constraint is by far the tightest on the mixing angle, ζ.

However this constraint is not sensitive to the mass ratio, δ.

2.5.2 Unpolarized Longitudinal Polarization

It is possible to put constraints on the presence of right-handed currents by

looking at the ratio of longitudinal polarizations of the βs emitted in a pure Fermi

decay relative to a pure Gamow Teller decay. The limit generating equation in the

manifest left-right symmetric case is given by [52] as,

PF
PGT

= 1− 8δζ. (2.49)

The two most precise measurements of this type are for P(26mAl)/P(30P) = 1.003(4) [54]

and P(14O)/P(11C) = 0.9996(37) [55]. They can be combined together to form the

limit δζ = (1.3± 3.4)10−4 [56]. This constraint is shown in Fig. 2.3 as the red lines.

Like the unitarity condition at ζ = 0 it places no constraint on δ.

2.5.3 Polarized Longitudinal Polarization

It was suggested by Quin that longitudinal polarization measurements could be

made more sensitive to the mass ratio δ by performing the experiments with polarized

nuclei [57]. The measurements would still take advantage of a ratio between isotopes

that cancels out some systematic uncertainties. Four such measurements have been

carried out, using 12N and 107In [58, 59, 60]. In these measurements one determines

either the R+ = P−/P+, where P is the longitudinal polarization in the the direction

of the nuclear polarization vector (+), or against it (-). It is also possible to draw

conclusions from other ratios such as R0 = P−/P 0 where the ratio is formed by the

longitudinal polarization of the positrons emitted against the nuclear polarization

42



direction over the longitudinal polarization for positrons emitted from unpolarized

atoms. The combined result of all four measurements is (δ + ζ)2 = 0.0004(26) [32].

This constraint is shown in Fig. 2.3 as the dark blue lines. It is still the best limit

to date on δ from nuclear β decay.

2.5.4 Muon decay

The whole focus of Herczeg’s 1986 [45] paper was to explain the limits arising

from muon decay in left-right symmetric models. He lays out how the the Michel

parameters and the muon polarization would change in the presence of right handed

currents. Some of the parameters are much less sensitive than others. The combina-

tion of ξPµ is the most sensitive in the case of manifest model so we will use it here.

The equations that we will need are for the muon polarization,

Pµ =
|1− ηLR|2 − |ηRR − ηRL|2

|1− ηLR|2 + |ηRR − ηRL|2

ηik = aik/aLL (ik = RR,LR,RL), (2.50)

where the aii functions are listed in Eqs. 2.36 – 2.39. Before we can write down ξ we

need to define cii = aii/V
R,L
ud (ik = LL,RR,LR,RL), where V R,L

ud is the correspond-

ing Vud value listed in Eqs. 2.36 – 2.39 for a given aii. With this definition we can

now write down how ξ would change in the presence of right-handed currents,

ξ =
1− |κRR|2 + 3(|κLR|2 − |κRL|2)

1 + |κRR|2 + |κLR|2 + |κRL|2

κik = cik/cLL (ik = RR,LR,RL). (2.51)

Knowing these equations we will be able to find a limit if we have a measurement of

the value ξPµ. The measurement was provided by the TWIST collaboration and is
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Right−Handed Current Exclusion Limits From the Manifest
Left-Right Symmetric Model Assuming a 1.0% and a 0.1%
measurement of Aβ
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Figure 2.3: Predicted exclusion contour levels from 37K compared with other experi-
ments assuming the manifest left-right symmetric model. This plot shows the limits
placed on the right-handed current model parameters, δ and ζ originating from var-
ious experiments. Also shown on the plot are projected limits originating from 37K
using the current value of Bν and the ft value and assuming a measurement of Aβ
at the standard model value with a precision of 1% and 0.1%. A precision of 1% is
what we expect from the current data set so is not an unrealistic representation of
the impact of the current experiment. In order to cut down on available phase space
then we need to pursue precision measurements at least an order of magnitude more
precise than the current generation as shown by the 0.1% exclusion interval.

ξPµ = 1.00084
(
+170
−69

)
[61, 62]. This constraint is shown in Fig. 2.3 as the green line. It

is the best limit to date on δ from any source. The neutron constraints, purple line,

produce tight yet inconsistent limits but as mentioned earlier there exists a problem

with the neutron lifetime so the neutron limits are suspect.

2.5.5 Expected Limits From 37K

Now that we have something to compare with we will add in what we expect to see

from this experiment. As mentioned earlier we have a measurement of the neutrino
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asymmetry parameter, Bν = 0.755± 0.024, for 37K [15]. To make our limits we will

use this value and ft = 4605(8) s [23] along with ft0
+→ 0+ = 3071.81±0.83 s [17]. For

the purpose of this exercise we will assume that we have made a measurement of Aβ

in 37K at exactly its SM value with a precision of 1% of its value and 0.1% of its value.

The constraints on right-handed current that we expect from these two measurements

are shown in Fig. 2.3 as the light blue (1%) and gold line (0.1%). We can see that if

we achieve a precision of 1%, the goal for the current experiment, that our constraint

will be competitive with that coming from the longitudinal polarization of βs from

polarized sources, the current best limit on δ from nuclear β decay. This project

was never meant to be the stopping point but the program goal is to achieve a

precision level of 0.1% or beyond, and at that level of precision our experiment

becomes competitive with other limits.

2.5.6 Limits in the Non-Manifest Model

We saw in Fig. 2.3 how our experiment stacks up with others in the case of the

manifest left right symmetric model. This is just one possible model. As we saw

in the section on the non-manifest left-right symmetric models, Sec. 2.3.2, it is the

more general case and there are many more parameters. The difficulty is that with

so many parameters to be varied, creating meaningful visualizations becomes more

difficult. To investigate the effect of some of these parameters I have left everything

with the value that it would have in the manifest case and then let only one value

vary within some range. In Fig. 2.4 is a visualization, which follows this procedure,

for the case of Aβ measured in 37K to 0.1%, the same previously assumed, in the

last section. We can see some interesting things in the figure. The presence of the

CP violation phase α only effects our knowledge of the mixing angle ζ and does not

destroy our sensitivity to the mass ratio, δ. The real problem is with the relative
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Figure 2.4: Predicted exclusion contour levels in non-manifest case. Both of these
figures show the same 0.1% exclusion level as shown in Fig. 2.3 for 37K but in this
case the assumptions of the manifest left-right symmetric model have been relaxed
and in the case of Fig. 2.4a the CP violating phase α has been allowed to vary. In
the case of Fig. 2.4b the value of gR has been allowed to vary.

strength of this interaction. As seen in Fig. 2.4b if gR << gL then the level of

precision needed to put constrains on δ, and ζ significantly increases. With so many

unknown parameters it will be difficult to make progress in this area. There are

limits from the LHC that are able to give us some guidance.

In a recent paper Heikinheimo [63] discusses the implications of a 2.8σ deviation

from the SM in the pp → 2j + ee channel observed by CMS in a dedicated search

for right-handed currents. As he explains, the observed signal strength excludes a

WR with gL = gR and matches better with a gR ≈ 0.6gL keeping CKMR = CKML.

Using this value of gR the mass limit that can be generated is 2 TeV. This limit

is shown Fig. 2.4b where it can be compared with limits from Aβ generated with

various values of gR.

46



3. GEANT SIMULATIONS

3.1 GEANT4 Simulations of the Experiment

In order to successfully simulate a β-decay experiment it is necessary to construct

a proper model of β-decay. A good starting place for such a model is to impose

the kinematic limits that originate from energy and momentum conservation. A

convenient way to express these limits is through the use of the Mandelstam variables.

After applying the correct kinematic limits, we will introduce the standard model

framework. This means that we will generate a configuration that satisfies energy and

momentum conservation and then use a Monte Carlo acceptance-rejection step using

the decay rate for polarized atoms, Eq. 2.1, as our decision making criterion. The

last step is to use the libraries provided as part of the GEANT4 package to simulate the

passage of the β and other particles through the simulated materials of the detector.

The results of tracking and energy loss are then aggregated and read out as a “.root”

file suitable for comparison with our experimental data.

In this chapter it will be impossible to give all the details of the code and how

it works. A general description will be given here. The code itself is available

at https://code.google.com/p/potassium-thirty-seven-simulation/source/

checkout.

3.2 Kinematic Constraints and the Mandelstam Variables

The Mandelstam variables are a very general way of expressing energy and mo-

mentum conservation in a Lorentz-invariant way. Let us consider the interactions

shown in Fig. 3.1a. It should be noted that the Ks represent the 4-momentum of the

particles. We need to be careful about Lorentz-invariance because the β particles

and neutrinos will need to be treated relativistically. The recoiling daughter could
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K1

K2

K3

K4

(a) A general interaction schematic. (b) A general β+ decay schematic.

Figure 3.1: General interaction schematics. One important point to remember is that
if we write down the Mandelstam variables for the interaction shown in Fig. 3.1a then
the Mandelstam variables for the interaction in Fig. 3.1b are the same except for a
minus sign introduced in front of K2. The origin of this minus sign becomes more
clear when we consider Fig. 3.1b and that the move from the left to the right also
involves a change from particle to antiparticle.

be treated classically but will receive the full treatment also since it will not hurt

to do it properly. For the general process shown in Fig. 3.1a, the Mandelstam

variables [64] can be defined as:

s = (K1 + K2)
2 = (K3 + K4)

2,

t = (K1 −K3)
2 = (K2 −P4)

2,

u = (K1 −K4)
2 = (K2 −K3)

2. (3.1)

We will now begin to specialize the general treatment into the case that we are

interested in. We consider the decay of a parent (37K) into three particles in the

final state: the recoiling daughter (37Ar), a positron, and an electron neutrino. This

is shown in Fig. 3.1b. We will let P represent the normal 3-vector momentum of the

particles. As mentioned in the caption of Fig. 3.1, when we move a line from the

left of the figure to the right, we need to add in a minus sign. Knowing this, we can
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write down the Mandelstam variables for a positron decay,

s = (Kp −Kν)
2 = (Kd + Ke+)2,

t = (Kp −Kd)2 = (Kν + Ke+)2,

u = (Kp −Ke+)2 = (Kd + Kν)
2. (3.2)

I will go through the expansion of the variable s to show what constraints on the

kinematics we can derive from it. The treatment for the other two is similar and

only the results will be shown:

s = (Kp −Kν)
2 = (Kd + Ke+)2, (3.3)

M2
p + 2|Pp||Pν | cos θpν − 2EpEν +M2

ν = M2
d − 2|Pd||Pe+ | cos θde+ + 2EdEe+ +M2

e+ .

If we choose to look at the decay from the rest frame of the parent, then Pp = 0 and

Ep = Mp and Eq. 3.3 simplifies to,

M2
p − 2MpEν +M2

ν = M2
d − 2|Pd||Pe+| cos θde+ + 2EdEe+ +M2

e+ . (3.4)

We now observe that kinematically the highest possible energy that the neutrino can

achieve would be when |Pd| = 0, Ed = Md, |Pe+| = 0, and Ee+ = Me+ . Making

these substitutions we arrive at the final result

M2
p − 2MpE

max
ν +M2

ν = M2
d + 2MdMe+ +M2

e+ ,

−2MpE
max
ν = M2

d + 2MdMe+ +M2
e+ −M2

p −M2
ν ,

Emax
ν =

M2
p +M2

ν − (Md +Me+)2

2Mp

. (3.5)
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The logic to work out the other two cases is exactly the same and the results are,

Emax
d =

M2
p +M2

d − (Mν +Me+)2

2Mp

, (3.6)

Emax
e+ =

M2
p +M2

e+ − (Md +Mν)
2

2Mp

. (3.7)

In the experiments at hand, the mass of the neutrino can safely be ignored and

indeed it is set to zero in the simulation, but I have chosen to leave it in so that we

can be aware that it will contribute slightly.

3.3 Event Generator

In this section I give an overview of how the events are made in GEANT4. A

schematic of the algorithm is shown in Fig. 3.2. There are two main parts to the

algorithm that should be pointed out. In Fig. 3.2 everything above the “SM de-

cay rate Monte Carlo (MC)” decision block is kinematics. The algorithm ensures

that both energy and momentum are conserved and that the limits introduced by

Eq. 3.5–3.7 are obeyed. The SM decay rate MC step inserts the recently chosen

kinematics into the decay rate for polarized atoms, Eq. 2.1, and then goes through

an acceptance/rejection step in which a random number is drawn between 0 and the

maximum value that the polarized decay rate can reach. The event is accepted if the

computed decay rate is less than this random number and it is rejected otherwise

and another set of kinematics is generated.

3.4 Recoil-Order Effects

Recoil-order effects are the small differences in the correlation parameters that we

see when we do not make the assumption, that we have implicitly made until now,

that the nucleus is infinitely heavy [65, 66, 67]. In order to reproduce the β spectrum

at the 0.5% level of precision in 37K recoil order-effects must be taken into account.
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Figure 3.2: A schematic of the event generation algorithm in the GEANT4 code.
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Figure 3.3: Energy dependence of Aβ due to recoil-order effects. These plots shows us
that as we move to higher β energy that we will see a larger observed asymmetry. The
equations that go into calculating the recoil-order effects are extremely complicated
and take a large amount of input values listed in Table ??. Rather than trying to
calculate all of the partial derivatives to calculate the uncertainty I assumed that the
input parameters are all gaussian variables with mean equal to their central value
and σ equal to their stated uncertainty and calculate many times Aβ as a function
of energy each time drawing new input values from the gaussian distributions. A
sample of 200 of these Monte Carlo simulation is what is shown in grey. These two
plots together tell us that recoil-order effects affect most strongly the slope of Aβ(E),
Fig. 3.3a, and that the value of ρ most strongly affects its intercept, Fig. 3.3b.

They are not explicitly shown in the decay rate for polarized atoms, Eq. 2.1, but can

be added in. For allowed beta decay the recoil-order corrections are calculable with

some further input both experimental and from shell model calculations. All of the

inputs needed to calculate the recoil-order corrections for the main branch of 37K are

shown in Table ??.

The major consequence of taking into account recoil-order corrections is that
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Recoil-Order Corrections Input
Property Value Source
Branching Ratio 97.99± 0.14% [22]
Probability Electron Capture 0.080% [25]
t1/2[s] 1.23651± 0.00094 [23]
Statistical Rate Function 3623.9± 0.7 [25]
fA/fV 1.00456± 0.0009 [25]
δ′R 1.431± 0.039% [25]
δVC − δVNS 0.79± 0.06% [25]

Ft 0+→ 0+ [s] 3071.4± 0.8 [17]
Sign of Rho + [25]
Average Mass 37K and 37Ar[amu] 36.97007611(12) [16]
37K Magnetic Moment [µN ] 0.20321± 0.00006 [68]
37Ar Magnetic Moment [µN ] 1.146± 0.001 [69]
37K Quadrupole Moment [e · fm2] 10.6± 0.4 [70]
37Ar Quadrupole Moment [e · fm2] 7.6± 0.9 [71]
Mass of 37K [amu] 36.973375889 [72]
Mass of 37Ar [amu] 36.966776331 [72]
Average Kinetic Energy β [MeV] 2.307002 [25]
R[~c2/MeV] 4.637 [73]
MF 1.0000 [73]
MGT −0.62376 [73]
Mr2 [~c2] 12.899 [73]
Mσr2 [~c2] −8.0455 [73]
MQ[~c2] −0.827 [73]
Mr·p[~c2] 0 [73]
ML 1.4158 [73]
MσL 0 [73]
M1Y [~c2] −10.105 [73]
M2Y [~c2] 0.00000064 [73]
M3Y [~c2] 2.052 [73]
Mσrp[~c] 0 [73]
gV 1.0000 [73]
gA 0.92438 [73]
gM 4.2196 [73]
gP 0 [73]
gS 0 [73]
gII 0 [73]

Table 3.1: All of the input values that are needed to calculate recoil order effects for
37K.
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all of the SM correlation coefficients are no longer simply numbers, as shown in

Table 2.1, but are now functions of the kinetic energy of the β. Recoil-order effects

will have a small (. 0.2%) effect on the SM predictions for the correlation coefficients,

and in particular induce a stronger energy-dependence to their values. This energy

dependence for Aβ is shown in Fig. 3.3. Aβ could also acquire an energy dependence

if we did away with the two SM assumptions that tensor and scalar currents do

not exist and that time reversal symmetry is not violated. This can be seen by

examining Eq. 2.9. The energy dependence from recoil-order effects does not require

us to violate any of the SM assumptions. Following the notation of Holstein [65],

the values of the correlation coefficients as derived by Dan Melconian and Praveen

Shidling are,

aβν(Te) =
f2(Te)

f1(Te)
,

calign(Te) =
−f12(Te)(2J − 1)

f1(Te)(J + 1)
,

Aβ(Te) =
f4(Te) + f7(Te)/3

f1(Te)
,

Bν(Te) =
f6(Te) + f5(Te)/3

f1(Te)
,

ξ(Te) = 2f1(Te). (3.8)

The definitions of the fx functions can be found in [65]. It should be noted that these

equations using Holstein’s formalization have been compared by Dan Melconian with

Ian Towner’s calculations [73] using his shell model and the independent formaliza-

tion of Behrens and Bühring [66, 67] and they agree well. This comparison using

a completely different calculation framework gives us confidence that our equations

are correct. In the GEANT4 simulation once a set of kinematic conditions is chosen as

described in the previous section then the recoil-order effects to all of the correlation
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parameters are calculated at that energy. This this configuration with corrections is

then sent on to the Monte Carlo acceptance/rejection step.

3.5 The Fermi Function

As mentioned in Sec. 2.1.1, to properly evaluate Eq. 2.1 it is necessary to have

an expression for the Fermi Function [74, 75, 76]. We use the form given by Fermi,

reworked here slightly to be in terms of the kinetic energy of the electron, Te,

F (Te, Z
′, R′) = 2(S + 1)

2R′

√(
Te
me

+ 1

)2

− 1

2(S−1)

eπη
|Γc(S + iη)|2

|Γr(2S + 1)|2
,

with η =
Te
me

+ 1√(
Te
me

+ 1
)2
− 1

and S =
√

1− α2Z ′2 (3.9)

This equation in the literature has come to be known as the “traditional” Fermi

function. It should be noted that the values Z ′ and R′ are the charge and the

radius of the daughter nuclei because the Fermi function is essentially the solution

to the Dirac equation for the β moving in the electric field produced by the daughter

nucleus. Traditionally what has made using Eq. 3.9 hard is the evaluation of the

complex gamma function. I only know of one commonly available implementation

in C with a permissive software license, the exceptional GNU scientific library [78].

In the case that the radius of the nucleus has not been measured, the expression

R = R0A
1/3 could be used. For the case of 37Ar the root mean square charge

radius (RRMS) has been measured to be 3.3903 ± 0.0022 fm [79]. We will make

the assumption that the charge is uniformly distributed within the spherical nuclear

volume so the radius that we use is related to RRMS by the following expression.

R =

√
5

3
R2

RMS (3.10)
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Figure 3.4: Comparison of different Fermi functions. The value of the “traditional”
Fermi function shown in Fig. 3.1a for different Z values. The purpose in making
this plot was to compare with the Fermi Function plots shown in Ref. [18] to verify
that my implementation of Eq. 3.9 was correct. In Fig. 3.1b we see a comparison of
the “traditional” Fermi function, a simple non-relativistic approximation from [18],
and a version from Ian Towner [77] that takes in account screening from the atomic
electrons and no longer treats the nucleus as spherical. The deviation between the
models becomes large below the rest mass of the electron.
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Figure 3.5: Nuclear radii in the area of 37Ar. An isotope shift measurement between
37K and 38Km against a 39K reference has recently been done by TRINAT [80],
but this is only a relative measurement that has to be combined with the absolute
measurement of the charge radius of 39K. An absolute measurement can be obtained
by examining x-rays from normal and muonic atoms and has been done for 39K [81].
The resulting radius for 37K, 4.42± 0.01 fm, is plotted alongside the compiled data
from Angeli [79] for comparison.

A distribution of the measured nuclear radii near 37Ar is shown in Fig. 3.5. This

includes the measurement of the charge radius of 37K made by TRINAT. This version

of the Fermi function takes into account the relativistic nature of the electron but

does assume a uniform spherical charge distribution. There are more sophisticated

models now that take into account the deformed nature of different nuclei.

Ian Towner, taking into account effects such as screening from atomic electrons

and the shape of 37K has calculated the value of the Fermi function for 37K at various
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points along the β energy spectrum. A comparison between the “traditional” Fermi

function and what was calculated by Ian Towner is shown in Fig. 3.1b. It was found

that the difference from the “traditional” form, shown in Eq. 3.9, was small for

the case of β kinetic energy greater than its rest mass. Since this is the region of

the spectrum that we are most interested in we decided that the “traditional Fermi

function” would be sufficient for use in simulation for this experiment.

3.6 The Geometry Definiton

The geometry definition is one of the most time consuming and arduous processes

involved in creating a successful simulation. The GEANT4 collaboration has still not

been able to make the import process from CAD programs reliable and so each

detector element needs to be specified by hand. This is not too bad for trivial setups

but becomes a large challenge for real world detectors. To give an indication of the

size of the task for our experiment we can use file size as a measure of complexity

and compare all of the files in the GEANT4 project. The results are shown in Fig 3.6.

While designing the experimental apparatus we used GEANT4 simulations to guide

some of the decisions about materials to use and the placement of different detector

elements. For example, inside the chamber there are two mirrors from which both a

MOT laser and an optical pumping laser beam have to reflect. Since these mirrors

define the polarization axis of the 37K it is necessary that they be placed directly

in front of the β detectors so the βs will have to pass through them before being

detected. There are only a few materials available that can be made into large three

inch mirrors and are also low enough Z to suppress β scattering. I simulated the

scattering effects that different mirrors would have and the results can be seen in

Fig. 3.7. In the end we decided to make the mirrors from silicon carbide because such

mirrors can be made extremely thin. Thus the scattering from it was the smallest
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Sorted List of the Largest Files in the Geant4 Simulation
      Total Lines of Code in the Repository: 10364
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Figure 3.6: GEANT4 file size comparison. File size is not a perfect measure of com-
plexity in software development because often similar code is copied and pasted. In
the case of DetectorConstruction.cc this is not the case. The dimensions, placement,
and rotation of every piece of detector hardware are hard coded.
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Figure 3.7: Scattering from mirror substrates. In the simulation, a divergentless
beam of monoenergetic positrons were sent through the experimental geometry with
while changing only the materials and dimensions of the mirrors. The reason that
both variables were simultaneously changed is that for a real mirror of a given diam-
eter there exists a lower limit on the thickness that a mirror could be made from for
each type of material. The positrons all started off with a cos θ = 1 deviation from
this value at the time of annihilation is due to scattering.

3.7 Experimental Cloud Input Into GEANT4

In order to make the simulation realistic we will need to use some experimentally

measured input parameters dealing with the trap size and movement during the
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optical pumping time. Using these numbers means that the event generator can

produce events drawn from the same statistical distribution in space and initial

velocity as the 37K in the experiment.

In two of three dimensions the trap is imaged directly by photoions from the trap

hitting the ion micro channel plate (MCP) that is backed by a position sensitive

delay line anode. A view showing the extent of these photoions coming from the

trap in the X and the Z directions throughout the cycle time is shown in Fig. 3.8a.

“Cycle time” refers to the fact that we are constantly collecting 37K polarizing them

counting decays and then repeating. To see the details of this cycle timing see

Sec. 4.4. Fit values for all of the relevant information necessary to model the cloud

dynamics in GEANT4 is listed in Table 3.2. There are some anamolus measurements

on listed on the table, namely the Z temperature and the change in Z width. These

numbers are an order of magnitude larger than the equivalent numbers in the other

two directions. In this dimension the trap was observed to be slightly bimodal. The

larger final width is due to the evolution of two displaced gaussian populations instead

of just one in the other dimensions. This final state will be larger and hence the fit

temperature will also be larger. The basic assumption that we operate under is that

none of the statistics listed there should be affected by polarization state. Using the

numbers listed in the table it is possible to start checking systematic uncertainties

in the asymmetry measurement. To do this all of the numbers are set to the average

values for the two polarization states except for the value that you are trying to vary.

Simulations are then run with this value set to the average of the two polarization

states and with that value set to the central values for the two polarization states.

The difference in the returned value of the asymmetries of these two simulations is

then taken to be a systematic uncertainty on the final measurement.
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(b) Fits of the trap position and width

Figure 3.8: Experimental data showing the extent of the cloud. The trap position
was fairly constant throughout the run. In Fig. 3.8a you can see the trap condense
during the MOT times from 2000 − 5000 µs. The time from 250 − 2000 µs is the
optical pumping time and we don’t expect to see many photoions during this time
because there are few atoms in the excited state. Fits for the cloud movement and
the size of the cloud are shown in Fig. 3.8b the values from all of the fits for the
two polarization states are shown in Table 3.2. What is not shown here is the trap
position in the Y dimension. This dimension is much more difficult because it relies
on the MCP timing signal and is hard to disentangle from the electric field. Mellisa
Anholm at TRIUMF disentangled this as part of her analysis. The numbers from all
of the fits appear in Table 3.2.
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Trap Position and Movement

σ− σ+

Data Type Units Fit Value Fit Error Fit Value Fit Error
X Position at t0 mm −2.20 0.06 −2.22 0.04
X Position tfinal mm −2.108 0.002 −2.164 0.002
X Width σ t0 mm 0.79 0.04 0.49 0.03
X Width σ tfinal mm 0.965 0.001 0.901 0.001
X Group Velocity mm/µs 4.8× 10−5 2× 10−5 2.8× 10−5 2× 10−5

X Temperature mK 0.37 0.07 0.62 0.03
Z Position at t0 mm 1.11 0.06 1.13 0.06
Z Position tfinal mm 0.99 0.01 1.040 0.007
Z Width σ t0 mm 0.76 0.04 0.68 0.03
Z Width σ tfinal mm 1.716 0.003 1.821 0.004
Z Group Velocity mm/µs −6.4× 10−5 3× 10−5 −4.4× 10−5 3× 10−5

Z Temperature mK 2.56 0.07 3.08 0.06
Y Position at t0 mm 1.51 0.05 1.60 0.06
Y Position tfinal mm 1.29 0.01 1.53 0.01
Y Width σ t0 mm 0.69 0.04 0.67 0.04
Y Width σ tfinal mm 0.846 0.006 0.811 0.006
Y Group Velocity mm/µs −9.0× 10−6 2× 10−5 −3.1× 10−5 3× 10−5

Y Temperature mK 0.28 0.05 0.22 0.06

Table 3.2: Trap position and movement by polarization state. These numbers are
from fits of the photoions during different times in the optical pumping cycle. The
data to produce these numbers is shown in Fig. 3.8.
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(a) The β goes directly into the detector.
cos(θ)observed = cos(θ)actual

(b) The β scatters into the detector.
cos(θ)observed 6= cos(θ)actual

Figure 3.9: GEANT4 typical events. In Fig. 3.9a the e+ (blue) goes directly through
the strip detector and into the scintillator where it annihilates producing two gammas
(green). The recoiling 37Ar− (orange) is swept by the electric field onto one of the
electrostatic hoops. The shake-off electrons (red) are swept onto the electron MCP.
This represents the type of events that we are trying to look for. In contrast to
this ideal situation is the event shown in Fig. 3.9b. This event would most likely be
accepted by the β asymmetry cuts because it left energy in both the strip detector
and scintillator. Only in simulations can we tell that the β started off traveling in a
direction opposite from what we observe with our detectors.

3.8 Testing With GEANT4

After completing the mechanical design phase the whole experimental apparatus

was implemented in GEANT4 so that experimental physics results could be compared

directly with the results of the simulation. One of the reasons for doing this is because

with simulations it is possible to find out how often some types of bad events occur

which, strictly from the readout of the various detectors, would be impossible to

distinguish from good events. An example of such an event is shown in Fig. 3.9.

Using the GEANT4 model I was able to identify hot spots in the geometry for β
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scattering that would lead to these types of bad events. The way that I did this was

to keep track of all of the volumes that the positron entered for all events in GEANT4.

Then I went through and sorted them by the events that would pass our experimen-

tal filter. I then made histograms of number of times that these accepted events

entered the different volumes in the GEANT4 simulation and sorted this histogram in

descending order. The result of this procedure is shown in Fig. 3.10. On the bottom

of each histogram are the names of the volumes that were entered. The volumes

on the left hand side of each list are the names of the volumes that we expect. We

expect in each ideal detected event that the β will have at least passed through the

world volume → a mirror → a beryllium foil → some air → the silicon detector →

some teflon wrapping → and finally the scintillator. Some of these volumes are not

listed at 100% because gammas can reach the scintillators through other paths and

still fulfill the requirements to pass as an accepted event. Highlighted in red is the

first volume that is not part of the ideal event. In all cases it is the mirror mount in

front of each scintillator. This volume is the largest source of scatter for all states.

We know that effects such as the finite cloud size and temperature as well as

backscattering in the chamber will cause the observed asymmetry to be slightly less

than the asymmetry of the generated events. This offset we will call the “asymme-

try damping” and it will be denoted Ad. Using GEANT4 data Ad was measured by

comparing the asymmetry observed in the detectors, Aobs, with the asymmetry of

generated events, Agen. The generated asymmetry, Agen, is simply equal to the SM

value of Aβ = -0.5706(7). The observed asymmetry is then given by,

Aobs = Agen − Ad. (3.11)

The asymmetry damping factor calculated in this way is Ad = −3(1) × 10−3. The
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For Each Detector and Polarization State a Breakdown of the Probability
That an Accepted Event Entered A Given Volume 

Figure 3.10: Sorted list of volume names that most strongly scatter positrons. This
is a breakdown of the most common volumes for a positron to enter on its way
to becoming a detected event. The plot is broken up by polarization state and by
detector. The reason for doing this is to try and see what the effects are from having
an off center trap and to try and see how things change with the rate. Remember
that the rates for particles going with or against the polarization direction are very
different and the backscatter fraction in the two different states is also different. Note
that for a volume name to appear in a list it had to have at least one event enter
that volume during the simulation so the number of volumes in each list can change
between states.
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presence of this asymmetry damping is the reason that we fit our experimentally

observed asymmetry with the observed asymmetry from GEANT4 so that all of the

above mentioned effects that damp the asymmetry will be taken into account.

One of the last steps that we need to take with our GEANT4 simulation is to

implement some test to build our confidence that it is working the way that we think

that it should. One such test that we can do is to measure beta events that scatter

from one silicon detector back out and into the other. We will define the backscatter

fraction, Fbs, as the number of events where both silicon detectors fired, N1&2, over

the number of events where one of the detectors fired, N1|2.

Fbs =
N1&2

N1|2
. (3.12)

When calculating this number we will also require there be only one pixel in each

detector firing. The top X-odd strips from the GEANT4 data are excluded as they

are in the experimental data. A 17 keV energy agreement is required between the X

and Y strips of each detector. We also require that one of the scintillators fired but

exclude events were both did. When we calculate this fraction from GEANT4 data we

find F Sim
bs = 28(3) × 10−6. Extracting this fraction from the experimental data we

find FExp
bs = 48(24)× 10−6 in agreement with the simulation.

3.9 Multithreading in 37K Simulations

In December 2013 the GEANT4 collaboration released GEANT4.10.0 with support

for multithreaded event level parallelization. I performed work to investigate if it

would be possible to migrate our existing code base to take advantage of the speed

boost that could come with fine grained parallelization. What I found was disap-

pointing. To make sure that parity existed between the experimental data and the

GEANT4 simulation data we had decided upon a unified file format. This greatly
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improved our ability to write analysis code that could operate without modification

on experimental or simulated data. The code necessary to preserve this parity of

formats is incompatible with the multi-threading model of GEANT4.

In the experiment we used a multi-hit TDC. This means that in our output file

there would be a variable number of times recorded for each channel. This situation

is nicely represented by a C++ object std::vector that is a variable length array. The

file format that we decided to use was a root TFile object with a root TTree object

embedded in it. A TTree is essentially a two dimensional spreadsheet with columns

representing the different input data sources, such as event time and scintillator peak

height, and the rows of the TTree represent each event. TTrees can have columns of

std::vectors thereby adding a third dimension to the analogy of the spreadsheet. For

the experimental data this was an easy and natural choice for the representation of

the data because the acquisition system was built to produce histograms saved in a

.root files.

After I arrived back in Texas after the completion of the experiment in Vancouver

a bug was found in the event loop of the data acquisition software. More will be said

in Sec. 6.1.3 about how this bug was found. The effect of this was that the program

had to be modified to buffer all of the event data and sync them by timestamp

before writing a row in the TTree. Rewriting the analysis software to do this was a

large undertaking as the main event loop of the data acquisition code had not been

written by myself but by Konstantin Olchannski, from the data acquisition group at

TRIUMF. The difficulty arose in that, like any piece of software that communicates

with hardware over a serial bus, it was extremely dense. This programming effort is

relevant in our present discussion of GEANT4 because the software class that I wrote to

accomplish this syncing, known as the Aggregator, was sufficiently general and had

so few dependencies that it could be dropped into the GEANT4.9 single-threaded code
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Main Function

TDC ModuleQDC ModuleTime TTL
Module

VF48
Module

TTL Bits
Module

Bankless
Module

Acquisition Loop

Event Buffer

Aggregator

TFile

TTree

Figure 3.11: Architecture of analyzer program. In the December 2012 run the online
data analysis program became unwieldy because the was no software architectural
plan or style guidelines. In early 2013 the software was restructured to fit the design
pattern shown here. As it turned out this same architecture was also well suited
to the GEANT4 event loop and the same software could be reused. This software
reuse made it an easy job to produce identical output for both the experimental and
simulation data.

without modification and serve the purpose of controlling communication with the

TFile object the same as it does in the data acquisition code. The Aggregator class

is the common point between the GEANT4 code and the experimental data acquisition

code. The design architecture of this class, shown in Fig. 3.11, and its accompanying

application programing interface (API) are what make it easy for us to maintain the

parity of file formats between the two systems.

With the advent of multi-threading in GEANT4.10.0 I attempted to have each

worker thread create its own TFile and its own TTree and then they could each

independently write data without interfering with each other – at least, that was

the premise that I operated on. As it turns out ROOT was never designed to be
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thread safe and lots of its functionality is based on taking advantage of function side

effects through the manipulation of global state variables. In the world of concurrent

programming “function side effects” and “global state” strike fear into the heart

of programmers. It did not take much effort on my part to get to a place that I

realized that using ROOT in this way would not work without a major rewrite of

the Aggregator class. I searched through the GEANT4 documentation and found that

the native GEANT4 analysis tools support a TTree like construct. This construct is

both thread safe and can be easily transformed into a root TTree so that we could

maintain the parity of file formats. The GEANT4 analysis tools version of TTree only

supports C++ language built in types like int, float, and double, not std::vector. I

submitted a feature request to the GEANT4 collaboration but to date this feature has

not been implemented and until it is we will be forced to use GEANT4.9.6 as the last

release before the switch to multithreading if we want to maintain the parity of the

file format between the experimental and simulation data.

3.10 Future Work with GEANT4

GEANT4 is a wonderful tool because, depending on the amount of time and effort

spent developing the simulation, it is possible to develop incredibly detailed simula-

tions of all aspects of the experimental setup. In this section I will mention a few

of the things that we wish to model in GEANT4 would like to have modeled in com-

pletely in GEANT4 but that until this point have been simplified or ignored because

they would have required too much development time and the payback would not

have merited the development cost.

The first item that we have put some effort into, but have not fully realized, is to

incorporate the real electric field into GEANT4. Until this point we have been assum-

ing that the electric field applied by the electrostatic hoops is a perfectly uniform
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(b) The homogeneous field used in GEANT4

Figure 3.12: Comparison of electric fields. The electric field shown in Fig. 3.12a is the
field that we had assuming the potentials the we used in December 2012 computed
by Alexandre Gorelov using COMSOL. The colors are the total field strength and
the arrows represent the field vectors in only the two dimensions shown. This view
is at z = 0 or in other words at the center of the chamber. The picture in Fig. 3.12a
narrows at the top compared to Fig. 3.12b this effect is created by the rotation of
the the arrow heads going from bottom to top.

350 V/cm. We know that this is not really the case but in the region of the trap

we believe that this is a good assumption. A view of the difference between the two

fields can be seen in Fig. 3.12. This is one area where we can leverage the devel-

opment from other experiments. Praveen Shidling who has started the development

of GEANT4 simulations for the TAMUTRAP experiment has successfully applied a

custom magnetic field map in his work. To port this work over to our simulations

would require a week for an experienced GEANT4 programmer.

The second item that we would like to implement in our GEANT4 model is detector

response. Sherry Yennello’s group, also at the Cyclotron Institute, has recently

begun using the Aggregator class (written by me for our data acquisition and GEANT4
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code) to start simulating the response of scintillator detectors. We are interested in

using a similar setup to more closely model the effects of noise on the asymmetry

measurements.
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4. EXPERIMENTAL SETUP

This section will describe the experimental setup and what we did to collect the

data analyzed in the present work. The TRINAT experimental apparatus that was in

place during previous TRINAT experiments [15, 82, 83] was significantly upgraded

before this experiment. The type and justification for some of the improvements

that were made to the system were laid out in chapter six of Dan Melconian’s PhD

Dissertation [51]. Other improvements were made because trapping technology has

progressed since the previous system was built. In this chapter I will outline the

design and implementation process that we went through and highlight the improve-

ments that were made in the current system.

4.1 Design Against Major Systematics

One of the major systematic errors encountered in the previous SM correlation

parameter measurement experiment was caused by atoms that escaped from the trap

and depolarized before decaying. There was no way to distinguish these unpolarized

background events from polarized decays of interest that occurred in the trap. The

design of the new chamber had to address this problem.

The measurement of Bν in 37K was a statistics limited measurement. The geom-

etry for that experiment was slightly different than we require for Aβ but we wanted

to try and avoid its limitations by making the solid angle of our detectors larger.

This way for a reasonably expected production rate of 37K our measurement of Aβ

would not be statistics limited. In order to reduce, both statistical and systematic

uncertainties, we decided upon a couple of different design principles that would

guide our decision making. These design principles are:

1. Use a shakeoff electron detector to tag events coming from the trap [29, 84, 85],
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2. Avoid pushing the trap during optical pumping by better balancing the power

in each beam,

3. Cool the atoms more by moving closer to resonance after they are trapped [86],

4. Use a novel AC-MOT design to increase counting time by reducing die away

time for eddy currents [28],

5. Make the solid angle of the detectors as large as possible.

In the next section I will walk through the chamber design process and show how

the strategies listed above influenced our design choices.

4.2 Geometry Elements

There are a number of pieces of the experimental setup that, although critical to

the overall success of the experiment, are not directly involved in detecting the βs.

This section is about some of these less exciting but very functional pieces of the

experiment.

4.2.1 The Chamber

The vacuum chamber is the largest and most complicated pieces of the experi-

mental setup. The design of the chamber is tied up with other factors such as the

design of the mirrors and the need to provide optical access to the trap. One of

the main guidelines that drove the design was to make it as large as possible. The

reasons for this are threefold. First, in order to make the electric field near the trap

as uniform as possible, the boundary effects of the chamber wall should be as far

away as possible. Second, atoms that escape from the trap will eventually migrate to

the walls where they will depolarize before decaying. We use the two MCP detectors

to discriminate against this unpolarized background. If the walls are sufficiently far
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(a) View Inside Chamber with β detectors
installed.

(b) Autodesk Rendering of the cham-
ber.

Figure 4.1: Two views of the experiment. These views represent the progression of
the experiment from conceptual design to engineering drawings to physical installa-
tion of the detectors.

away then neither the shakoff electron nor the recoiling daughter could reach their

respective MCP. Third, a large number of optical access ports had to be incorpo-

rated into the design. If the chamber was too small then these ports would begin to

overlap, significantly increasing the design complexity and price of the chamber. We

decided to go with a chamber that used 14 inch conflat flanges as the main entrance

ports. On these ports would be mounted the electrostatic hoops and MCP detectors.
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Two other important considerations that were taken into account when design-

ing the chamber were the electrical conductivity and the magnetic properties of the

material. In the experiment the magnetic field from the MOT needs to be turned

off before the atoms are optically pumped. The presence of stray magnetic fields is

a depolarizing mechanism. If the material is extremely conductive, eddy currents

induced in the material could continue to produce small magnetic fields for a long

time. If the material is more resistive, the eddy currents die away quicker as they are

dispersed as heat in the material. Also, the inherent magnetic response of the ma-

terial has to be considered. We considered two materials for the chamber: titanium

and stainless steel. Titanium’s natural magnetism is extremely low but stainless

steel has a higher electrical resistance. In the end 316L stainless steel was chosen

because it was much cheaper and easier to machine than titanium. The flanges of

the chamber are made from 316LN steel, which has even lower natural magnetism

than 316L. The chamber was manufactured by the TRIUMF machine shop.

4.2.2 Silicon Carbide Mirrors

In order to measure Aβ it is first necessary to prepare a sample of 37K in a po-

larized state and then to have a way of measuring the βs that come from the decay

and to know what the angle is between the β-detection axis and the polarization

axis. For convenience in doing the data analysis it is simplest if the detection axis

and the polarization axis are the same because the asymmetry maximized in this

configuration (see Fig. 1.1). Since the polarization of the atoms is done through op-

tical pumping, the direction of the magnetic field of the laser beams is what defines

the polarization direction. In the previous setup the laser beam was sent into the

chamber, where it reflected from an angled mirror and then through the trap, then

reflected again from the flat mirror in front of the detector and exited back along the
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path that it came in on. This setup worked well from the standpoint of alignment

because only one mirror needed to be precisely aligned in the vacuum. So by maxi-

mizing the power returning along the same path as the incoming beam it was easy to

optimize. The drawback to such a setup is that the two counter propagating beams,

when they intersect with the trap, will always be asymmetric in power because of

the extra reflection off of the flat mirror. This asymmetry in power would lead to the

atoms absorbing more photons from one direction than the other. The effect of this

is that the cloud would be pushed during the optical pumping time. Another aspect

to consider is that, because the mirrors are placed asymmetrically, the β scattering

will be different for each.

To overcome these problems it was decided that two counter propagating beams

should be sent through the cloud, and reflect from identically angled mirrors. Then

the power in each beam could be adjusted so that the power in each matches. Having

matched power in both beams would eliminate laser induced trap movement. The

downside to doing this is that the effort required is at least doubled. Now there needs

to be two angled mirrors precisely aligned in the vacuum. The tune up becomes more

complicated because there is no guarantee, the two beams are properly overlapped.

Once it was decided that two laser beams would be used, the next question that

was asked was the angle at which the incident beam should enter the chamber. The

reason why this is an important question is that it affects how close the detectors

could be to the atom cloud. For a visual representation of why having a steeper

mirror angle allows for detectors of greater solid angle see Fig. 4.2. Geometry is not

the only design constraint in this case and some other important facts needed to be

considered before choosing a mirror angle. First the dielectric mirror coatings used

in polarization maintaining mirrors work better at shallower angles. Second since

the β particles have to go through this mirror before hitting the detector it is should
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Detector

Detector

Detector

Detector

Figure 4.2: Design considerations for different mirror angles. This is a view of
two hypothetical geometries that could be used in the optical pumping scheme of
our experiment. The black arrows represent the outer dimensions of the optical
pumping laser beam. The blue cloud in the middle represents the cloud of atoms
and the purple lines represents the mirrors that would have to be placed in vacuum.
Referring back to the design goals enumerated at the beginning of this chapter we
can see by comparing the designs on the left hand side with steep mirror angles
and those on the right with shallower mirror angles that increasing the mirror angle
allows for designs with detectors of greater solid angle because the detectors can be
both larger and closer. From the viewpoint of the mirror manufacturer shallower
angles are preferred because of polarization minting dielectric coating. In the end
the mirror that we got was a balance between these competing considerations.
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be made out of a low Z material and should be extremely thin to prevent scattering.

Third since the MOT laser beams have to travel along this same path and are fixed

at one inch diameter, the diameter of the mirror needed grows like 1 in./ cos θ to

contain the laser beams. For all materials the larger the diameter of the mirror the

thicker it needs to be to preserve the needed rigidity to maintain optical flatness

across its surface.

After considering a few options with both experiment and Monte Carlo (see

Fig. 3.7) we decided on a design with the mirrors placed at 19.5◦ and displaced from

the trap center by 90 mm. This angle was chosen because it was the largest angle

that we could use without compromising the polarization maintaining abilities of the

mirrors, which fell off sharply above 20◦. The mirror itself was made out of 0.25

mm-thick silicon carbide. Silicon carbide has a Young’s modulus of 450 GPa, one of

the largest known, so this allowed us to make a very large thin mirror from it.

4.2.3 Electrostatic Hoops

Once the location of the detectors was chosen and the direction of travel for

the laser beams was established we could begin to think about the system that

would be used to create the electric field that would sweep the recoiling daughter

ions onto the the one MCP and the shakeoff electrons onto the other. The system

would be comprised of a series of electrostatic hoops that would be set to appropriate

voltages to produce an electric field that would be as uniform as possible for ions and

electrons originating from the trap. It was decided early on that the hoops would be

manufactured from glassy carbon. The reasoning behind this choice is that it is the

lowest reasonable Z choice possible besides beryllium. One advantage that glassy

carbon has over beryllium is that it is a semiconductor which means that it will not

suffer from induced eddy currents the way that beryllium would.
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The placement of the hoops was chosen in such a way as to allow the laser

beams to pass through the gaps so that the hoops could be manufactured in simple

shapes. In Fig. 4.3 is a view of the fully assembled hoop system along with the ion

MCP. A rectangular design was chosen over a more symmetric circular hoop design

because it allowed us to avoid collisions between the hoops and beta detectors during

installation. With proper tuning of the electric potentials on the hoops it is possible

to produce an electric field that is almost as uniform as the case of circular hoops.

See Fig. 3.12a for a view of the electric field that was achieved in the plane of the

trap. The design specification for the system was to produce a uniform field of 1000

V/cm along the MCP-axis.

The realization of such a system was more complicated than anticipated. Glassy

carbon is an interesting material. It is jet black and has mirror surfaces. It has the

acoustic quality of fine crystal and will ring if lightly tapped. It is very hard but

extremely brittle. The way that parts are normally manufactured from glassy carbon

is to machine the polymer resin into the desired shape before the carbonization

process that transforms the polymer into glassy carbon. The deformation that occurs

to the part during carbonization is well understood by the manufacturer and can be

accounted for in the original design. Since we had so many custom parts, this process

would have been prohibitively expensive so instead we decided to form the parts from

cheaper bulk glassy carbon. What we learned along the way will be helpful to anyone

trying to make parts from this material. The first approach that we tried was to

machine the hoops from glassy carbon. It is possible to machine with diamond tipped

tools at extremely high speed but the material is so brittle that sometimes the part

unexpectedly shatters due to vibrations. Cutting and drilling were more successful

than milling and all of the sleeves that additionally acted as spacers between the

hoops, see Fig. 4.3, were made in this way.
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Figure 4.3: The hoop and ion micro channel plate assembly before installation in the
chamber. This view shows the electrostatic hoops and the ion MCP detector. The
mask on the ion detector is clearly visible. It is also possible to clearly distinguish
the titanium hoops that replaced the glassy carbon ones that were broken in the
manufacturing process. This whole assembly is mounted on a 14 inch conflat flange
and is inserted fully assembled into the main chamber.
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Because of the problems with traditional machining a second technique was tried,

which was ”wire fed” electrical discharge machining (EDM). This technique involves

making a cutting jig and placing the glassy carbon in the jig. Then both are low-

ered into a water bath where a charged wire is moved through and when it comes

sufficiently close to the part, the arc from the wire will ablate a small amount of the

surface. The problem that we encountered with this technique was that our cutting

jig was made out of aluminum and under the conditions just described the aluminum

and and glassy carbon would chemically react. Aluminum oxide would plate on the

glassy carbon surface.

The last and most successful manufacturing technique that we tried, and the

one that was ultimately employed to manufacture the hoops, was traditional EDM.

Copper electrodes in the negative shape of each hoop were made at the TRIUMF

machine shop and then on very slow speed without any cutting jigs and under heavy

oil the arc from the electrode would burn cleanly through the glassy carbon at a rate

of 0.4 mm per hour.

Having spent a lot of time and effort manufacturing the hoops we were disap-

pointed when afterward we broke two of the seven. This led us to try to epoxy the

broken pieces back together. We were again disappointed because we were unable to

find an epoxy capable of adhering to the ultra smooth glasslike surface of the breaks.

With beam time approaching we choose to manufacture two replacement hoops from

grade 4 titanium instead of trying to replace the two broken hoops because the lead

time for more glassy carbon was too long. We made the decision to use titanium

because it is non-magnetic, has a relatively high electrical resistance for a metal to

reduce eddy currents, and was light enough to be supported by the existing ceramic

support structure. Grade 4 titanium is harder than other alloys allowing it to be

polished to a finer finish. I polished each of these hoops by hand on a granite ta-
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Figure 4.4: Charge state time distributions. At the design specified 1000 V/cm field
the charge states 1+ and 2+ are cleanly separated from each other and from the
neutral atoms that come in at around 2300 ns. The neutral atom time-of-flight
is important in determining the trap position along the MCP-axis because it is
independent from the electric field. As you can see in Fig. 4.4b at the achieved
field of 350 V/cm none of the charge states are separated well and even the rising
edge of the neutrals is not clean.

ble up to 3200 grit to avoid sparking. A week before the experiment was slated to

begin, while conditioning the hoops, with the hoops at voltage producing a field of

850 V/cm, a spark occurred in the system. After this spark event occurred, two of

the hoops became shorted together and we were not able to reliably apply a field

of no more than 350 V/cm. This last minute change in field greatly reduced our

ability to separate the recoiling atom charge states, and hence our ability to locate

the trap spatially along the MCP-axis. Fig. 4.8 shows the simulated separation of

charge states that could be expected with a 350 V/cm field and a 1000 V/cm field.

This is not a critical problem in the case of measuring Aβ but would be disastrous

for trying to measure the other correlation parameters such as aβν .
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4.3 Detectors

A major part of the setup for this experiment was building up the β-detectors and

implementing the data acquisition scheme for them. In addition to the β-detectors

there are two MCP detectors that provide crucial information to us like tagging

events from the trap and diagnostics about the trap size. This section will describe

these detectors.

4.3.1 Scintillator Detectors

The scintillators were the first detectors that we bought and this meant that

we also had the most experience using them. They are made of BC-408 plastic

from Saint-Gobain Crystals. The scintillators are glued to a lightguide and PMT.

The PMTs are 5” model 9823B tubes from ET Enterpries. They are blue-green

sensitive and have 14 BeCu dynodes. The custom transistorized bases also supplied

by ET Enterpries provide the anode and final dynode signals as output so that one

of the signals could be used from timing measurements and the other for energy

measurments.

Originally we tested the scintillators together with a Caen V1740 digitizer. This

digitizer was a candidate module that would be used for the read out of these de-

tectors. This digitizer lacks the timing resolution necessary to cleanly digitize the

raw signals from the PMT but could be used following the example of the DEAP

experiment at SNOLAB that stretches their raw scintillator signals in time and then

uses an equivalent V1720 module to capture the waveforms from their detectors [87].

It was decided that this technique would not work for us and the scintillator signals

during the experiment would not be digitized but instead recorded with a Caen V792

QDC.

In order to design the full detector assembly one of the first things that needed
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to be decided was the length of the light guides used to connect the scintillators to

the PMTs. This is important because near the trap there are magnetic fields that

can affect the efficiency of the PMT. This happens because a magnetic field can steer

electrons away from the dynodes. The effect is largest between the photocathode and

the first dynode because no multiplication has yet occurred and the electrons are at

low energy [88]. One way that this problem can be mitigated is by wrapping the

PMT in µ-metal. µ-metal is an alloy with high magnetic permeability that allows

a path of least resistance for magnetic field lines around the shielded object. This

technique works best when the µ-metal extends well in front on the photocathode.

The increased signal that we see by shielding the photocathode with µ-metal is

opposed by signal loss due to light scattering in the light guide. In order to test

what the optimal lightguide length was we bought lightguides of three different sizes

and tested each with µ-metal to decide which gave the best response. A comparison

of the response of the detector for the three different ligtguides tested is shown in

Fig. 4.5c. The figure of merit for comparison of µ-metal shielding is the distance

from the photocathode to the open end of the shield divided by the diameter of the

µ-metal, L/d. For the 200 mm light guide that was selected in the final geometry

the L/d = 120 mm/152.4 mm = 0.79.

Another important question that we had about the scintillators was what sort

of wrapping scheme would work best to optimize the response function. We tried

different wrappings around the side of the scintillator including diffuse reflectors such

as paper and teflon specular reflectors such as 3M-ESRTMand Al-mylar. The 3M-

ESRTMallowed us to collect the greatest amount of scintillation light. The wrapping

on the front face of the detector is important because not only does it aid in light

collection but the βs also have to travel through this material before entering the

scintillator. For this reason we wanted to make sure that the energy loss was going
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Figure 4.5: Scintillator design and testing. The scintillator dimensions (Fig. 4.5d)
were chosen, using simulations from GEANT4, to stop a 5 MeV β. There is a chamfer
cut on the front that allows the wires from the strip detector to bend around it more
easily. The light guide length was chosen to be 200 mm because it allowed for the
PMT to be pulled back further from the trap and allowed the µ-metal shielding (see
Fig. 4.5a) to extend the furthest in front of the photocathode without hurting the
response function in the way that the 277 mm light guide did (see Fig. 4.5c). The
final assembly was glued together by the TRIUMF scintillator shop (see Fig. 4.5b).
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Measured Energy Loss In Material
Material Energy Loss (keV) per Layer
3M-ESRTM 13.3
Teflon Tape 4.59
3µm Al Mylar 0.474
35µm Al Mylar 5.55

Table 4.1: Energy loss in scintillator wrapping materials tested. These are the materi-
als that we measured both the energy loss and the effect on the scintillator spectrum.
We decided to use teflon tape on the front face of the detector because it struck the
best balance between the two competing variables.

to be low through this material. We measured the energy loss with a β source and a

silicon detector along with measuring the signal response of the scintillator. A table

of the measured energy losses is shown in Table 4.1. We selected one layer of teflon

tape because it offered the best compromise between increased gain of the scintillator

signal while still having a small enough energy loss.

4.3.2 Silicon Detectors

The silicon detectors are more complicated to work with than scintillators but

they proved remarkably resilient in the experiment, even though we abused them.

The detectors were manufactured by Micron and are 300 micron thick silicon with 40

parallel strips per side, with the strip direction on the two sides being orthogonal. The

detectors were biased to +70 V during the experiment with +40 V being the nominal

full depletion voltage. The voltage was supplied to the X strips and the Y strips were

grounded. For a schematic layout of the detectors and the axis label assignments see

Fig. 4.6. The bias was supplied through the preamps. The preamps were custom

designed by Leonid Kurchaninov at TRIUMF to match the measured capacitance of

the detectors supplied by Micron. Each preamp read off the signals from either the

odd or the even set of twenty strips that were read off for a given detector plane.
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Fig. 4.8c shows how the signals coming out from the detectors propagate through

the preamps. These twenty channels were then broken apart and recombined into

VF48 digitizer modules. A schematic showing how the signals were transported from

the preamps to the VF48s is shown in Fig. 4.7. Each of the detectors, due to the

presence of a guard ring to sink current, is chiral and has a definite handedness. This

being the case the two detectors top and bottom cannot be installed in the exact

same configuration. Fig. 4.6 shows the choice that I made to rotate around the x-axis

when installing the detectors.

In addition to to the physical strip numbering shown in Fig. 4.6 there are ad-

ditional numbering schemes that need to be kept track of for these detectors. The

second set of numbers come from the preamp channels. This is shown in Fig. 4.8c.

The third set of numbers then comes from plugging the combined signals from the

two preamps of a detector plane into a single VF48 module as shown in Fig. 4.7. The

last set is then how the modules are read into the software. The full set of routings

can be found in the configuration files for the analyzer and can be checked out from

the git repository using the tag Dec2012Data.

One thing that was important to consider when we were designing the system

was that we needed to balance the desire to put the detectors as close to the trap as

possible while optimizing the detector performance. In the case of the strip detectors

this meant that we had to consider how close we could reasonably get the preamps

to the detectors. We originally planned to have the preamps inside of the reen-

trant flange touching the silicon detector. Calculations done by Leonid Kurchaninov

showed that the preamps for a full detector would dissipate 70 W of heat. This was

unacceptable in the very confined space of the reentrant flange and made us consider

bringing them outside the mu-metal. By measuring the capacitance of the detector

(36 pF) and the cables (24 pF) that would be used to bring the signal out, and using
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Figure 4.7: Schematic showing the detector cabling. This figure shows how the
channel numbers get changed up on the way from the preamps to the VF48 modules.
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some simulations to find the number of charge carriers that would be created by a

minimally ionizing β, we were able to estimate that we would see a 2.6 keV increase

in the noise by using longer cables.

During the experiment the strip detectors took a lot of abuse from an unexpected

source. When we decided to use the AC-MOT, we knew that we would be able to

damp eddy currents in the chamber by dissipating them as heat. We did not consider

this to be a problem to the chamber as a whole because the walls are 1/2 inch thick

and are air cooled everywhere except at the reentrant flanges. The reentrant flanges

on the vacuum side are the closest object to the magnetic field coils, which means

that they get the brunt of this heating. Additionally, because they are packed tightly

with the silicon detectors and scintillators on the air side, they do not get much air

cooling. This meant that in the experiment they heated up and, as they heated

up, the leakage current on the silicon detectors rose. The nominal operating leakage

current for the detectors is 300 nA. During the experiment once the apparatus had

reached its equilibrium temperature the leakage current on the detectors was 7 µA.

With some success we directed the output of an air conditioning unit onto the outside

of the chamber near the reentrant flanges. Nevertheless the leakage current remained

high.

It was found during the experiment that the β spectrum was not separated from

the noise peak for the X-odd strips of the top detector. This was disconcerting as they

had all previously been shown to work as shown in Fig. 4.8a. As all of these strips

were read out by the same preamp board, this board was the suspected culprit. This

preamp board was replaced with the only available spare. This replacement board

also proved to be be broken and in the end we were not able to use any of the X-odd

strips on the top detector for data analysis.
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Figure 4.8: Strip detector information. The reason that we choose to use a strip
detector was so that we could also get some position information abut the βs as they
passed through on the way to the scintillator. The energy spectrum for the strips
and the position test were done with 90Sr 133Ba sources as shown in Fig. 4.8d and
4.8d. The strip detectors were not tested for high temperature operation like what
is shown in Fig. 4.8b until the experiment when the action of the AC-MOT heated
the flanges where they are located. There are two different varieties of preamp as
shown by the schematic in Fig. 4.8c that need need to be planned for when bending
the signal wires out of the µ-metal jacket.
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4.3.3 Shakeoff Electron MCP

The shakeoff electron MCP was the simplest detector that we used. It consisted

of a simple stack of 40 mm diameter MCP plates in a chevron configuration. The

holder and anode were designed and manufactured by Alexandre Gorelov. The signal

was read out from a metal stainless steel anode. One thing that was unique about

this particular detector was that it required a low inductance ground to optimize its

signal. To accomplish this, fifty titanium foils were hand cut and attached so that

they would hang in a splayed-out fashion. A picture of the detector can be seen

before assembly in Fig. 4.9a. The low inductance ground did help but the signal

from this detector suffered from reflections due to poorly matched impedance.

This detector was replaced after this experiment with a RoentDek 80mm diameter

MCP backed by a Hex75 delay line anode. One of the purposes for this upgrade was

to check that the 40mm plates that we used in this experiment were large enough

to contain all of the shakeoff electrons from the β decay. One mechanism that could

lead to a loss of electrons would be if the β decay of 37K populated a short lived Ar−

state that would fly some distance before shedding its extra electron, which would

then miss the MCP. This effect was simulated in GEANT4, shown in Fig. 4.9b, and

under a worst case – albeit unrealistic – assumption that every 37K decay populates

this state, a bias as large as 4% could have been introduced into the asymmetry.

In the follow-up experiment using the larger position sensitive MCP, it was shown

that at an applied field of 350 V/cm, the same used in this experiment, all of the

shakeoff electrons from the β decay of 37K were contained in an area less than 40

mm in diameter. Also by measuring the “tail” of the electron timing spectrum an

upper limit of 4% can be placed on the number of decays that can feed this excited

state which implies the largest efficiency shift that could be observed is 0.2%
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(a) Assembled electron MCP before instal-
lation

(b) Travel distance of Ar1−

Figure 4.9: The shakeoff electron micro channel plate. As shown in Fig. 4.9b the de-
tector mounts on a ten inch conflat flange. The titanium foils for the low inductance
ground are clearly visible. This detectors only purpose was to provide a timing signal
for the arrival of shakeoff or photoionization electrons and is therefore very spartan
in its design. Due to its relatively small size we were concerned that electrons could
miss the MCP if a metastable Ar1− state was populated by the β decay or if the
shakeoff energy spectrum was higher than predicted. Fig. 4.9b shows the results of
a GEANT4 simulation where we assume that all decays populate this excited state. In
this case a 4% change in efficiency between the two β detectors would be introduced
by requiring a shakeoff electron coincidence. By measuring the “tail” of the electron
timing spectrum we can place an upper limit of 4% on the number of decays that
can feed this excited state which implies the largest efficiency shift that could be
observed is 0.2%.
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4.3.4 Ion MCP

The ion MCP detector was the detector that allowed us to measure some of the

properties of the atom cloud. It is a stack of three micro channel plates backed by a

delay line anode, RoentDek DLD80. The electronics to supply high voltage to this

detector and to decouple the signals from the high voltage were built at TRIUMF

by Alexandre Gorolov and Leonid Kurchaninov.

The delay line anode provides position information by reading the signal on both

ends of a long coil of wire and taking the time difference between the arrival of the

two signals to determine where along the wire the signal originated. The response of

the delay line anode is nonlinear across its entire length. This means that in order to

get good position resolution out of it, it needs to be calibrated with a mask and that

a transform needs to be applied to the data. A picture of the mask and the delay

line anode are shown in Fig. 4.10. This process of calibrating the mask was done

before the experiment by using 266 nm light to illuminate the inside of the chamber.

Light of this wavelength has a high efficiency for firing the detectors.

During the calibration phase and continuing into the experiment there was a

problem observed in the signals from the delay line anode. We were not receiving

signals from the top 5 mm of the detector. Only after the experiment when the

apparatus was disassembled were we able to discover that the spring clamps that

held the detector in place had failed and that the detector had slipped down by 5

mm. This slipping did not affect the position knowledge because we had left the

mask in place during the experiment, meaning that the calibration procedure could

be redone with any data set.
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(a) Assembled ion MCP before installa-
tion

(b) The delay line anode

Figure 4.10: The ion micro channel plate with mask and delay line anode. In this
picture Fig. 4.10a we can see the Ion MCP with the mask installed with the large
opening cut in the center to image the atom cloud. Also visible around the edge
of the ceramic are the vendor supplied spring clamps that are intended to keep the
detector in place. It was the failure of one of these springs that caused the detector
to slip down. In picture Fig. 4.10b we can see the delay line anode. Circled in red is
a defect on one of the wires that we found before assembling the device. It turned
out not to be a problem.
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4.4 Timing

Timing for the experiment was provide by a mixed set of devices. The gross

timing for the experiment was provide by a computer running Windows 98 that

will subsequently be referred to as the “trapping commuter”. The computer had

a digital to analog converter (DAC) card installed in it. This card allowed it to

send either digital or analog pulses out through a Bayonet Neill-Concelman (BNC)

cable. This computer would send signals to the acousto optical modulator (AOM)

that controlled when push beam came on and turned the MOT light on and off

during the cycle. This is achieved by steering the correct frequency of light into the

beamline at the correct time. At all other times the light is steered by the AOM into

a beam dump. The purpose of the push beam was to move atoms that were confined

in the first MOT into the second MOT which is where the nuclear detectors were

located. TThe push beam would come about once a second and the polarity of the

light was changed every 16 seconds. This computer also controlled the camera that

would take a picture of the MOT while the polarization change happened. A timing

diagram appears in Fig. 4.11. The timing accuracy of these signals was on the order

of milliseconds. The logic level of these timing signals were recorded by the NIMO32

module for every recorded event. In addition to the level at trigger time the event

following a change in the level of any of these signals would also be read out with a

timestamp corresponding to the time that the signal level changed. This computer

was running a non-real-time operating system and employed blocking input/output

operations in its communications with the camera, there could be variability. This

means that no guarantees can be made on any of the timings controlled by this

computer. This variability leads to the time blocks in Fig. 4.11 labeled as “varies”.

Since the timings were recorded with the events we could still order everything in
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Figure 4.11: Timing diagram of the experiment.

time even if there was variability.

For the part of the experiment that required precision realtime control, the com-

puter would hand off control to an arbitrary waveform generator. This generator

was programed to output a control sequence that would control the power supplies

connected to the coils that generated the time varying magnetic field that was neces-

sary during AC-MOT and optical pumping time. The arbitrary waveform generator

also drives the electro-optic modulator (EOM) that varies the circular polarity of the

MOT light in time with the changing magnetic field. The EOM does not change the

polarization of the optical pumping light because it is not as precise as the liquid

crystal variable retorter, but it is much faster and and can handle the higher power

of the MOT beams. These time scales are much smaller than those given to the com-

puter to handle and a complete cycle of trapping/cooling optical pumping/counting

would be repeated 100 times per second. The logic levels and level change times-

tamps were recorded fro the signals originating from the waveform generator in the

98



same way that they were for the signal from the trapping computer. After this set of

100, control would be passed back to the computer to initiate the next push beam.

The timing accuracy of the waveform generator is ∼ 1 ns per 2 sec. cycle.

4.5 Data Acquisition

One of the largest contributions that I made to this experiment was the imple-

mentation of the data acquisition software. This was a major undertaking and was

one of the principal reasons for my relocation to Vancouver. There are three parts of

the data acquisition system that are of some interest. They are: first, the waveform

readout from the silicon detectors; second, the fast FPGA trigger; and third, the

event timestamps to count events compared to laser timings. The implementation

of the data acquisition system was concurrent with the physical setup and testing of

the detector. A simplified schematic showing the physical connection of the detectors

with the data acquisition system is shown in Fig. 4.15.

The first area of interest that I will discuss is the waveform readout from the

strip detectors. For each triggered event the waveforms for all 160 silicon strips was

recorded. In chapter 6 we will see some of the recorded waveforms and what was

done with them. The digitized signal was read out by the TRIUMF-developed VF48

digitizer modules [89]. Each module has a set of 6 fast 10-bit ADCs coupled to an

Altera Cyclone EPC12 FPGA. Each ADC-FPGA pair manages 8 channels of input.

Each waveform is sampled by this module at 60 MSPS.

Arguably the most critical piece of software in the experiment was the firmware

trigger burned onto the FPGA of one of the NIMIO32 boards [90]. Each NIMIO32

module is equipped with an Altera Cyclone 1 EP1C6Q240C6N FPGA. The firmware

for each board can be changed at any time to change its functionality. Some of

the functionality that this module provided for us were: 16 32-bit scalars, a 20 MHz
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Figure 4.12: NIMIO32 trigger firmware part 1. Fig. 4.12, 4.13, 4.14 are a three part
series of schematic representations of the VHDL code for trigger that was burned
onto the FPGA for the Dec. 2012 experiment. There is much more to the firmware
file such as the pulser definition and the interface with the VME crate but this is the
part of the file that has been specialized to the TRINAT event trigger. Briefly, the
trigger was an “or” between the electron MCP detector and the hardware coincidence
between the scintillators. (See Fig 4.15) It was plugged into what is labeled here as
trinat cfd2. The busy signal is also generated by this module because it knows when
an event has finished reading out on the VME bus. It appears here as trinat busy.
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Figure 4.13: NIMIO32 trigger firmware part 2.
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Figure 4.14: NIMIO32 trigger firmware part 3.
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Figure 4.15: Electronics diagram. This is a simplified schematic of the most im-
portant connections to between the detectors and the data acquisition system. The
event triggers were generated by the block labeled here as “NIMIO32 Event Trigger”
which is documented separately in Fig. 4.12.
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clock to sync the VF48 modules clock, a 40 MHz clock to sync the Caen V1190 clock,

and 4 channels of 20 MHz timestamp registers, along with the global event trigger.

This trigger was written in VHDL mostly by Konstantin Olchanski at TRIUMF with

only a little modification done by me. A schematic representation of the trigger code

is shown in Fig. 4.12 – 4.14. The goal of this trigger was to decide within about

10 ns of a detector firing whether to read out the data acquisition modules or not.

When the trigger condition was satisfied, a busy signal would be sent that would

block further incoming pulses. Simultaneously signals would be sent to each of the

other modules to begin the readout procedure. The trigger scheme that we used

during most of the experiment can be represented with C boolean logic symbols

as (ElectronMCP )&&(TopScintillator||BottomScintillator). This logic could of

course also have been produced in analog electronics but the FPGA offered several

advantages. First, if changes were made to the trigger logic no wires needed to be

switched. Second, since the busy signal and gates for the ADCs were all produced

by the FPGA less modules were needed reducing expense. Lastly, the FPGA affixed

timestamps to the events and synced the clocks of the VF48s a necessary job that

would be difficult to achieve with any other type of module.

The third interesting thing that our data acquisition system did was to record

time stamps for each event as they were read out. These timestamps were supplied

by the FPGAs on the NIMIO32 boards and the VF48 modules. The timestamps

were synced with a 100 MHz clock and thus are subject to 10 ns jitter. This timing

uncertainty is acceptable because the optical pumping signal that we were looking

for with these timestamps comes on a much longer timescale and could tolerate clock

jitter up to 1 µs. In order to organize the events in time with respect to the slow laser

control system, operating on the trapping computer, we relied on the time difference

between the event timestamps, applied by the NIMIO32 modules to each triggered
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event, and the timestamps originating from the change in logic level of timing pulses

broadcast from the trapping computer. The ordering of detector signals in time

within each event was done with the much faster time to digital converter (TDC)

with a clock jitter of 20 ps.
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5. POLARIZATION MEASUREMENT

5.1 Overview

This experiment allows for an in situ measurement of the polarization of the

atoms in the cloud independent of the asymmetry measurement. This is impor-

tant because Aβ and the polarization are multiplied together in the decay rate (see

Eq. 1.1). This means that the uncertainty from one is hard to disentangle from the

other. We will begin this section by first developing a simple model for the polar-

ization of the atoms. The development of this model will be useful to us because we

will be able to understand the types of things that need to be considered and the

assumptions that we need to make in order to construct such a model. We will then

examine the photoionization technique that was used to measure the polarization

of the atoms during the experiment, and give a description of some supporting ex-

periments that were done offline after the experiment, which give a complementary

picture of our knowledge of the polarization.

5.2 Polarization Models

When interpreting physics results, we often need to create a model of the data that

helps us to understand the underlying effects and distinguish between background

and real events. We often need to compare the results returned from various models

to try and estimate systematic uncertainty that could be introduced by using a

particular model. In this section I will introduce one calculation and two models for

the observed polarization signal and apply them to our data in an effort to come to

a definite answer to the question: “What was the polarization of the atoms in the

Dec. 2012 data set?”
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5.2.1 A Simple Polarization Calculation

To begin we will examine what is known as the “tail-to-peak ratio calculation.”

It was developed by Daniel Roberge and documented in his master’s thesis [91]. We

will step through the process of applying this calculation to 37K and along the way

gain some understanding of how it works. Fig. 5.1 shows the energy level structure

of 37K’s valence electrons for the optical pumping transition that is used. The things

that are important to note are that in a low magnetic field (in our case 2 Gauss),

the spin of the atomic electrons, denoted as I, will couple to the spin of the nucleus,

denoted as J . Due to this coupling these quantum numbers are no longer good by

themselves but the combination F is, where ~F = ~I + ~J . Also note that mF ranges

between −2 and +2. Finally note that there are a total of 8 possible states within

4S1/2 level.

We begin by making our first assumption, that all of the atoms which are not

in the fully stretched (mF = 2 or −2 ) state are in the next-to-stretched state

mF = mmax
F − 1 = 1 or −1. We will also define x, to be the fraction of atoms not

in the fully stretched state with, x = (7/8)r, where r is the “tail” to “peak” ratio.

With the “tail” being the number of counts after the atoms have come to a steady

state after being exposed to the optical pumping light for a long time and the “peak”

being the number of counts in the initial burst of fluorescence that occurs when the

light is first turned on. The 7/8 comes from the fact that there are 8 possible states

and that one of them is the fully stretched and seven are not. There are at least

two ways that the polarization can be monitored during this process. The first is by

looking at the number of de-exicictation photons directly as a function of time. This

works well with a large number on atoms in the trap a condition easily satisfied when

using 41K. An alternative approach that can be used with a low number of atoms in
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(b) Spontaneous emission

Figure 5.1: Schematic of photoionization process during optical pumping. The place-
ment of the major levels, 4S1/2, 4P1/2, and the continuum along with the photoion-
ization laser are to scale. The inter level splitting by mF is approximate. As shown
in Fig. 5.1a during the optical pumping process we will use photons to excite the
atoms from the 4S1/2 to the 4P1/2 excited state. There are actually two separate
collinear beams used in the process. One is called the pump and it is tuned the to
4S1/2, F = 2→ 4P1/2, F = 2 transition and the second called the repump is tuned to
the 4S1/2, F = 1 → 4P1/2, F = 2 transition. Since the photons are circularly polar-
ized they carry a unit of angular momentum with them and the absorption of such
a photon will change the mF state of the atom by ±1 based on the circular polarity
of the light. In the de-excitation process shown in Fig. 5.1b the photon might or
might not carry away angular momentum and there are selection rules that govern
which one of the transitions shown is most likely but all of the red lines are possible
de-exicictations. The atoms experience a biased random walk towards one of the
extremes in mF 2 or –2 ground states based on the input circular polarization being
either σ+ or σ−. For atoms not in the presence of misaligned magnetic fields the
absorption/radiation cycle is repeated on average 10 times before the atoms arrive
in the mF = |2| state. Once in this state, not having a corresponding mF = |3| state
in the 4P1/2 level to move into, the atom will no longer absorb photons.
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that trap, such as when using 37K, would be to use a laser that photoionizes from the

excited state but not the ground state. In our case we use a laser with a wavelength

of 355 nm and measure the number of photoions created by this process again as a

function of time. In both cases we see a signal that has a sharp peak when the light is

turned on and this signal falls to a value determined by any depolarizing mechanisms

such as imperfect circular polarization of the light or misaligned magnetic fields.

Since we made the assumption that atoms not in the fully-streched state are in

the next-to-stretched state we need to define the wavefunctions |F = 2,mF = 1〉 and

|F = 1,mF = 1〉. We look just at the case of σ+ since σ− will be identical. For each

state the polarization is calculated as, P = 〈ψ| JZ |ψ〉. Using the Clebsch-Gordan

coefficients we come up with the following wavefunctions, at Bmisaligned = 0, in the

JZ , IZ basis set:

ψ2,1 = |F = 2,mF = 1〉 =
1

2

∣∣∣∣JZ =
3

2
, IZ = −1

2

〉
+

√
3

2

∣∣∣∣JZ =
1

2
, IZ =

1

2

〉
,

ψ1,1 = |F = 1,mF = 1〉 =

√
3

2

∣∣∣∣JZ =
3

2
, IZ = −1

2

〉
− 1

2

∣∣∣∣JZ =
1

2
, IZ =

1

2

〉
. (5.1)

The use of these wavefunctions can be justified because at the 2.5 G applied magnetic

field that is used in the experiment the mixing in P1/2 state is less than 0.2% and the

energy shifts are less than 20 MHz. Using these definitions we can calculate what

the polarization should be for our two states,

P (ψ2,1) =
1

2
, P (ψ1,1) =

5

6
. (5.2)

The next assumption that we have to make is that we expect these two states to be
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populated in proportion to the transition rates feeding them,

|4P1/2,mF = 1〉 → |ψ2,1〉
|4P1/2,mF = 1〉 → |ψ1,1〉

=
1

3
. (5.3)

Implicit in this assumption is that the depolarizing mechanism is from poor circu-

lar polarization of the light because that is the only way an atom could make the

transition |4S1/2,mF = 2〉 → |4P1/2,mF = 1〉. The degree to which the light is

circularly polarized can quantified by the Stokes parameter S3. Circularly polarized

light can be thought of as a mixture of two states left and right handed polarized.

For light of all right handed polarization the value of S3 is 1 and -1 for all left handed

polarization. The values in-between these extremes represent liner combinations of

left and right polarization. Experimentally S3 is measured by using a quarter wave

plate to change the circularly polarized light into plane polarized light. Then a po-

larizer is placed in the beam and the intensity of light coming through this polarizer

we will call I1. Then the polarizer is rotated 90◦ around the beam axis and the

intensity is then remeasured. This intensity we will call I2. S3 is then calculated as

S3 = (I1 − I2)/(I1 + I2).

The other depolarizing mechanism misaligned magnetic field can move popula-

tion between mF states where mF ′ = mF ± 1 without changing the other quantum

numbers. In addition to moving populations between states having a misaligned

magnetic field would also mean that we would need to come up with a new set

of wavefunctions. Since we are assuming that our depolarizing mechanism is from

imperfectly polarized light this is not needed.

Using this ratio of populations it is now possible to calculate the polarization that

we would expect from the atoms in the non-stretched state as the sum of the two

polarizations weighted by the population in each state giving, Pnon-stretched = 3/4.
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The last piece now is to combine this with the fraction of atoms that are in the

fully stretched state for the total polarization of the entire population and make it a

function of our observable r,

Ptotal = (1− x) + xPnon-stretched = 1− 7

32
r. (5.4)

Understanding how to calculate the polarization in this way is useful in that it

has highlighted some of the points that need to be addressed in order to develop more

sophisticated models. The first shortcoming of our simple calculation is that it does

not produce a curve, but it is still useful because it is so easy to calculate. We use

the long time value of the “tail” and the short time values from the “peak” and lump

the information together to produce one number for the polarization. Since we start

with a count spectrum as a function of time we would like to be able to produce a

curve that can be fit to the data. The second shortcoming is that we had to make an

assumption about which state the “non-stretched” atoms were in. Ideally we would

like only to have to make an assumption about the initial states that the atoms are in

and that the final distribution would be the result of the application of the model to

that initial state. The final shortcoming was that we needed to make a choice about

depolarizing mechanisms. Since they feed the “non-stretched” states differently we

will come out with different numbers for the overall polarization depending on which

states we choose to feed. This is a shortcoming that all of our models suffer from.

The best that we can do is try to make careful measurements of one or the other of

our depolarizing mechanisms and then fix the value of at least one and let the other

one vary as a fit parameter.
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5.2.2 Rate Equation Model

One model that addresses some of the shortcomings of our simple calculation

from the previous section is known as the “rate equation model”. The rate equation

model does a much better job at capturing the physics that we are interested in. A

good reference that describes in detail the development of a rate equation model for

cesium is Ref. [92]. The first assumption that we will make when using rate equation

model is that the atoms at the beginning of the optical pumping time are in a uniform

distribution in all eight states in the 4S1/2 levels. This is an assumption because just

previous to the optical pumping time the MOT was on and this will populate all of the

sublevels but not necessarily equally. It is possible to construct other configurations

that hurt the final polarization. Using these other configurations will affect our peak

height and shape. We know from experience that the fit is dominated by the long

time “tail” because it is more statistically significant. This gives comparative freedom

to the peak size and shape. According to the calculations done by Dan Melconian a

worst case scenario of having an initial population of 50% in the MF = 2 state and

the 50% in the MF = −2 would lead to 1% change in the the measured polarization

of the atoms. Since we have no data to guide us on what the distribution of the

atoms is after the MOT time we will continue with this assumption that the atoms

are distributed equally in all the states. Then we will simulate the absorption of

photons by each of these populations according to the input laser power and the

emission of the photons from the excited state as spontaneous emission. As pointed

out in Ref. [93], rate equation models are only valid in the region where absorption

and stimulated emissions are small compared to spontaneous emission rates, and

that because modern semiconductor lasers have sufficiently narrow line widths and

have sufficient power that the assumptions implicit in rate equation models can break
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down. At each time step in the process, the absorption or emission of photons is

governed by the selection rules for each transition. The excited state emission lifetime

of 37K has not been measured directly but we can substitute the lifetime of the 4P1/2

excited state of 39K, which is 26.72(5) ns [94], because they have similar hyperfine

structure. If we simulate with time steps smaller than this time scale, then we are

able to build up a smooth picture of the sublevel populations and hence polarization

as a function of time. A model constructed only of the rate of incoming photons

and the relative transition strengths is referred to as a rate equation model. The

situation is analogous to the concentration of a daughter isotope in the decay chain

from a parent sample. The concentration of the daughter changes as a function of

time and can be calculated by knowing all of the transition rates along the entire

chain and the initial amount of parent material.

This model employs quantized energy levels but lacks quantum coherent effects.

As opposed to our simple tail-to-peak ratio calculation, the rate equation model

is able to account for both depolarizing mechanisms: S3 < ±1 and/or misaligned

magnetic fields. The depolarization of the atoms due to poor S3 is accounted for by

introducing a rate for the atoms to absorb photons of the wrong angular momentum.

The implementation of the effect of misaligned magnetic field is more involved. In this

case the new magnetic field direction is defined to be the vector sum of the misaligned

and aligned fields. The atom now is characterized by new quantum states, F ′ and

mF ′ . These new states are constructed as a linear combination of the previously

aligned F and mF states. Because our detectors have not moved we still need to

know how things look along this original axis. The effect of making these new states a

linear combination of the old ones is that populations of neighboring states get mixed.

The Larmor precession around the new field axis will redistribute the population in

these new F ′ states.
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There have been a number of individuals within the TRINAT collaboration that

have written code for rate equation models over the years. Throughout this work I

used a fortran version that was written by John Behr, which included effects such as

the measured rise time of the acousto optical modulator controlling the light going

into the chamber and the ability to add in a time varying misaligned magnetic field.

This feature was not used in fitting the fluorescence data because we believed that

the magnetic field had come to a steady state by the time that we turned on the

optical pumping light. In what comes after I refer to this particular implementation

of the the rate equation model as the “rate equation model code”.

5.2.3 Optical Bloch Model

This bring us to the last model that we will examine, the optical Bloch model. It

tries to overcome the deficiencies of the rate-equation models by introducing optical,

hyperfine, and Zeeman coherent effects. These effects are introduced through a

density operator formalization. A good reference to look at to learn about this

model is by Tremblay and Jacques [93]. These authors treat the atom as a fully

quantum mechanical system. This is a big step up from the rate equation models

because it allows us to simulate purely quantum mechanical phenomena such as

coherent population trapping. Coherent population trapping is where a significant

portion of the atoms can become trapped in a superposition state in which they no

longer absorb optical pumping photons. The polarization of the atoms in this dark

state can be very different from what we would expect looking at the problem from a

classical point of view [95]. Additionally because the atoms are no longer absorbing

photons they will not be in the excited state to be photoionized. This means that in

the “tail” region we will have fewer photoions and this will lead to a measurement

of the polarization that is too high. For this reason we set our laser detunings far
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Figure 5.2: Two level system to demonstrate the density matrix. Imagine that
we have the simple two level system shown here. Then we write the wavefunction
as a simple linear combination of the two states. The density matrix is then the
outer product of our wavefunction. The elements of the matrix then represent, ρ11
the probability of being in |1〉, ρ22 the probability of being in |2〉, and ρ12 and ρ21
the probability of being in a coherent superposition of the two. Recalling from
undergraduate quantum mechanics that the expectation value for an operator is
〈A〉 = 〈ψ|A |ψ〉 the equivalent relation for the density matrix is 〈A〉 = Tr(ρA).

from the coherent population trapping resonance in this experiment. The connection

between the two models is that the rate equation model uses just the populations of

the states that are the diagonal elements of the density matrix whereas an optical

Bloch model will additionally use the other off diagonal terms that are the quantum

superposition of states.

Fig. 5.2 shows how the density matrix would be formed for a simple two level

system. In the case of 37K we will have a 16x16 matrix instead of the 2x2 one that

we have in the figure, but the principle of how it is constructed remains the same.
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At each time step in the simulation the change in the the density matrix is given by,

ρ̇ = − i
~

[H, ρ], (5.5)

where H is the Hamiltonian for the interaction and the brackets in normal quantum

mechanical notation are the commutator. The hard part of using Eq. 5.5 to simulate

optical pumping is knowing the Hamiltonian. This was the major contribution of

Ref. [93] in which the authors wrote out the Hamiltonian for an atom interacting

with two collinear propagating beams, in our case the pump and repump, each of

finite line width (10 MHz) and frequency (see Fig. 5.7).

Using this formalization it is much easier to introduce a misaligned magnetic field

if we know what the Hamiltonian is. Again the hard work has been done for us by

Renzoni [96]. This new interaction term can be added to the Tremblay Hamilto-

nian [93] in the usual quantum mechanical fashion. The effect of this misaligned

magnetic field Hamiltonian is that it mixes neighboring states. This is what we also

said about the rate equation model. In that case however the mixing was introduced

in a non-rigorous way. A misaligned field does not mix any of the diagonal elements

of ρ directly but mixes them through the off-diagonal elements which are not present

in the rate equation model. This means the rate equation model is not going to

be able to simulate the effect of misaligned fields without making some assumptions

about the way that this off-diagonal mixing translates into mixing between the diag-

onal elements that it does simulate. Since this mixing is a truly quantum mechanical

effect it can lead to coherent resonances such as the Bright resonance studied by

Renzoni. Simulating the misaligned magnetic field is much cleaner in the optical

Bloch model because no assumptions have to be made about the coupling between

the diagonal elements of the density matrix the way that the rate equation model
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does.

For all of the things that the optical Bloch model does right it is not perfect.

Tremblay does not treat the laser light totally quantum mechanically the way he

does the atom. This is because a full quantum treatment of the light is a very

difficult QED problem and all of the models on the market today treat the light semi

classically. The C++ implementation of the optical Bloch model for our system was

written by Ben Fenker as part of his master’s degree. In what follows if I refer to

this particular implementation as the “optical Bloch model code”.

5.3 The Photoionization Data

Now that we have an idea about the models that will be used to fit the data

we need some data to fit. As mentioned in the caption to Fig. 5.1, one of the

possible ways that we could probe the polarization is by looking at the photoions

or the photoelectrons that come from the photoionization of atoms in the 4P1/2

excited state. The light needed for the photoionization comes from a JDS Uniphase

NV-00211-100 355 nm optically switched diode laser that fires 0.5 ns pulses with 8.5

mWatt of power at 10 kHz with its clock independent of all others in the experiment.

That means that it will randomly sample all times during the experiment, as shown

in Fig. 4.11. This signal should be small because the photoionization cross section

is very low and the atoms are optically pumped for about ∼ 2000 µs per cycle and

there are 100 cycles per second. That means only about 20% of events come in the

right time.

To help us get an idea of the type of signal that we expect to see, we can look

at some data that we took the day before the run, using 41K. At the time that

we took the data we did not know if the system was working and this was truly a

proof-of-principle test for us. We loaded the trap with millions of 41K atoms and
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Figure 5.3: Test of photoionization technique using 41K. This data comes from a test
of the polarization measurement scheme using 41K the day before the start of the
experiment. Because we were using stable potassium we were able to load the trap
with orders of magnitude more atoms than in the case of 37K and it was possible to
collect enough data to see the optical pumping peak in about one hour instead of
the 7 days of beam time that went into Fig. 5.6 for 37K.

optical pumped the same way that we did during the experiment. The result of this

is shown in Fig. 5.3. After an hour of counting we were able to see the formation

of the optical pumping peak at the time that we expected it. This was a good

proof-of-principle test and at the time it signaled to us that things were working.

We have no reason to believe that it did not continue to work in the same fashion

throughout the experiment because further polarization measurements using 41K

were done immediately after the experiment. These experiments are described at

the end of this chapter.

We knew from the outset that the photoionization signal would be small because

we would not be able to load the trap with as much 37K as 41K, but the signal should

still be very clean. The reason that this signal should be so clean is that each time
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the laser fired we have a signal from a photodiode that was monitoring the laser

recorded on the TDC. If we look at the ion times recorded on the TDC with respect

to the photo diode times we get at peak at about 1500 ns which is the time that

it would take a singly charged 37K+ ion starting from rest to move from the center

of the chamber over to the detector in the electric field. A schematic view of these

events is given in Fig. 5.4c. This technique works nicely for the photoions because

they are separated so far in time, 1.5 µs, from the laser pulse that also has a small

chance of firing the MCP directly. Trying to do the same thing with the electron

detector is harder because the electron time-of-flight is ∼ 3 ns and it is harder to tell

the difference between photoelectrons and the laser firing the plate directly. Instead

we use the relative timing between the ion MCP and the electron MCP. Using the

triple coincidence between the photodiode, the ion MCP, and electron MCP, we get

the purity that we need to cleanly select photoionization events.

To start looking at the data we can make a 2D histogram of two of these relative

timings like what is shown in Fig. 5.4. Plots like this are great for exploratory data

analysis. We can see for example that there appear to be some stripes in Fig. 5.4a.

These stripes are caused by the fact that during the experiment the electric field

was changed along with thresholds on the constant fraction discriminators for the

delay line anode in between run 995 and 996. This shift in electric field meant that

the timing conditions that we applied for photoions are different before run 996 and

after. To get an idea of the magnitude of the shift see Fig. 5.5. For each of these

peaks, timing cuts were made by finding the mean and making cuts such that 95%

and 99% of the peak area was encompassed. These cuts are shown in Table 5.1.

In addition to the timing cuts it is also possible to make a position cut on the

photoions that hit the ion MCP. The position is provided to us via the delay-line

anode that backs the ion MCP. The photoions start off with essentially zero mo-
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As expected the number of photoionization
events is low during optical pumping times
compared to MOT times because so few
atoms are in the excited state.

(b) Photoionization events in optically
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(c) Schematic of of photoionization event

Figure 5.4: Relative timings of photoionization events. Shown in Fig. 5.4c is a
schematic view of a photoionization event. The relative timing between the detectors
shown in this schematic are what make up the axis of the data plots shown in
Fig. 5.4a and Fig. 5.4b. By comparing the data plots we see that there are many
more photoionization events that occur outside of the optical pumping time than
in the optical pumping time. There are two reasons for this. First, the amount of
experimental time spent in the optical pumping phase is only a fraction of the total
time. The second bigger effect comes from the fact that because the photoionizion
occurs from the excited state it is much more likely to occur during MOT times than
during optical pumping when most of the atoms are fully polarized the ground state.
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Figure 5.5: Photoionization timing shift after run 996. Due to the change in electric
field after run 996 the photo ion/electron timing peak shifted. This shift means that
we need separate timing conditions for the two different sets of data.

Photo Event Time Cuts

Condition I – E lower I – E upper I – P upper I – P upper
Run < 996 95% 1502.0 1520.0 1508.4 1550.4
Run ≥ 996 95% 1468.1 1498.1 1479.91 1522.09
Run < 996 99% 1496.0 1526.0 1494.4 1564.4
Run ≥ 996 99% 1458.1 1508.1 1465.85 1536.15

Table 5.1: Some different coincidence peak timing cuts tried. All of the values shown
are in ns. I – E stands for Ion MCP – Electron MCP timing as recorded on the TDC.
Only the first hits were considered. I – P stands for Ion MCP – Photodiode timing
as recorded on the TDC. Again this only considers the first hit. To change the result
that is returned from the subtraction into ns one must multiply by 0.0976562 the
TDC chips timing frequency and subtract 9.868 a constant offset that centers the
zero time peaks.
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mentum and are drawn by the electric field over to the plate. The distribution of

ion hits on the plate is determined by the physical location of the trap, its extent,

the temperature of the atoms, and the electric field. The reason for the changes

to threshold settings and electric field after run 996 was because we believed that

we were missing photoion events on the delay line anode. This turned out to be

true. For the four pre-996 peak events that pass the timing coincidence shown in

Table 5.1, none of them have position information recorded on the delay line anode

because the threshold was set too high. For the eight post-996 peak events that

passed the timing cuts all of them had position information. In the end we decided

to use the position information only if it was available for a given event. The position

cuts that we made on the delay line anode positions are −5.56 mm < x < 1.14 mm

and −2.4 mm < z < 4.66 mm.

Using the events that pass all of these cuts we can project onto a separate axis

the time in the optical pumping cycle. This is ultimately the spectrum that we are

interested in and the results of this projection are shown in Fig. 5.6. Using this

spectrum we are now able to fit with our models to find out what the polarization is.

One of the first things that we have to do is estimate the background on this plot.

We can do this by using the counts in the time bins from 100 to 250 µs because the

optical pumping light is not on during this time. Fitting this region with a flat line

using a binned likelihood method gives 0.23± 0.12. Where we place this background

level will have a big impact on our final answer for the polarization so we will fix the

background at the central value and fit for the polarization. This process will then

be repeated for background levels fixed at plus and minus its uncertainty. We will

then use the central value of the polarization that was found as our best answer and

use the spread in the other two as a measure of the systematic uncertainty connected

with our choice of background. We now have in hand a spectrum that we can try to
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Figure 5.6: Photoionization events ordered by optical pumping time. In both cases
we can see that there is a small peak at 250 µs on the plots. That is the time when the
optical pumping light comes on and where we would expect a peak. We know that
this technique works because we have used it with 41K and in another experiment
with 37K. In that experiment the rates were an order of magnitude higher than in
this experiment the same device unmodified found a clear peak. The only problem
with this data is that the statistics are low.

fit with our three different models.

5.4 Difference Between the Models

We can quickly apply the simple tail-to-peak ratio calculation that we developed

in Sec. 5.2.1. Doing this we come up with a polarization of 0.989± 0.004. This is a

useful number to keep in mind because it is close to what is expected, but there are

a number of problems with this model and it should not be taken too seriously. For

a better answer we will move onto fitting the spectrum.

To do this properly I developed a program that used ROOT’s built-in binned

likelihood fitting routines and at each step of the fit it calls via shell scripts an instance

of either the optical Bloch model or the rate equation model code. When doing this

it became clear to me that there is a major differences between the two codes. The

expected result of fitting using the two models is that they should return very similar
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Figure 5.7: Comparison of the the polarizations output from the rate equation model
and the optical Bloch model for a varying value of misaligned magnetic field here
referred to as Bbad. It is clear from the plot that the two codes have very different
polarization responses to misaligned magnetic field. However it was not obvious
if, after fitting the fluorescence, the returned value for the polarization would be
different even if the fits converged to considerably different Bbad.

results. There should be small differences because of the different physics included

in each model. It was observed that the difference of the polarization returned by

the two models was larger than expected. The difference arises when misaligned

magnetic fields are included in the fit. To diagnose the problem I started by looking

at the response of the code to the initial input of a different value of the misaligned

field strength. The response of the two models is shown in the Fig. 5.7. From looking

at this figure we see that the response of the model changes to the input value of the

misaligned magnetic field, Bbad, but the question still remained: “After the fit would

the value of the returned polarization be the same?”

The result of one of these fit procedures is shown in the Fig. 5.8. There are three

fit lines on the plot that are for three different values for the background level that
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Figure 5.8: A typical fit of the optical pumping spectrum. The three different lines
are for the three choices of background level. To see the returned polarization from
the fits see Fig. 5.9.

were mentioned earlier. With this very low-count data, the background level that

we choose will have a large impact on the fit polarization since it directly affects

the “tail” level. The second parameter that needs to be fixed was the time that

the light came on. The way that I decided on this time was to fix the “on” time

originally at 245 µs and the background value to 0.235 then I let Bbad vary. After

the program converged, I then fixed Bbad at its best fit value and let the start time

vary to improve the fit. The value that I came up with was 248.77 µs and for the

rest of the fits the start time was fixed at this value. The reason that they could not

be simultaneously minimized is that the correlation between them was too large to

allow the fit to converge.

The returned polarization from fits using the two models are shown in Fig. 5.9.

Fig. 5.9a shows the case when letting the value of the misaligned magnetic field vary
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while holding constant the value of S3 at 0.98 as measured during the experiment.

Using the technique described earlier. Fig. 5.9b shows the effect of fixing the value

of the misaligned field to 0 and letting the value of S3 vary.

We learn some interesting things from these plots. First we learned that with

Bbad = 0 and S3 free to vary, the two codes give basically the same answer. This is

because the physics that governs this process is just an additional rate for absorbing

photons of the wrong circular polarity and is easy to implement in both models. This

similarity between the output polarization is what we expected to see from looking

at the response of the two codes to a misaligned magnetic field (see Fig. 5.7). As

Bbad approaches zero the polarization returned from the two codes converge to the

same answer. The second thing we see is that the final polarization is independent of

the depolarization mechanism in the rate equation model whereas the optical Bloch

model is not. The presence of a misaligned magnetic field has a much larger effect

in the optical Bloch model than a poor S3 on the returned polarization.

To try and understand the difference that we were seeing between these two

models, we looked at the sublevel populations returned by them. These populations

are shown in Fig. 5.10 for each code at the best value of Bbad for the central value of

the background. We see in the figure that the sublevel populations are similar but

slightly different. This is what we expect. The sublevel populations give us no clues

about which model to believe in terms of the physics and do not shed light onto why

the returned misaligned field parameters are so different. The effort is ongoing to

try and have the two models come to a consensus on what the polarization of the

atoms was, and to place limits on both of the free parameters, S3 and Bbad.
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Figure 5.9: The values of the polarization returned from the fits. In Fig. 5.9a the
experimental spectrum was fit with the value of S3 was fixed at 0.98, the value
measured during the experiment. Also shown in green on this plot is the value of the
polarization as measured offline after the experiment using 41K. In Fig. 5.9b the value
of misaligned field was set to 0 to check that the two codes agreed at a place where
the underlying physics should be the most similar, and they do. The final numbers
reported at the bottom of each plot are the central value for the fit at background
level 0.25. With the errors being the error from the fit at that background level
added in quadrature with the difference in central value from the fits at the other
two background values. Trying to fit the S3 and misaligned field simultaneously does
not work because the parameters are too highly correlated.
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(b) Ground state populations from fit us-
ing the rate equation model.
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Figure 5.10: Sublevel populations given by the two OP models. The spectrum shown
in Fig. 5.8 was fit using the two models with a fixed value for S3 and allowing the value
of the misaligned field, Bbad, to vary. These are the sublevel populations returned at
the best fit values for each model. The actually values of the Bbad returned from the
fit differ by an order of magnitude, but the sublevel populations look very similar. As
shown in Fig. 5.10c there are high frequency differences between the models. These
high frequency differences are probably from the way that the differential equation
algorithms work and not from quantum coherences in the optical Bloch model which
would give smoother oscillations. In either case they die away after ∼ 100 µs and
the model differences reach a steady state.
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5.5 Polarization Experiments with 41K

41K is stable and has a 6% abundance in naturally occurring potassium. After

the experiment was over a number of experiments were performed by other members

of the collaboration in Vancouver with 41K. The goal of these experiments was to

load the trap with 41K and measure the achieved polarization while simulating the

conditions of the experiment. 41K is a good candidate for these test as the hyperfine

structure is very similar to that of 37K, it is stable, and it is readily available. This

means that orders of magnitude more atoms can be loaded in the trap compared to

37K and the polarization can be measured by directly measuring the de-excitation

photons, thus simplifying, and speeding up each experiment. What follows in the

next sections is a summary of work done by our collaborators in Vancouver after the

Aβ experiment. It is summarized here because the information is complementary

to what was described in the previous section. For a fuller description of these

experiments refer to Ioana Craiciu’s co-op term report [97].

As mentioned previously the signal that was used to monitor the polarization was

the fluorescence photon signal of atoms returning to the ground state after having

been excited by the optical pumping laser beam (see Fig. 5.1). If atoms reach the

fully stretched mF = 2 or − 2 state there does not exist a suitable state in the 4P1/2

level that they can be pumped into and, because they can no longer be excited, they

will also stop fluorescing. This signal is very similar to the photoion signal that was

discussed in the previous section and will have the same shape. Because it is easy

to implement online, the simple tail-to-peak calculation from Eq. 5.4 was used to

monitor the experiments in progress. Later the data were fit with the rate equation

model and optical Bloch model code. A schematic diagram of the setup used to

collect the data is shown in Fig. 5.11.
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Figure 5.11: A schematic of the offline polarization measurement setup. The optical
pumping signal falls off exponentially so the gate widths to the scalars increase
roughly exponentially so that each scaler ends up with about the same number of
counts in it. Another item of importance not shown on this schematic is the angle
dependent filter between the PMT and the chamber that allows the optical pumping
and florescence light through, but blocks the MOT light.

The trap was loaded and the atoms allowed to cool. Then for 16 cycles the

data collection alternated between florescence and background counting. Then the

polarization was flipped and there would be another 16 cycles alternating between

fluorescence and background. The AOM that allowed the optical pumping light into

the chamber sent a start signal to the the gate generators that reset the scalars and

initiated the counting pattern. This group of 16 and 16 was repeated 8 times and

then for each pair of signal and background spectra the background was subtracted

and the data summed. This scheme for background subtraction was chosen to try

to reduce the systematic error that results from variations in the number of atoms

in the trap and in drifts in laser power.
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Figure 5.12: A schematic of polarization light injection optics mounted on the 19.5◦

optical pumping arms. The liquid crystal variable retarder is the element that is
responsible for circularly polarizing the optical pumping light. Its performance is
sensitive to its temperature.

5.5.1 Effect of Temperature on Polarization

In the December 2012 experiment, it was found that, because of the action of the

AC-MOT, the temperature of the strip detectors was rising. As the temperature rose

so did the leakage current of the silicon detectors. To avoid damaging the detectors

a portable air conditioning unit and ducts were set up that would blow cold air

on to the flanges where the strip detectors were situated. Other elements of the

experimental setup were also affected by this cooling one of them being the liquid

crystal variable retarder (LCVR) that was part of the polarization control elements

mounted on the 19.5◦ arms of the chamber (see Fig. 5.12). The experiments that

I have just been describing identified the cooling of the LCVR as the dominant

systematic error in trying to simulate the December 2012 run conditions. As we did

not record the temperature of the LCVR during the run it could not be reproduced

accurately. What we do know is that the LCVR on the lower optical pumping port

was cooled more than the LCVR on the top and that this caused an asymmetry

in power between the upward and downward propagating beams. A limit on the

negative effect that this could have on the polarization was estimated by offline
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experiments to be 0.002± 0.008.

5.5.2 Summary of Offline Experiments

The final result of these experiments as reported to the collaboration are that the

polarization of the atoms as measured by the offline experiments was 0.992± 0.006.

This number is already taking into account the small change in S3 from offline to

online experiments and the change in the current applied to the trim Helmholtz coils

that are loaded on the frames in the push beam direction. This number also is an

average of the two polarization states. The final step is to apply the 0.002 ± 0.008

that comes from the loss in power of the upward going beam due to the cooling of

the lower LCVR to arrive at 0.99 ± 0.01 as the final number for the polarization

from these offline experiments. All of these polarization numbers were produced by

fitting with the rate equation code and so suffer from the same uncertainty about

the presence of misaligned magnetic fields that we have discussed in this chapter.

This model uncertainty is not included in the quoted uncertainty.

5.6 Final Value of the Polarization

At this time, because of the ongoing efforts to try to diagnose the problem with

the models with respect to the presence of misaligned magnetic fields, we cannot

report a better number for the polarization than the systematic limited 0.99± 0.01

found from offline measurements. This number also suffers from the same problem of

misaligned field versus poor S3 but the presence of other large systematic errors such

as the effect of temperature on the LCVR in this measurement lessen the relative

importance of this uncertainty. This can be seen by comparing to the polarization fits

shown in Fig. 5.9 where it can be seen that 0.99±0.01 encompasses or overlaps all of

the fit values. Along with the polarization it is also important to know the alignment

of the atoms to simulate the full decay rate. In the polarization region between 0.98
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and 1, the polarization and the alignment of the atoms have a linear relationship

and a polarization 0.99 ± 0.01 corresponds to an alignment of 0.99 ± 0.01. Below

a polarization of 0.9 this relationship breaks down and the two quantities diverge

nonlinearly.

Since approximate results are more helpful than no results, and we need a number

for the polarization and its uncertainty in order to finish the analysis of Aβ, I will

proceed using this number knowing that in the future, when the model differences

have been resolved, it will be superseded by a fit value from the online data.
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6. DATA ANALYSIS

6.1 Cleaning and Preparing the Data

The raw data that we stored on the hardrives of our data acquisition computer

represented a multi year effort devoted to simulation, design, fabrication, assembly,

and testing of a large experimental setup. Like all experiments, not all of the data

is useful. The first part of this chapter will deal with the data filtering that had to

take place before the physics analysis could happen. The second part of this chapter

will detail what was done to extract Aβ from the data.

6.1.1 Equal Time In Each Polarization State

One of the easiest to understand details that we need to pay attention to is to

make sure that there was an equal amount of time spent in each polarization state.

If more time were spent in one polarization state than the other, this would produce

a false asymmetry. It is possible to show this with GEANT4 data that started with

equal times in both states and was filtered to remove randomly a portion of time

from one state and not the other. The results of this filter are shown in Fig 6.1.

As can be seen, this leads to an asymmetry that we would be unable to distinguish

from the asymmetry coming from Aβ. In order to avoid this type of bias, a filter

was applied to the experimental data which excluded the data that were collected

at the beginning and end of each run, and only accepted the data that were part of

the complete 32 second set. Since the polarization was flipped every 16 seconds, this

filter ensured that equal time was spent in both polarizations states. A graphical

representation of this filter is shown in Fig. 6.2.

Another similar bias to the time asymmetry would be an asymmetry in the num-

ber of atoms in the trap between the two polarization states. This bias was checked
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135



Figure 6.2: The macroscopic timing filter applied to the data. The data acquisition
computer and the atomic control computer did not share a common clock. The effect
of this was at the start of each run the atoms could be in either polarization state.
To ensure that no bias was introduced by preferentially starting or ending runs in
one polarization state everything up to the first polarization flip and then again at
the end of each run was ignored.

by looking at the difference in the number of shakeoff electrons, ions, and summed

scintillator signals between the polarization states. As expected these signals on a

cycle-by-cyle basis were Gaussianly distributed around zero difference between states.

This means that over the course of the entire experiment that this asymmetry will

average to zero. To verify this a check was made by vetoing the 5% of cycles were

this count asymmetry was largest and seeing the effect on the final answer. This is

included in the error budget.

6.1.2 Energy Spectrum From Waveforms

The silicon detectors along with the preamps that we used produced signals that

were much slower than the scintillators and MCPs. A typical decay time of a pulse in

the silicon detector is about 3 µs whereas a signal in the PMT is about 15 ns. It would

be possible to use the PMT signal to generate a gate for a peak-sensing ADC and

collect the energy spectrum from the silicon in this manner. However in the future

we want to be able to put the silicon detectors into the event trigger and it would be

cost prohibitive to buy constant fraction discriminators (CFD) for all 160 channels
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of silicon. For this reason it was decided to use digitizers for the silicon detectors.

The silicon detectors were not put into the trigger for this experiment because to do

so would require that the signals from the PMTs and MCPs be digitized as well. A

firmware trigger would also have to be developed that would determine how far back

in time each detector would need to be read back, depending on what signal came

in first.

To initiate the waveform readout from these modules we used a signal provided

by the NIMO32 that was the “OR” of the scintillator and electron MCP signals.

Reading out all of the waveforms is a slow operation and deadtime could become

an issue at high count rates. However, at the 300 Hz peak count rate that we were

operating at, it was not a problem. We tested this by doubling the readout time

of the waveforms and it did not affect our count rates. The waveforms from one

strip for an entire subrun are plotted in Fig. 6.3c. The signals that we are interested

in extracting look like those shown in Fig. 6.3a. The difference being, from what

is shown, is that we would like to use something more sophisticated than a simple

threshold for finding them so that we could find small peaks that are buried in the

noise band shown in Fig. 6.3c. Crucial to our effort to find those events is the event-

by-event correction for the DC-offset. This DC-offset can be found be averaging the

the first 10 time bins of each waveform shown in Fig. 6.3b.

In order to use the waveform data for physics we needed a way to make an energy

spectrum from the raw waveforms. This is the job that could be done with a CFD, a

gate generator and an ADC. This problem can be broken into two smaller problems;

first, classify each waveform as a real or background event and second, extract an

energy value for each waveform. The first thing we did to try to solve the energy

extraction problem was to fit each of the waveforms with an analytic function. Then

we could solve the classification problem based on the results of the fit. The fitting
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(c) All of the waveforms from one channel
for an entire subrun

Figure 6.3: Different views of waveform data. There are some important features to
take note of when looking at these waveforms. The first point is that because of the
external trigger that all of the pulses from real β events should start at the same
time, see Fig 6.3b. Another important point is that because the baseline drifts it is
important that event-by-event to subtract this off. We can also see that for large
pulses the falling edge gets cut off. This will provide nonlinear energy dependence
to the spectrum if we integrate the peaks. Also we see in Fig. 6.3b some negative
going peaks from image charges that occur when an adjacent strip fires.
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Figure 6.4: This is a typical waveform fit that was obtained using Eq. 6.1. The
waveform fitting function worked extremely well except that the χ2 was not correlated
with the presence of a peak because if there was no peak the background would be flat
and the algorithm could shrink all of the coefficients to zero except of the DC-offset
and in such a case the χ2/d.o.f would be very good.

function that we used was

f(x, µ, σ,D,N, S) =


D x ≤ S

D +N

(
1

2πσ2 e
−(x−µ)2

2σ2 erf
(
x−µ√
2σ2

))
x > S

(6.1)

where µ is the mean of the gaussian and σ is the width, D is the DC-offset and S is

a cutoff below which we assumed that the background was flat and had a value of D,

N is the overall normalization. A typical fit using this function is shown in Fig. 6.4.
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There were a couple of major drawbacks to fitting each waveform. First, because

the fitting function fit a flat background just as well as a true peak, the χ2 did not

help us to determine if a peak was present or not. The determination step had to

come after the fit from the parameters obtained, such as the N paramater. Since

N is essentially the peak area no new information is gained over simply summing

up all of the bins. The only benefit from fitting was to smooth the noise and derive

analytic expressions for the peak height and timing. The second drawback was that

the fitting operation was computationally expensive and a speed test on a subset of

the data led to the conclusion that it would take 190 processor years to fit all of the

waveforms.

The solution to the problem was to allow a fast algorithm to extract things like the

peak area or height without the benefit of noise smoothing. One such algorithm sums

all of the data in the peak and waveform-by-waveform subtracts off the DC-offset.

Another tries and find the largest deviation from the DC-offset level. A schematic

of these two algorithms is shown in Fig. 6.5. The decision about if it was an event

or background was then based on this much more easily obtained information. The

algorithm chosen for this experiment uses the average DC-offset that is subtracted

from all points, and the resulting points are summed. This algorithm can operate

on all of the data in 120 processor hours, which is ≈ 10000 times faster than fitting.

Running the same experimental data through both algorithms gives energy spectra

that are very similar. A comparison between the spectrum for lower X strip 20 can

be seen in Fig. 6.6

Both of these methods are good at extracting the energy from the waveforms. To

classify each event as background or not, an energy threshold has to be applied above

the noise peak. The energy threshold was applied after the strips had been calibrated

by fitting them to a β energy spectrum produced by our GEANT4 simulation. The β
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Figure 6.5: A schematic view of different waveform energy extraction algorithms.
The two algorithms run very fast compared to the peak fitting that was tried earlier
and all of the waveform data can be analyzed in 120 cpu hours. When compared
head-on there is virtually no difference between the two in terms of speed.
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(b) A zoomed in view of the β energy spec-
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Figure 6.6: Spectrum differences between the digital charge integrating and peak
sensing algorithms. The structure of the noise peak changes dramatically between
the two algorithms see Fig. 6.6a. The large dip at zero in the peak height algorithm
is due to the fact that the algorithm deliberately chooses the value that differs from
zero by as much as possible as shown in Fig. 6.5. As shown in Fig. 6.6b the β energy
spectrum returned by both algorithms are very similar.
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spectrum was averaged over the whole detector. Something that could be done in the

future to improve upon this would be to fit each strip to its own simulated spectrum.

This would help the edge strips where deviations were observed. The calibrations for

each strip and the calibration procedure are shown in Appendix A. As a check of the

thresholds that we applied, we can look at the distribution of strips above threshold

as a percent of all events and compare this with GEANT4 data. This comparison is

shown in Fig. 6.7. Looking to the future for ways to improve the system, we found

that VF48 readout is the bottleneck of the data acquisition system. If we want to

go to higher event rates we need to find an algorithm to classify events quickly and

run it on the FPGA of the VF48 and then only read out the waveforms of interest or

just the energy and timing. The FPGAs on the VF48 modules might not be up to

the task and modules with more capable FPGAs might be needed to replace them.

6.1.3 Timestamp Mismatch

Online during the experiment we only looked at total energy spectra for the strip

detectors like those shown Fig. 6.6b. These appeared to match well with previous test

I had done with the strip detectors and with GEANT4. It was not until after arriving

back in Texas and trying to apply coincidence conditions with the strip detector was

there an indication that something was wrong. The perplexing results of trying to

apply such a condition are shown in Fig. 6.8. Applying a condition that any of the

silicon strips had an ADC reading above threshold wiped out the β spectrum.

To try to make sense of this non-intuitive behavior I plotted energy in the the

strip detector gated on scintillator energy (Fig. 6.9a). I broke the PMT energy

spectrum into rough energy bins and then looked at the energy spectrum in the

strips for those same bins that I had defined on the PMT spectrum. Doing this

should tell us if the peak that we have been calling the β energy distribution in the
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Figure 6.7: Comparison of strip firing across detector. This is a consistency check of
the detector calibrations and the applied thresholds. Overall things look good except
in the edge strips (1, 2, 39, 40). The calibration in these strips is suspect and in the
final analysis they were excluded. The experimental data is shown after applying
two different energy agreement values for the font and back planes of the detector.
The energy agreement algorithm is described in Section 6.1.4. As shown tightening
the energy agreement condition from 17 keV, the average value of the noise from the
calibration fits, to 1 keV reduces the number of accepted events by 45%
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Figure 6.8: The effect of silicon detector coincidence condition on the scintillator
energy spectrum before fixing the data stream mismatch. Applying the coincidence
condition that the shakeoff electron MCP fired at least once reveals the β energy
spectrum (blue). Unfortunately, independent of the shake off electron cut, if we
apply a condition that any of the silicon strips had an ADC reading above threshold
the beta spectrum is wiped out (red). This was our first clue that something was
wrong with the strip detector signal.
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Figure 6.9: Silicon energy gated on scintillator energy before fixing the data stream
mismatch. In Fig. 6.9a scintillator energy bins are chosen. In Fig. 6.9b the silicon
energy spectrum for each of the chosen bins is shown. It is strange to note that
almost all of what we see above threshold in the silicon detector, & channel 1000 in
Fig. 6.9b, is what we label as a gamma, < channel 500 in Fig. 6.9a. This plot caused
us to rethink what the problem was because taken at face value this plot says that
the strip detectors did nothing at all.

strip energy spectrum is correlated correctly with the energy spectrum that we see in

the PMTs. I was surprised to see in the results from this procedure shown in Fig. 6.9.

It appeared that what we were calling the β energy peak in the silicon spectrum was

coming almost exclusively from what looks like 511 keV gamma events in the PMT

energy spectrum. After seeing these results we began to reconsider the problem and

to attack it from a different angle.

Before the run I had done many tests with the strip detector while implementing

the data acquisition system for the experiment. These tests were much less complex

than the full experiment, especially from the standpoint of the event trigger. I did

a comparison with some of the earlier test data to try to narrow in on the problem.

For the comparison I chose some data that was taken while I moved a 90Sr source

around between the different corners of the detector and recorded the β position
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Figure 6.10: Comparison of the energy spectrum of 37K with that of 90Sr. In
Fig. 6.18a because we know that the source was located at ≈ (X = 0, Y = 40) we
are confident that our waveform analysis algorithm is working because that is where
we see the βs bunched. Comparing strips with what we had in the online experiment
with 37K Fig. 6.18b we see that the energy spectrum are almost identical.

information to make sure that the strip numbering scheme in software matched the

physical layout on the detector. These were good data for comparison because I knew

I was detecting betas just by looking at the position data and, since the position data

relied on the energy information being right, I had confidence that everything was

working correctly in these simple test runs. The result of the energy comparison is

shown in Fig. 6.18b.

After seeing the results of the comparison it became clear that the strip detector

energy signals were still working the same way that they had previously been working

in the pre-run setup. This meant that the summed run information was correct but

the event-by-event information was wrong. This lead us to examine the timestamps

that are attached by both the NIMIO32 modules and the VF48 modules to each

triggered event. If I plotted the time difference between these two timestamps for
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Figure 6.11: Diagnosis of the time stamp mismatch. These violin plots show the
probability distribution of timestamp differences for each of the buffer slots. The
probability distribution for each slot is mirrored left-right across the slot number to
make it more attractive to look at. Overlaid on each probability distribution is the
5 number summary describing the distribution. It was discovered that, for a given
event being read out, the corresponding VF48 signals with a matching timestamp
would be read out 5 events later. I added in a buffer that kept the last 5 events in
memory. These slots are listed on the X axis with the most recent event being placed
in slot 4 and the previous events being placed in slots 3 through 0 with the event in
slot 0 being the oldest. I then took the time difference of the buffered time stamps
with the current global timestamps in all the slots and incremented the distribution
of the slot where the smallest difference was found. It is clear that the off-by-5 rule
was true for sub run > 0 because the smallest difference was always found in slot 0,
where it was expected, but something more subtle was happening in sub run = 0.
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each triggered event, then I would expect a delta function a few nanoseconds wide.

When I did this operation however I did not get a delta function and this was the

clear evidence that something was wrong with the way that the events were organized

in the data files. Fig. 6.11 shows the distribution of time stamp time differences after

a partial solution to the problem had been developed for all sub runs greater than

sub run 0.

After examining the code that controls the modules, I found that a run-by-run

header was added to the beginning of the data file in sub run zero but not subsequent

sub runs. This header meant that the VF48 events got shifted by five events with

respect to the rest of the event structure. This problem was corrected by marshalling

all of the events into a five slot buffer and after the 5th event synchronize the global

timestamp clock to the VF48 clock. After this, all subsequent events obey the same

off-by-5 rule with the time stamps computed from the new base time. A flowchart

showing the algorithm used to correct the time stamp mismatch is shown in Fig. 6.12.

Even with this fix in place there are still timing glitches. Notice that the distribution

for run 1060 sub run 1 in Fig. 6.11 extends out to 12 µs. These timing glitches still

need to be guarded against by checking for error flags in the module readout but

they arise from a different type of problem than the offset in the data files. Not all

of these timing glitches are understood. To check their effect on the final answer all

cycles were timing irregularities were observed were eliminated from the data set and

the difference in Aβ including them or not is included in the error budget.

The major rewrite of the Analyzer code that was necessary to handle this event

marshaling and time stamp syncing was what lead to the creation of the software

architecture plan shown in Fig. 3.11 and the creation of the Aggregator class that

was mentioned in Sec. 3.9.
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Figure 6.12: A schematic of the algorithm to correct the timestamp mismatch.
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6.1.4 Energy Agreement Algorithm

A last step to making the silicon detector truly work is the implementation of an

energy agreement algorithm. Each detector is double sided and β passing through

will ionize atoms and the liberated electrons will migrate to one face of the detector

and the holes to the other where they they will be collected and readout indepen-

dently. After the energy spectrum for all of the strips have been calibrated by fitting

each spectrum to a simulated spectrum from the GEANT4 simulation then the energy

agreement algorithm is run on the set of calibrated energies event-by-event. The

first step of the algorithms is to search across each plane of the detector and look

for strips that have an energy reading above threshold. The second step is to add

the energy of each adjacent strip and see if that value is above threshold. For each

instance that is found above threshold the strip number or combination is added to

a potential list of events for that plane. The algorithms then compares the two list

of potentials and tries to form matches. In trying to form matches each value is

assigned an uncertainty because imperfect agreement could be cause by noise in the

spectrum. The uncertainty value used is 17 keV, this being the average noise for all

the strips from the calibration fitting. See Appendix A for all of the strip detector

values. As can be seen in Fig. 6.7 imposing a tighter coincidence conditions does

bring the edge strips closer into agreement with the GEANT4 simulation but it also

cuts away many events. The effect of tightening up the energy agreement between

the detector planes is included in the error budget.

6.1.5 Cleaning the MCP Time Signals

Both MCP detectors in the experiment served the purpose of providing timing

signals for the arrival of events. Coming out of the TDC we do not have absolute

times. The relative timings between signals is what is important. For this reason we
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always look at the timing from one signal and subtract the timing from another. For

example a signal that we were intensely interested in was the arrival of photoions

after a pulse of the UV photoionization laser because we use these events to measure

the polarization of the atoms, as discussed in Sec. 5.3. The procedure for finding

these events should work in the following manner. We should look through the data

and look for events that have a TDC hit recorded for the photodiode, telling us when

the laser fired, and a TDC hit for the anode of the ion MCP. In the ideal case all

events should have at most 1 TDC hit for both of these detectors. Once we have

found these events we can subtract the ion TDC signal from the photodiode TDC

signal and find a relative timing of 1.5 µs. This time corresponds to the time that a

1+ ion would take to accelerate in the electric field from the trap and arrive at the

ion MCP.

The reality of the situation is much different than the idealized case that was just

described. In reality, both the electron MCP and the ion MCP timing spectrum had

many peaks whose origin we do not understand. The signals feeding the CFDs were

both extremely noisy, and we know that there were often multiple CFD triggers for

a given event when the CFD would re-trigger off ringing from impedance mismatch.

For a view of the relative timing between the ion MCP anode and the photodiode

of the photoionization laser see Fig. 6.13. After trying some different algorithms in

an attempt to extract information from the extra peaks, we decided that it was too

complicated a problem and, for the analysis, we would limit ourselves to the use of

the first hit timing signal. This timing most closely matches the simulated timing

signals from GEANT4. This problem with multiple hits was not just a problem with

the ion MCP but also with the electron MCP, though not as extreme in that case.

Knowing a little about these timing signals, we are now in a position to appreciate

why we require a coincidence with the electron MCP. What is required is at least
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Figure 6.13: Ion – photodiode timing spectrum showing many poorly understood
peaks broken out by hit number. The ion detector was the noisiest signal that
we dealt with in the experiment. There were often four or more hits recorded by
the TDC for a given event when we would have only expected one or two. The
maximum that we observed was 18. As seen in the different panels, there are peaks
in the relative timing that depend on the number of hits in the TDC; the source of
these peaks is not understood. The only peaks shown here that were expected were
the two peaks shown in Fig. 6.13a at zero and 1500 ns. In contrast to the ion MCP
signal the photodiode signal was the cleanest in the experiment. It was observed to
have only double triggered once in the 3 billion recorded events.
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one hit on the electron MCP; no attempt is made to extract anything meaningful

from any hit in addition to the first.

6.2 Asymmetries

In this section I will lay out the steps to reduce the ≈10 Tb of data that were col-

lected into a single physics result. To start with, we will first examine the super-ratio

and how it will be used to analyze the data. We will then check on the asymmetry as

a function of time to make sure that we understand what is going on. This will lead

us into discussion about the importance of the relative timing between the electron

MCP and the scintillators. We will also briefly look at the asymmetry as a function

of cos θ and this will lead us into discussion about the strip detectors and how they

were used in the final analysis. Last, we will examine the asymmetry as a function

of energy and fit this asymmetry to extract, Aβ.

6.2.1 The Super-Ratio

At the heart of our analysis scheme is the so-called “super-ratio” used in the

evaluation of many asymmetry experiments, in particular the ultra-cold neutron Aβ

experiment (UCNA) [98, 99]. Why is it called the super-ratio and what makes it so

super? Referring back to Eq. 1.6, the observed asymmetry can be defined in terms of

the observed number of counts in the positive/negative directions, N+/N− according

to:

A(Ee) =
N− −N+

N− +N+

c

v

1

P
. (6.2)

Where A is the observed asymmetry and is related to Aβ, and N is the number of

events detected in the positive and negative Z directions for a given positron energy

bin Ee. The Ns are not shown with the explicit Ee notation because it will make the

154



later equations hard to read but it is still implied. This is straightforward and we

will now show that the super-ratio collapses to this expression under a certain set of

conditions that we will outline here.

To begin we will start with the expression that is given as an inline equation on

page 4 column 1 in [99]

S(Ee) =
r(Ee)

↑
1r(Ee)

↓
2

r(Ee)
↓
1r(Ee)

↑
2

,

A(Ee) =
1−

√
S(Ee)

1 +
√
S(Ee)

. (6.3)

Here the r(Ee) is the rate in detector 1 or 2. The arrows represent the two polarization

states the ↑ is when the nuclear spin in pointing at detector 1 and ↓ is when it is

pointing at detector 2. Now we will insert the value of S(Ee) into A(Ee),

A(Ee) =
1−

√
(r(Ee)

↑
1r(Ee)

↓
2)/(r(Ee)

↓
1r(Ee)

↑
2)

1 +
√

(r(Ee)
↑
1r(Ee)

↓
2)/(r(Ee)

↓
1r(Ee)

↑
2)
. (6.4)

Eq. 6.4 is what we will refer to as the super-ratio. Now to show that the super-ratio

can simplify to the naive asymmetry we will need to make some assumptions about

the problem. The assumptions that we make here are related to the design choices

that were made when setting up the experiment. For example the experimental

chamber was designed to be symmetric across the XY plane so that scattering in the

two β-detectors would be the same. The assumptions that we will make are that we

have a perfectly symmetric system with a perfectly centered trap, in this case the

backscatter is the same in both directions. Additionally, if the efficiencies of both

detectors are exactly the same, including any energy dependent efficiencies, then the

rate in a given detector would be exactly the same as the rate in the other detector if

155



the polarization was flipped. If we then also assume that there are no rate dependent

deadtime effects, we can sum over all collection time and we can come up with the

following relations, r(Ee)
↑
2 = r(Ee)

↓
1 = N− and r(Ee)

↑
1 = r(Ee)

↓
2 = N+. We will now

insert this into Eq. 6.4. Since count rates are always positive there is no ambiguity

over signs and we come to our final result,

A(Ee) =
1−

√
(N+)2/(N−)2

1 +
√

(N+)2/(N−)2
,

A(Ee) =

√
(N−)2 −

√
(N+)2√

(N−)2 +
√

(N+)2
,

A(Ee) =
N− −N+

N− +N+
. (6.5)

We have now shown that the super-ratio is equivalent to our naive asymmetry un-

der a certain set of circumstances. In the next section we will look at the uncertainty

associated with these equations.

6.2.2 Super-Ratio Uncertainty

To use the super-ratio we will need to understand the uncertainties and how they

will propagate into the final result of Aβ. In general, for any computed quantity, F ,

with independent inputs (meaning we neglect cross terms), Xi the associated error

is given by,

σ2
F (Xi)

=
n∑
i=1

(
∂F

∂Xi

)2

σ2
Xi
. (6.6)

Let us look at the two cases of calculating the asymmetry from experimental

measurements. We will start with the simple naive case given in Eq. 6.5. The partial
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derivatives are straight forward to calculate and are

∂A

∂N+
=

2N−

(N+ +N−)2
,

∂A

∂N−
=

−2N+

(N+ +N−)2
. (6.7)

These partial derivatives can be inserted into Eq. 6.5 to obtain the final result,

σA =
2

(N− +N+)2

√
N−2σ2

N+ +N+2σ2
N− . (6.8)

The case of the super-ratio is only slightly more complicated. The partial deriva-

tives are

∂A

∂r(Ee)
↑
1

=

−
√

r(Ee)
↑
1r(Ee)

↓
2

r(Ee)
↓
1r(Ee)

↑
2

r(Ee)
↑
1

(√
r(Ee)

↑
1r(Ee)

↓
2

r(Ee)
↓
1r(Ee)

↑
2

+ 1

)2 ,

∂A

∂r(Ee)
↓
2

=

−
√

r(Ee)
↑
1r(Ee)

↓
2

r(Ee)
↓
1r(Ee)

↑
2

r(Ee)
↓
2

(√
r(Ee)

↑
1r(Ee)

↓
2

r(Ee)
↓
1r(Ee)

↑
2

+ 1

)2 ,

∂A
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↓
1
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√
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↑
1r(Ee)

↓
2

r(Ee)
↓
1r(Ee)

↑
2

r(Ee)
↓
1

(√
r(Ee)

↑
1r(Ee)

↓
2

r(Ee)
↓
1r(Ee)

↑
2

+ 1

)2 ,

∂A

∂r(Ee)
↑
2

=

√
r(Ee)

↑
1r(Ee)

↓
2

r(Ee)
↓
1r(Ee)

↑
2

r(Ee)
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2

(√
r(Ee)
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1r(Ee)
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2

r(Ee)
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1r(Ee)

↑
2

+ 1

)2 . (6.9)

Inserting the partial derivatives into Eq. 6.6 and dropping the energy dependence for
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simplicity we arrive at the final result,

σA =

√
r↑1r
↓
2

r↓1r
↑
2(√

r↑1r
↓
2

r↓1r
↑
2

+ 1

)2

√√√√ σ2

r↑1

(r↑1)
2

+
σ2

r↓1

(r↓1)
2

+
σ2

r↑2

(r↑2)
2

+
σ2

r↓2

(r↓2)
2
. (6.10)

6.2.3 Why the Super-Ratio is Super

It is hard just by looking at equation Eq. 6.8 and Eq. 6.10 to get a feel for how

they behave. To help develop our sense will insert some numbers to see how the errors

come out. The first test that I will do is insert numbers so that r↓1 = r↑2 = N−/2 and

r↑1 = r↓2 = N+/2 and the sigmas are just taken to be the square root of the number

of counts. The number that I put in were N− = 2000000 and N+ = 1000000.

If the same total number of events is input into the naive formula and the super-

ratio formula then they both give the same central value and error. For the input

values given above both formulas give A = −0.33333± 0.00054. It should be kept in

mind that the super ratio requires more input and it is easy to forget to halve the

number of events in each detector, half for each polarization state, to come up with

the same overall count rate as the naive case. If an asymmetric error is introduced

by multiplying the acceptance of one of the detectors by some attenuation then, in

the case of the naive approach, the central value for the asymmetry changes and,

depending if the attenuation is applied to N+ or N−, the error will change by a

little or a lot. Using the numbers from above we will introduce an 80% efficiency

to one of the detectors and compute the naive asymmetry so that we have N− =

2000000(0.8) and N+ = 1000000, this gives A = −0.23077 ± 0.00060. If we apply

the efficiency to the other detectors we get N− = 2000000 and N+ = 1000000(0.8)

and A = −0.42857± 0.00054.
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The super-ratio does much better in this situation. For one case we have,

r↓1 = 1000000(0.8), r↑1 = 500000(0.8), r↓2 = 500000, r↑2 = 1000000, and in the

other case r↓1 = 1000000, r↑1 = 500000, r↓2 = 500000(0.8), r↑2 = 1000000(0.8).

Both case give the same asymmetry −0.33333± 0.00058. The central value remains

unchanged from what we had previously. The only effect is to enlarge the uncertainty.

The whole reason for doing this exercise was to find out what happens to symmetric

errors: by that I mean errors that change sign with a spin flip. An examples of such

an error is the trigger bias introduced through missing shakoff electrons due to Ar−

flight times. Such errors are neither cancelled well by the super-ratio nor the naive

approach. In these cases the problems need to be corrected for through modeling or

by only fitting the parts of the spectrum where these things are not important.

6.3 Asymmetry as a Function of Cycle Time

To start off our discussion about asymmetries, let us start by looking at the

asymmetry as a function of cycle time (see Fig. 6.14). Each point on the plot is an

asymmetry computed with Eq. 6.4, with the error bars representing the statistical er-

ror as computed with Eq. 6.10. An interesting thing that we see in the figure is that,

during the optical pumping time, we see an asymmetry and we do not see a statisti-

cally significant asymmetry during the rest of the cycle (Asym = −0.0005± 0.0005)

as we expect. We also see that using the strip detectors as a coincidence condition

is effective and the file offset mentioned previously has been corrected. Additionally

notice the large effect that including the electron detector coincidence has on the

observed asymmetry. Clearly the inclusion of this detector in the experiment was a

good choice. For the fitting that we will do later with the energy spectrum, we will

need to make a cut on polarized times. The cut that we will use is 300 µs ≤ t ≤

1960 µs, as shown in Fig. 6.14d.
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Figure 6.14: Asymmetry between the scintillators as a function of cycle time. In
Fig. 6.14a we see that taking an asymmetry of the scintillator signal without a coin-
cidence produces almost not asymmetry. We see in Fig. 6.14b - 6.14d, between the
polarized time 250 µs and 2000 µs, the asymmetry grows. By comparing Fig. 6.14b
with Fig. 6.14c we can see that relative importance of the shakeoff electron coinci-
dence is greater than the strip detector coincidence. To see the energy spectrum that
went into these asymmetry plots see Fig. 6.19b. Shown in Fig. 6.14d are the timing
cuts that were used to select events during polarized times.
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6.4 Timing Coincidence Between the Scintillators and the Electron MCP

In the last section it was mentioned that the coincidence between the electron

MCP and the the scintillators was the condition that has the largest impact on the

observed asymmetry. To investigate this a little further we looked at the relative

timing spectrum between these two detectors. A 2D histogram of the relative timing

of these two detectors versus the energy left in the scintillator is shown in Fig. 6.15.

The figure shows a number of stripes on along the timing axis. We recognize some of

these stripes as βs by looking at the energy distribution of the events in each stripe.

We also see in the figure a stipe that contains a large number of ADC overflows that

that come from cosmic rays. These events need to be removed from the analysis of

Aβ because the analysis relies on fitting to GEANT4 simulations that have not included

any background coming from cosmic rays. The cuts that were made to remove these

events are 62 ns ≤ tlowerscintillator ≤ 68.5 ns and 58.5 ns ≤ tupperscintillator ≤ 65 ns. The decision

was made to only use the strongest β peak in the spectrum because the amount that

we would gain in statistics by including the others would be offset by increasing the

uncertainty arising from the introduction of more cuts.

6.5 Asymmetry as a Function of Angle

One potential way that we could use the position information from the strip

detector is to look at the decay rate as a function of angle. The reader will recall

Eq. 1.1 where we see that the observed decay rate is not just dependent only on the

value of Aβ but also on cos θ. If we could look at the asymmetry as a function of

cos θ then we would be able to gain a greater handle on our systematic uncertainties.

It would also be possible to vary the polarization and observe a change in the decay

rate in this way but, as shown in Chapter 5, knowing the polarization in any state

is a hard problem and changing it would add to that difficulty.

161



0 1 2 3 4 5 6 730

35

40

45

50

55

60

65

70

75

80

0

200

400

600

800

1000
Relative Timing (Scintillator - EMCP) Versus Scinitllator Energy

Energy in Scintillator (MeV)

Walk From CFD ADC Overflow

βs

Cuts Applied

Ti
m

e 
B

ot
to

m
 S

ci
nt

ill
at

or
 - 

Ti
m

e 
El

ec
tr

on
 M

C
P 

(n
s)

Figure 6.15: Relative timing between the scintillator and the electron MCP. The
relative timing between the scintillators, top and bottom, and the electron MCP are
almost exactly the same except for a few nanosecond constant offset that is probably
due to a slightly longer signal cable. There are some stripes, separated by ≈ 10 ns, in
this plot that originate from shakeoff electrons that bounce off of the plate without
firing it and are then reaccelerated by the field and hit it again. This phenomenon is
also observed in the GEANT4 simulation. The part of this spectrum that is worrisome
is the stripe at 74 ns that does not have a β energy distribution and has a peak at
high energy. This high energy peak is from cosmic muons and needs to be cut out
of the asymmetry analyisis.
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Figure 6.16: Simulated cos θ distribution for silicon detectors. These are contours
of equal cos θ that I found through Monte Carlo. The two distributions are not
perfectly symmetric because the trap is not perfectly centered in the chamber.

The strip detectors have forty individual strip readouts per plane and the strip

arrangement of the two planes front and back is perpendicular. So a typical β particle

as it passes through the detector will deposit energy in one strip of the front plane

and one strip of the back plane. In this way it is possible to identify to the accuracy

of a 1 mm box the place that the β passed through the silicon detector.

In order to measure the asymmetry as a function of cos θ using the position

information provided by the strip detectors, it is necessary first to define areas of

constant cos θ projected onto the silicon. In order to find these cos θ contours I wrote

a small Monte Carlo program that would take the coordinates of the trap center and

find the average cos θ for each of the 1600 pixels and group them into contour levels

that I would later use in computing the asymmetry. The results of this Monte Carlo

simulation can be seen in Fig. 6.16. One of the limitations that I faced when trying

to analyze the data in this way was that we only have pixel information for the
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Figure 6.17: These are heatmaps of β hits on the bottom silicon detectors during
polarized time. They would look the same as those shown in Fig. 6.16b if we had
∼ 10000 times more data and there was no β scattering. A large asymmetry between
the two polarization states Fig. 6.17a and Fig. 6.17b is clearly visible by eye. The
magnitude of this asymmetry is shown in the lower left panel of Fig. 6.14.

bottom detector because of the faulty X-odd preamp on the top detector. That

means that any analysis will exclude about half of the total data set. It quickly

became apparent that, because of the lack of statistics, we were not going to be able

to extract anything meaningful from the asymmetry as a function of angle. A heat

map of β hits on the lower detector can be seen in Fig. 6.17b

One other thing that is possible to try is to use every other pixel. The upper-X

even strips did work so we can use them in the analysis. If I impose a coincidence

condition between the Y strips on both detectors and the even X strips on both

detectors then I come up with a set that I can use in the super-ratio. This process,

even though it throws away events, might still succeed because the overall data might

be cleaner. With the position information that we have from using every other pixel

it might be possible to see some angular effects. Using just the Y plane of the
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detectors, we have in the whole data set 36,837 events that pass all of the other cuts.

Applying the every-other strip condition for both detectors gives us a set of 11,051,

spread into 1600 pixels over the two polarization states. This condition removes

more than half of the data because energy agreement between the two planes of the

detectors is enforced.

We can look now at the asymmetry for two areas of equal cos θ. The asymmetry

is shown in Fig. 6.20b. The lack of statistics in the two spectra makes comparison

meaningless. However, this comparison should be possible with the next data set

because so much more data was collected and faulty preamp was replaced so that

all of the strips on both detectors were working. In the next section we will begin

to look more closely at the asymmetry as a function of the energy that the β left in

the scintillator. To do that we will want to use both silicon detectors to increase our

statistics. The way that I did this was to use the full detector on the bottom and

on the top to use every other strip. In this way I could use the energy agreement

algorithm. The effect of using the strip detector in this way should be taken into

account by the super-ratio because it is just an efficiency that is applied to one

detector the same as the example shown earlier. However, instead of relying on

cancelation from the super ratio we remove the problem by fitting the data with

GEANT4 simulation data that has been filtered to remove its upper X odd strips.

6.6 Asymmetry as a Function of β Energy

More fruitful than looking at the asymmetry as a function of cos θ is to look at

it as a function of kinetic energy of the β. In order to do this we will need to have a

calibrated, clean β energy spectrum to work with. The data were calibrated by fitting

to GEANT4 and the procedure is outlined in Appendices A and B. Shown in Fig. 6.19a

is a view of the calibrated energy spectrum with all events collected in the experiment
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Figure 6.18: Asymmetry for two slices in cos θ. The strip detector was divided into
three sections in cos θ. The innermost section cos θ = (0.958, 1] is circular and the
second section cos θ = (0.917, 0.958] is an annulus. The third section is everything
else on the strip detector and is oddly shaped. These regions were chosen because
the inner two regions are the largest possible sections that are fully contained on the
strip detector that have equal cos θ. The two top panels show the asymmetry signal
from these two regions. The axis were intentionally made the same as Fig. 6.20b
for comparison. If we average over the energy spectrum then we can come up with
asymmetry as a function of cos θ shown in Fig. 6.18c. When looking at asymmetry
with bins in cos θ it will be important to understand how many of the detected events
have a different cos θ than they started off with. We can simulate this in GEANT4 and
the result is shown in Fig. 6.18d.
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Figure 6.19: The scintillator energy spectrum. Fig. 6.19a shows the raw upper
scintillator spectrum with labels of prominent features. It should be noted that the
endpoint for the β spectrum will be shifted lower in energy from its nominal value
of 5.12 MeV because a typical β will lose 275 keV of energy in the mirror, beryllium,
and strip detector before coming to rest in the scintillator. As shown in Fig. 6.19c.
Another visible feature is the Compton edge of the γ ray from the excited state of
37Ar populated by the 2% pure Gamow-Teller branch. A simulated energy spectrum
from our GEANT4 simulation for this branch is shown in Fig. 6.19d. The effect of
introducing coincidence conditions on the scintillator energy spectrum is shown in
Fig. 6.19b. As can be seen the the coincidence with the silicon detector greatly
reduces the 511 keV annihilation background but leaves the cosmic rays at high
energy. The coincidence with the shakeoff electron MCP eliminates the cosmic rays
but leaves the 511s. In the final analysis we require them both.
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from the upper scintillator. The figure is labeled with key features. Something

important to note is that there are background gamma peaks. The background from

these unpolarized gammas will need to be removed if we are going to be able to fit

for Aβ.

The cleaning of the energy spectrum in preparation for fitting was done by intro-

ducing the following coincidence conditions between the various detectors:

1. There should be at least one hit in the TDC for one and only one of the

scintillators.

2. There should be at least one hit in the TDC for the shakeoff electron MCP.

3. The event had to have occurred within the time window 300 µs < t < 1960 µs

after the start of the optical pumping signal.

4. The event had to have exactly one strip in the Y plane and exactly one strip in

the X plane of the silicon detector in front of the scintillator register an energy

above 20 keV. A summed pair of adjacent strips will also work in this case.

Both of the planes had to be above 20 keV and agree within 17 keV. Strip

numbers 1, 2, 39, 40 were excluded from all planes.

5. The event had to have a relative timing between the firsts hits on the TDC for

the lower scintillator and the electron MCP of 62 ns ≤ tlowerscintillator ≤ 68.5 ns or

for the upper scintillator 58.5 ns ≤ tupperscintillator ≤ 65 ns.

The effect of applying the previously listed coincidence conditions on one of the

the β energy spectrum needed for the super-ratio can be seen in Fig. 6.20a along with

a GEANT4 energy spectrum that has been put through the same filter. Now that we

have applied the cuts necessary to clean up the β spectrum. We will apply the super

168



ratio bin-by-bin to the four β energy spectra. This will leave us with an asymmetry

signal. Which is shown in Fig. 6.20b. We need to remember that the asymmetry will

not be the same as Aβ because of the v/c term in the decay rate, the polarization is

not 100% and there is β scattering.

In the next step of the analysis we will fit the spectrum shown in Fig. 6.20b with

multiple GEANT4 spectra corresponding to different values of Aβ. In this step we

need the central value for the polarization of the atoms; 0.99 was used as explained

in Sec. 5.6. Using this number for the polarization you can either make a correction

to the data or run all of your GEANT4 simulations with the measured polarization.

The second method has the downside that if you want to try a different polarization

that you need to run a new set of simulations and this becomes time prohibitive very

quickly.

The other topic that we need to consider before we can make a fit of Aβ is the

fitting range. In the fit I choose to omit the first two bins because they are below

or partially below 511 keV. This region is hard to get a handle on because the

strip detectors are not perfect at vetoing 511 γs, and β scattering at low energies is

large. Also as shown in Fig. 6.15 because of the walk in the constant fraction for

the scintillators the low energy gammas get spread out and some will be cut by the

timing coincidence that we put on the relative timing between electron MCP and

scintillators. Since this effect is not simulated in GEANT4 it is hard to know what

effect it will have.

Now that we have established our spectrum and decided on a fitting region we will

fit our experimental results to simulated spectrum that were generated by varying

the input value of ρ that corresponds to different values of Aβ. This was done so that

a consistent set of all of the correlation parameters was obtained. For each spectrum

we will calculate a χ2 value. If we are sufficiently close to the minimum then the

169



0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

● ● ● ●
●

●
●

●

●
● ● ● ●

●
● ● ● ● ●

●

●

● ●

0 1000 2000 3000 4000 5000

−4

0

4

Energy (keV)

Lower Scintillator Energy Spectrum After All Cuts σ+ 
Pr

ob
ab

ili
ty

 

Data Source
Geant4
Experiment
Residuals

/dof = 28.95/23 ~ 1.26χ2

(a) The lower scintillator spectrum fit to
GEANT4

−0
.6

5
−0

.6
0

−0
.5

5
−0

.5
0

−0
.4

5
−0

.4
0

A
sy

m
m

et
ry

●
●

●

●
●

●

●
● ●

●
●

●

●
● ● ● ●

●

●
●

0 1000 2000 3000 4000 5000

−3

0

3

Energy (keV)

/dof = 22.42/20 ~ 1.12χ2

Data Source
Geant4
Experiment
Residuals

Asymmetry as a Function of Energy Left in the
Scintillator Shown With A Fit to Geant4 Simulations

(b) Observed asymmetry after all time
cuts fit with GEANT4.

●

●

● ● ● ●
●
●

●

●
●

● ●
●

●

●

●

●

At minimum Aβ = −0.5639 +/− 0.0063
    = 22.280  with  20  degrees of freedom
probability = 32.55
χ2

Data Source
Geant4

Minimum Value
& Uncertainty

Fit of the   sχ2

−0.59 −0.58 −0.57 −0.56 −0.55 −0.54 −0.53

10
20

30
40

50

Best Fit Value Aβ 

Input Aβ(E=0)

χ2

(c) Fitting the value of Aβ using GEANT4

simulations with different values of input
Aβ

Figure 6.20: Summery of Aβ fitting procedure. First, the experimental and GEANT4

spectrum are passed through the same filter of conditions resulting in spectrum shown
in Fig. 6.20a. There are four such spectrum produced one for each polarization state
and detector. Second, the the super ratio is computed bin-by-bin using these four
spectrum. The result is shown in Fig. 6.20b. Third, this spectrum is fit to multiple
GEANT4 spectrum that have been run with different starting values for Aβ(0) and the
result is shown in Fig. 6.20c.
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distribution of χ2 values will be parabolic and we could fit this distribution to find

the minimum. The minimum corresponds to our best estimate of the central value

of Aβ. To calculate the error from this fit we look to find which Aβ(0) values would

produce a χ2 = min(χ2)+1 and these are our 1 σ limits. The result of this operation

is shown in Fig. 6.20c. The result from our fit is Aβ(0) = −0.5639±0.0063, assuming

P = 0.99.

6.6.1 Systematic Uncertainties

There are of course systematic errors that we will also need to estimate and

add into the total uncertainty that we will quote for our value of Aβ. The first

major systematic uncertainty is knowledge of the polarization of the atoms. This

was discussed in detail in Chapter 5. It is worth summarizing here that during the

experiment we made a measurement of the polarization of the atoms using photoions

during the optical pumping time. In fitting this data it was revealed that there exist

a large difference in the way that the two polarization models being used behave in

the presence of misaligned magnetic fields. The value for the polarization that we

have been using (P = 0.99 ± 0.01) was measured using 41K offline and has known

problems. Depending on what is determined about the polarization and misaligned

magnetic fields the final number for the polarization could have error bars larger or

smaller than what is shown here. Additionally, if the central value changes then the

central value of our fit value for Aβ will also change. It needs to also be determined

if the polarization was different between the two states. As it stands right now the

systematic uncertainty associated with our knowledge of the polarization for our

value of Aβ is 0.0056. In a follow up 37K Aβ experiment performed by the TRINAT

collaboration because so much more data was collected it will be possible to make

measurements of the polarization of the atoms in both polarization states instead of
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having to average of the two states as was done with this data set.

Some of the systematic errors that we considered have roots in the physical me-

chanics of the experiment. One such example is the number of atoms in the trap. If

more atoms were in the trap in one polarization state than the other then this would

lead to a fake asymmetry in the same way that unequal time in each polarization

state would. The number of atoms in the trap does deviate but over the course of the

experiment we expect the trap fluctuations will average out. Two ways of trying to

get a handle on the number of atoms in the trap are the sum of the number of counts

in the PMTs and the number of hits on the electron MCP. These two measures were

summed for each 16 s polarization period and the the difference between the two

polarization states for a 32 s cycle was taken as an indication of an unequal number

of atoms in the two polarization states. We wondered about the effect of the most

extreme cases of these asymmetric cycles. The data was analyzed including all cycles

and the then excluding the 5% of cycles where this count asymmetry was highest.

The asymmetry difference between these two fits is shown in Fig. 6.21b. It has a

small effect on the fit value of Aβ. The half difference between the central values of

the two fits for Aβ is what we will take to be our systematic uncertainty and is 0.001.

In the discussion about timestamp mismatch in Sec. 6.1.3 it was mentioned that

besides the file offset timestamp problem there could be other deviations arising

from other sources. The mechanisms that causes all of these problems are not well

understood. If we were to take the difference in the timestamps between the first

event in a cycle and the last timestamp in the event and do it cycle-by-cycle we

should get a narrow gaussian distribution. This is what we get for 94% of the cycles.

For the other 6% we see large quantized deviations. Since we do not know the source

of these timing discrepancies or their consequences we calculated Aβ using all of the

cycles and then vetoing the 6% where these timestamp deviations occurred. A plot

172



-0
.0

4
-0

.0
2

0.
00

0.
02

0.
04

W
ith

 V
et

o 
 - 

W
ith

ou
t V

et
o 

A
pp

lie
d

0 1000 2000 3000 4000 5000
Energy (keV)

Asymmetry Difference From Vetoing 6% of Cycles That
Exhibit Unexpected Timing Behavior 

(a) Veto the 6% of cycles with observed
timestamp deviations

0 1000 2000 3000 4000 5000

-0
.0

4
-0

.0
2

0.
00

0.
02

0.
04

Energy (keV)
W

ith
 V

et
o 

 - 
W

ith
ou

t V
et

o 
A

pp
lie

d

Asymmetry Difference From Vetoing 5% of Cycles With the
Largest Difference in Count Rate Between Polarization States

(b) Veto the 5% of cycles with the highest
deviations in the number of electron hits
and summed scintillator hits between the
polarization states

0 1000 2000 3000 4000 5000

-0
.0

4
-0

.0
2

0.
00

0.
02

0.
04

Energy (keV)

Asymmetry Difference From Best Fit Value Changing Thresholds
Scheme on the Silicon Detector To 3σ Above the Noise Peak
For Each Strip 

In
di

vi
du

al
 T

hr
es

ho
ld

s 
 - 

C
om

m
on

 T
hr

es
ho

ld

(c) Changing the threshold scheme on the
strip detector from a common threshold to
individual thresholds.

-0
.0

4
-0

.0
2

0.
00

0.
02

0.
04

1k
eV

  -
 1

7k
eV

0 1000 2000 3000 4000 5000
Energy (keV)

Best Fit Value Aβ Changing Silicon X-Y Energy
Agreement Condition to 1keV from 17keV 

(d) Changing the energy agreement
threshold between the X and Y planes of
the silicon detectors.

Figure 6.21: Some asymmetry difference plots showing the effect of different system-
atic uncertainties considered.
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of the asymmetry difference is shown in Fig. 6.21a. The half difference between the

central values of the two fits for Aβ is 0.0005.

We also know that not all of the strips used in the analysis were exactly the same.

Some were noisier than others and others had worse calibrations. To this end we

fit the noise peak of all of the strips with a gaussian and then set the threshold for

each strip to be 3σ above the mean of the noise peak. We compared this with the

with setting the threshold to a global value of 20 keV. The asymmetry difference

resulting from this change is shown in Fig. 6.21c. The half difference between the

central values of the two fits for Aβ is 0.0005.

Another source of uncertainty associated with the use of the strip detectors is

the energy agreement condition that we applied between the X and Y planes of the

detector. Our choice of how tight to make the energy agreement was informed by the

calibration fit done for each strip. In an ideal world this energy agreement condition

would just reduce events where noise in the detector caused a disagreement between

the X and Y planes. That being the case we should be able to tighten this condition

to produce the same answer with larger error bars from the suppression of some of

these real events. We do not live in a perfect world and tightening this condition

slightly shifts our retuned value of Aβ. The asymmetry difference that results from

applying this condition is shown in Fig. 6.21d. This shift could be an indication

that our algorithm comes with some bias such as working better for events that

left lots of energy in the silicon detector. If that were the case the shape of the

scintillator spectrum that we are fitting would change and hence our fit value. The

half difference between the central values of Aβ of the two fits with different energy

agreement conditions is 0.0034.

The low energy threshold for the scintillator is another potential source of po-

tential uncertainty in our experiment. This is because on the low energy side of the
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spectrum events will be cut out by the timing coincidence that was applied because

of the walk on the constant fraction discriminator (see Fig. 6.15). For this reason

a fit was made with the threshold raised. The half difference between the central

values of the two fits for Aβ is 0.0005.

Until this point in doing these fits we have always always the scintillator energy

spectrum. This works because we fit the experimental scintillator spectrum with

those generated by our GEANT4 model. Since we require a coincidence between the

scintillator and silicon detector it is possible to sum these spectrum and to fit this

spectrum with summed spectra from GEANT4. The energy spectrum and a fit with

GEANT4 data is shown in Fig. 6.22. Fitting the data in this way gave a χ2/dof =

26.575/20 ≈ 1.33 with a probability of 14.77. Comparing this to the reduced χ2

from fitting the scintillator spectrum alone of 22.916/20 ≈ 1.15 with a probability

of 29.29 it can be seen that the scintillator only spectrum fits better with the data.

The half difference between the central values of Aβ doing the fit with the scintillator

spectrum and summed spectrum is 0.0011.

Another source of systematic uncertainty that we need to understand is the trap

displacements and movement that could be different during the two different polar-

ization states. If the trap is in the same off center position during the two states

then this will cancel out in the super-ratio. If it moves positions depending on the

polarization state then it will not cancel out and will lead to a fake asymmetry. The

numbers that we will need to calculate the effect of the trap movement between the

two polarization states is given in Table. 3.2. The variable that matters the most to

the asymmetry is the Z position along the polarization axis. Two simulations were

run one with the trap at the average Z position of 1.11 mm and the other with the

trap at 1.059 in the σ− state and 1.186 in the σ+ This is a worst case scenario as the

number in both states was moved by its uncertainty in opposite directions so that
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Figure 6.22: The effect of different conditions on the energy spectra and fits. The
energy spectrum with coincidence shown in Fig. 6.22a and Fig. 6.22c look similar to
that shown in Fig. 6.19b. The differences are that Fig. 6.22a is is pushed to higher
energy by the inclusion of the strip detector energy and Fig. 6.22c has less counts
because of the tighter energy condition between the X and Y planes. The fit of the
energy spectrum and asymmetry with GEANT4 shown in Fig. 6.22b and Fig. 6.22d are
a little worse than the fits using only on the scintillator spectrum shown in Fig. 6.20.
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the maximum difference between the two states was achieved. The half difference

between the central values of the two fits for Aβ is 0.001. The same procedure was

used to vary the Z sail velocity but the difference was at the 10−5 level and neglected

here.

There are also geometry effects that we are able to evaluate with GEANT4. One of

these is evaluating the effects of machine tolerance on the mirror thickness. These

mirrors come from the manufacture with a specification for optical quality flatness.

This flatness is obtained by continually polishing polishing the original mirror sub-

strate. This means that the thickness cannot be guaranteed and indeed the thickness

is quoted by the manufacture as 10 ± 1 µm. This thickness is simple to change in

GEANT4. The way that this was done was by turning the trap position, temperature,

and movement all to zero. Also the detector resolution and polarization were set

to perfect. The reason for this is so that we could isolate the effect from just the

mirror. I ran four total simulations simulations with one in each polarization state

for mirrors at 11 microns another set at 9 microns. I did this because there needs

to be a fake asymmetry inducing mechanism. If the mirrors were both increased or

decreased together then the effect was observed to be canceled out. I then took the

half difference in the asymmetry retuned from the simulations. The effect was small

0.0001.

The last systematic uncertainty that we need to consider is the GEANT4 model

itself. One of the largest questions regarding the GEANT4 simulation is how well

it reproduces β scattering. Studies have been done to try and quantify how well

GEANT4 reproduces scattering data and report that the deviations could be as large

as 25% [100]. To quantify scattering effects on our measurement of Aβ, all GEANT4

events where a β scattered into the detectors as determined by the generated cos θ of

the β were vetoed in the GEANT4 simulation. The experimental asymmetry spectrum
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Table 6.1: Error budget. A breakdown of the contribution of the systematic uncer-
tainties to the overall error budget.

was then fit with this filtered set of GEANT4 simulations. Assuming that GEANT4

was off, in scattering, by 25% then our systematic uncertainty would be 25% of the

difference in Aβ from the fit using the filtered data and the best fit value, and the

uncertainty is 0.0015.

6.6.2 The Final Result

Putting it all together now we come to our final answer PAβ = −0.5583± 0.0109

If the polarization of the atoms is P = 0.990± 0.010 then Aβ(0) = −0.5639± 0.0094

a 1.7% measurement. The contribution of the different systematic uncertainties were

added together in quadrature due to our belief that large correlations do not exits

between them. An error budget summarizing what we discussed in the last section

is shown in Table. 6.1.

Let us examine some of the implications of this measurement in the two context

that were discussed in Chapter 2, namely calculating Vud using a set of T = 1/2 mirror
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nuclei, and exclusion limits on parameters from right-handed current models. The

value of Aβ that was measured corresponds to a ρ value of ρ = 0.553+0.034
−0.021 taking into

account recoil order corrections at the average β energy. The previous measurement

of Bν that gave a ρ value of ρ = 0.560+0.029
−0.024 [16]. These two measurements of ρ were

combined by finding the peak of the probability density function,

exp

−1

2

(
Bcalcν (ρ)−Bexperiment

ν

dBν

)2
+

(
Acalcβ (ρ)−Aexperiment

β

dAβ

)2

√
2π(dB2

ν + dA2
β)

 . (6.11)

The result is 〈ρ〉 = 0.557+0.021
−0.016. This value for ρ can then be used in Eq. 2.17

along with the values of the statistical rate function given by Naviliat-Cuncic in [16]

and the Ft given in Ref. [23] to calculate Ft0 = (6.04+0.09
−0.11) × 103 s. On its own,

37K’s |Vud| = 0.983+0.007
−0.009. This value can be combined with the other isotopes listed

by Naviliat-Cuncic yielding a value of |Vud| from T = 1/2 mirror transitions of

0.9723(17). When compared with the value reported by Naviliat-Cuncic 0.9719(17)

it can be seen that the central value moves into better agreement with the value

calculated from superallowed 0+ → 0+ decays but the increase in precision is not

significant. A graphical representation of this comparison is shown in Fig. 6.23a.

The other context that was developed in Chapter 2 that we could use to interpret

our measurement of Aβ was to limit the parameters of models that extended the SM

by allowing for the presence of right-handed currents. As shown in Section 2.4.1

the algorithm for constructing the exclusion intervals can take as input experimental

measurements of observables such as Aβ, Bν , and the ratio Ft/Ft0+→0+ . These

parameters depend on the value of ρ. Since the ρ dependence will also change in the

presence of right-handed currents it is treated as a fitting parameter and is allowed to

vary to minimize the χ2 at each point where a new set of right-handed current model
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Figure 6.23: Interpretation of our measurement of Aβ in the framework of the stan-
dard model and in the framework of the manifest left-right symmetric right-handed
current model.
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(a) Projected Aβ 0.1% (b) Projected Bν 0.1%

(c) Projected Aβ and Bν 0.1%

Figure 6.24: Projected limits from future experiments measuring the correlation
parameters Aβ and Bν at the 0.1% level of precision. The abbreviation CV in the
legend stands for current measured value. It can be seen that a 0.1% measurement of
either Aβ or Bν with the current Ft is sufficient to place a limit that is competitive
with the current neutron limit.
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parameters are tried. A visualization of the achieved 90% exclusion limits achieved

using just the present measured observables by themselves and the summed limit

from all 37K observables is shown in Fig. 6.23b. To see projected limits for future

work at the 0.1% level of precision see Fig. 6.24.
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7. FUTURE PROSPECTS AND SUMMARY OF RESULTS

7.1 Future Prospects

This experiment was never meant to be the stopping point in terms of the TRI-

NAT collaborations measurement of Aβ but rather a jumping off point for the pro-

gram to really push the boundaries of precision measurements in this area. Seen

in this light it is prudent to use the insight gained in the current analysis to make

suggestions for upgrades to the experiment to help reduce systematic uncertainties.

In this section I will outline some possible improvements.

7.1.1 Size and Position Sensitivity of Electron MCP

Early on in this project a question was raised about potential bias that could

be introduced by populating a short lived 37Ar− state instead of the neutral ground

state. Through the use of GEANT4 simulations the possible bias was investigated, see

Fig 4.9, and was determined to be small. Along these same lines a similar bias could

arise if the shakeoff electron energy is higher than current theoretical predictions. In

both cases the bias comes from the limited size of the detector. If we lose electrons

off of the edge of the detector, preferentially in one polarization state versus the

other, then this will lead to a fake asymmetry. The way to eliminate this bias is to

use a higher electric field or a larger MCP.

In order to eliminate the bias mentioned in the previous paragraph it is desirable

to use a larger shakeoff electron MCP. The one caveat is that increasing the size also

increases the noise. In order to keep the noise under control. It is desirable to add

position sensitivity to this detector also. In addition to helping clean up the noise,

position sensitivity would offer two exciting capabilities. First it would allow for the

first time a measurement of the shakeoff electron energy distribution and give us the
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ability to test if we were missing high energy shakeoff electrons off of the edge of the

detector. The second advantage that would be given by position sensitivity would

be the ability to measure trap position and temperature. This information would

be complementary with the information currently provided by the ion MCP and the

cross check who allow us to reduce the systematic uncertainty associated with the

trap position.

7.1.2 Increase Polarization Diagnostics

The largest systematic uncertainty is currently our knowledge of the polarization.

There exist a few possibilities to improve this that can be achieved on reasonable time

scales. The first thing is to install a triggerable photoionization laser. The current

laser fires at 10 kHz but its clock is not synced to any of the other clocks in the

experiment. This is pertinent to the polarization measurement because the photoions

produced by this random firing only help us to make a polarization measurement if

they come during the optical pumping time which is a small portion of the total cycle

time. If we were able to trigger the laser on demand we could raster the continuous

fluorescence curve into distinct time bins that we control. A triggerable laser has been

delivered to TRIUMF and is awaiting someone to set it up and develop the trigger

pattern that would allow us to sample from the time region that we are interested

in. The linewidth of the current laser has been measured to be 10 MHz [101]. The

natural linewidth of excited state is 6 MHz. It is unlikely that linewidth of the new

triggerable laser will be sufficiently narrow to probe the sublevel populations directly.

The second action that would help, even if we do not have total control over it,

is that we need to have more atoms in the trap. The photionization technique that

we used to measure the polarization in this experiment works better with higher

statistics. It was found after the experiment was over that the push beam was
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not well aligned between the first and second traps. Correcting this alignment lead

to a factor of 4 increase in the number of atoms in the second trap. In addition

to correcting the problem with the push beam, the vacuum pressure in the main

chamber needs to be reduced. Atoms in the trap can escape through collisions

with residual gas in the chamber. The main contribution to residual gas in this

experiment was from hydrogen. This was due to the failure of a non-evaporable

getter pump that is specifically designed to pump hydrogen. The replacement of

this pump did significantly reduce the total residual gas in the system and hence

increase the number of atoms in the trap. The better vacuum meant that physical

trap lifetime went from 1.5 s in the current experiment to 3.8 s. This increase in trap

population was demonstrated in a subsequent experiment. In the present experiment

TRIUMF used a low power target to produce the 37K at a rate of 3.8× 107 [26]. It

was speculated that using a high power target could produce more 37K and it would

be worth it to work with TRIUMF to develop a high power TiC target to test this

speculation. A high power target has been developed and it was confirmed during

that it did produce more 37K, 8.14× 107 [26].

The third action that should be taken to improve polarization diagnostics is to

enhance the direct optical imaging capabilities of the experiment. There is currently

a camera installed to view the fluorescence from the trap and it works when there

are millions of atoms in the trap but does not work with the low number of 37K.

A much more sensitive camera with a much faster frame rate has been delivered to

TRIUMF for the purpose of replacing the old camera. It is awaiting someone to set

it up, calibrate it, and develop the trigger pattern for it. It would be beneficial if the

data from this camera was integrated into the nuclear acquisition system directly.

Doing this would mean that the only job left for the Windows 98 computer would

be timing and it could easily be replaced by a waveform generator or FPGA module
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greatly reducing the timing uncertainties on the push beam signal.

7.1.3 Higher Electric Field

The position of the trap along the MCP axis is best located by the rising edge

of the neutral 37Ar hitting the ion MCP. In this experiment the 350 V/cm applied

electric field was insufficient to provide separation of the rising edge of the fastest

neutral Ar from the slowest 37Ar1+, see Fig. 4.8. The knowledge of the trap position

is tied up with knowledge of the applied electric field that can be determined by the

separation between the high charge states 1+, 2+, etc. and this separation grows with

the electric field. The exact position of the trap is not critical for the asymmetry

analysis as long as it does not change during the two polarizations states. Applying a

stronger field would allow the separation of charge states and the increased precision

could allow us to quantify better the movement of the trap along this axis between

the two polarizations states better. Additionally a higher electric field would allow

for complete collection of the Ar1+ ions. Measurements of the other correlation

parameters aβν and Bν rely on knowing the ion spectrum very well and incomplete

collection of these ions makes that a very difficult task.

7.1.4 Improved GEANT4 Simulations

The GEANT4 simulations of any experiment can never be 100% complete. In the

short term the things that could be reasonably done that would have the biggest

positive impact are first, to have a geometry review and implement missing parts or

redefine simplified parts to be more realistic. For example even though I defined the

copper coils with the correct wall thickness and filled the interior with cooling water,

I did not implement the ceramic support structure that holds these coils in place.

There are a number of small geometry elements like this that could benefit from a

review. The second thing that would help would be to design and implement specific
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tests of the GEANT4 simulations. These tests should be both software and physics

tests. On the software side the implementation of unit tests with a goal of 100% code

coverage is the standard that most large software companies operate under [102].

Where a “unit test” supplies input to a function and tests the returned value against

a known correct answer. Unit tests should test the smallest division of code possible

in C++ this is just a single function, and enough cases should be supplied that all

of the logical branch points contained in the function can be evaluated. There are

a number of reasons to do unit testing. First, it helps a programmer to find logical

errors because 100% code coverage means that tests need to be designed for all of the

branch points where it is easy to miss edge cases. Second, unit tests are generally

integrated into the build process automatically so that a programmer is immediately

alerted if the current change broke some part of the code that was already working.

Third, because unit tests are often written by a programmer other than author of

the original code and it is an opportunity for code review. Currently no unit tests

are implemented in this project.

On the physics side the response of the detectors compared to GEANT4 should

be done for different isotopes with different β and γ energies. The comparisons

that we have seen with the 37K experimental data, such as Fig. 6.20a, Fig. 6.20b,

Fig. A.1, and Fig. B.1 have been favorable but more cases would help to increase our

confidence that everything is right. Also our GEANT4 model should be tested against

independent simulations built using EGS4 [103] and PENELOPE [104].

7.1.5 Blind Analysis

The current analysis was not done with myself being blinded to the final answer

along the way. The reason for this was that we knew the time and manpower needed

to implement a blinding scheme would be better spent elsewhere. The justification
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for this being that with the statistics that we have we would not be able to see any

deviation due to physics.

Having worked through the analysis once I can suggest a plausible blinding scheme

for the next experiment. One way to do this would be to set up the GEANT4 simulation

so that in one polarization state, for a given amount of events requested, it would

simulate some unknown amount less. This would create a fake time asymmetry

in the GEANT4 data as described in Sec. 6.1.1. The advantage of doing this versus

other blinding schemes would be that it would be simple to implement and would

not disturb any of the physics of the spectrum. Also at the time of unblinding,

new simulations do not need to be run. The only correction that would need to be

applied would be to veto the right amount of events from the other polarization state.

Additionally the implementation of the scheme would entail the creation of a C++

blinding library that would not need to expose how many events it will veto just

one public method that would veto an event or not. Since the number of accepted

events coming out of GEANT4 is a stochastic amount compared to the the number of

requested events, the veto amount cannot be accidentally discovered.

7.2 Summary

The first experiment to make a measurement of the beta asymmetry parameter

in 37K is described. The online isotope separator of the TRIUMF ISAC facility

provided the 37K. By confining the 37K in a magneto-optical trap, we prepared it in

a point-like, cold, backing free source.

The positrons emitted from the decay of 37K to the ground state of 37Ar were

detected using silicon strip detectors backed by plastic scintillators. In order to

cancel out potential systematic errors we used two beta telescopes arranged along

the direction of the nuclear polarization axis and evaluated the asymmetry using
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information from both detectors and both polarization states using a super-ratio

technique.

The energy calibration of the detectors was done by comparing the positron

spectrum from the decay of 37K with a detailed GEANT4 Monte Carlo simulation.

This simulation included the full detector geometry and the dynamics of the cloud

movement during the optical pumping cycle. Calibrating the data in this way avoids

potential differences that can arise from changes in experimental conditions from

calibration to measurement phase.

To enhance the signal-to-noise ratio of the polarized decays an electric field was

used to accelerate shakeoff electrons from the β-decay onto an MCP detector. This

suppressed the unpolarized background of 37K that had escaped from the trap and

adhered to geometry elements inside of the chamber.

The same electric field that was used to accelerate shakeoff electrons in one direc-

tion also accelerated charged recoiling 37Ar in the other direction towards an MCP

equipped with a position sensitive readout. The position sensitivity of this detector

enabled the characterization of the cloud position and movement during the trapping

cycle.

The angular correlation between the positron (e) and the nuclear polarization

vector (P ) is defined in terms of the parameter Aβ:

dω ∼ 1 + AβP
ve
c

cos θ (7.1)

In this experiment we integrated θ over the solid angle coverage of our detectors and

used the energy spectrum of the scintillators to determine ve/c. The polarization

of the 37K was explored in depth. Due to the ongoing work to fully understand

depolarizing mechanisms the number used here for the polarization was taken from
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optical measurements done with 37Ar directly following the experiment, and has a

value of 0.99±0.01. This number is known to be a place holder and will be superseded

in the future with the fit value from the photoion spectrum.

We recorded about 41,702 events with a scintillator-silicon-electron MCP coin-

cidence. Fitting the data to GEANT4 simulations with our assumed value for the

polarization yields a result of Aβ(0) = −0.5635± 0.0094 a 1.7% measurement. This

measurement can be combined with others from a set of T = 1/2 mirror transitions

to calculate |Vud| = 0.9723± 0.0017. Also this measurement being interpreted in the

context of the manifest left-right symmetric model allows us to exclude masses of

M2 above 230 GeV at the 90% confidence level at ζ = 0.

Using the insight that was gained in the analysis of the current experiment rec-

ommendations were made on how the systematic uncertainties in the measurement

could be reduced paving the way for a truly precision measurement. In a follow up

experiment data has already been collected that will allow for a measurement of a

statistical precision of 0.3%. In that experiment due to much higher count rate a

much clearer photoion spectrum has been seen that will allow a much more precise

fit of the polarization than the current experiment. Additionally, because of the fixed

Upper X odd preamp both strip detectors will be able to utilize all of their pixels.
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M.A. Miller, R. Müller, O. Naviliat-Cuncic, P.A. Quin, and J. Sromicki. Mea-

surement of the Asymmetry Parameter for 35Ar β-decay as a Test of the CVC

Hypothesis. Physics Letters B, 304(1-2):60–64, April 1993.

[10] N. Severijns, J. Wouters, J. Vanhaverbeke, and L. Vanneste. β-decay

Anisotropies of the Mirror Nuclei 15O and 17F. Physical Review Letters,

63(10):1050–1053, September 1989.

[11] N. Severijns, J. Wouters, J. Vanhaverbeke, W. Vanderpoorten, and

L. Vanneste. First Online β-decay Asymmetry Measurements of Oriented Nu-

clei. Hyperfine Interactions, 43(1-4):415–421, December 1988.

[12] S. Hung, K. Krane, and D. Shirley. Beta-decay Asymmetry From the Decays

of Oriented 52Mn and 60Co. Physical Review C, 14(3):1162–1173, September

1976.

[13] Leo M. Chirovsky, Wen-Piao Lee, Albert M. Sabbas, Arthur J. Becker, Joel L.

Groves, and C.S. Wu. Nuclear Orientation Facility for the Study of the Angular

Distribution of γ Radiation and β Particles Emitted by Polarized Nuclei. Nu-

clear Instruments and Methods in Physics Research, 219(1):103–110, January

1984.

192



[14] F. Calaprice, S. Freedman, W. Mead, and H. Vantine. Experimental Study

of Weak Magnetism and Second-Class Interaction Effects in the β Decay of

Polarized 19Ne. Physical Review Letters, 35(23):1566–1570, December 1975.

[15] D. Melconian, J. Behr, D. Ashery, O. Aviv, P. Bricault, M. Dombsky, S. Fos-

tner, A. Gorelov, S. Gu, and V. Hanemaayer. Measurement of the Neutrino

Asymmetry in the β-decay of Laser-Cooled, Polarized 37K. Physics Letters B,

649(5-6):370–375, June 2007.

[16] O. Naviliat-Cuncic and N. Severijns. Test of the Conserved Vector Current

Hypothesis in T = 1/2 Mirror Transitions and New Determination of |Vud|.

Physical Review Letters, 102(14):1–4, 2009.

[17] J. Hardy and I. Towner. Superallowed 0+→ 0+ Nuclear β Decays: A New

Survey With Precision Tests of the Conserved Vector Current Hypothesis and

the Standard Model. Physical Review C, 79(5), 2009.

[18] Carlos A. Bertulani. Nuclear Physics in a Nutshell. Princeton University Press,

1st edition, 2007.

[19] Brian Martin. Nuclear and Particle Physics: An Introduction. Wiley, 2nd

edition, 2009.

[20] David Griffiths. Introduction to Elementary Particles. Wiley-VCH, 2nd edition,

2008.

[21] Stanley G. Prussin. Nuclear Physics for Applications. Wiley-VCH, 1st. edition,

2007.

[22] E. Hagberg, I. Towner, T. Alexander, G. Ball, J. Forster, J. Hardy, J. Hykawy,

V. Koslowsky, J. Leslie, H.-B. Mak, I. Neeson, and G. Savard. Measurement

193



of the l-forbidden Gamow-Teller Branch of 37K. Physical Review C, 56(1):135–

141, July 1997.

[23] P. D. Shidling, D. Melconian, S. Behling, B. Fenker, J. C. Hardy, V. E. Iacob,

E. McCleskey, M. McCleskey, M. Mehlman, H. I. Park, and B. T. Roeder. Pre-

cision Half-Life Measurement of the β+-decay of 37K. Phys. Rev. C, 90:032501,

Sep 2014.

[24] F. Della Vedova, S. M. Lenzi, M. Ionescu-Bujor, N. Marginean, M. Axiotis,

D. Bazzacco, A. M. Bizzeti-Sona, P. G. Bizzeti, A. Bracco, F. Brandolini,

D. Bucurescu, E. Farnea, A. Iordachescu, S. Lunardi, T. Martinez, P. Mason,

R. Menegazzo, B. Million, D. R. Napoli, M. Nespolo, P. Pavan, C. Rossi Al-

varez, C. A. Ur, R. Venturelli, and A. P. Zuker. Isospin Symmetry Breaking at

High Spin in the Mirror Nuclei 35Ar and 35Cl. Phys. Rev. C, 75:034317, Mar

2007.

[25] N. Severijns, M. Tandecki, T. Phalet, and I. Towner. Ft Values of the T =

1/2 Mirror β Transitions. Physical Review C, 78(5):055501, November 2008.

[26] ISAC Potassium Beam Yields. http://mis.triumf.ca/science/planning/

yield/beam/K. Accessed: 01-10-2015.

[27] T. B. Swanson, D. Asgeirsson, J. a. Behr, A. Gorelov, and D. Melconian.

Efficient transfer in a double magneto-optical trap system. Journal of the

Optical Society of America B, 15(11):2641, November 1998.

[28] Matthew Harvey and Andrew Murray. Cold Atom Trap with Zero Resid-

ual Magnetic Field: The AC Magneto-Optical Trap. Physical Review Letters,

101(17), October 2008.

194

http://mis.triumf.ca/science/planning/yield/beam/K
http://mis.triumf.ca/science/planning/yield/beam/K


[29] P. A. Vetter, J. R. Abo-Shaeer, S. J. Freedman, and R. Maruyama. Mea-

surement of the β − ν Correlation of 21Na Using Shakeoff Electrons. Physical

Review C, 77(3):20, May 2008.

[30] J. Liu, M. Mendenhall, A. Holley, H. Back, T. Bowles, L. Broussard, R. Carr,

S. Clayton, S. Currie, B. Filippone, A. Garćıa, P. Geltenbort, K. Hickerson,
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APPENDIX A

STRIP DETECTOR CALIBRATIONS

The silicon strip detectors were calibrated by fitting the observed spectrum to a

simulated spectrum obtained from GEANT4. The algorithm that I used to integrate

the waveforms made output that was too large for the fortran fitting routine to

deal with so as a first step all of the input values were divided by 20. Making this

modification it was possible to fit almost the entire set of spectrum with the same

set of starting parameters. The two exceptions were the strips closest to the edge of

the detectors and the upper X odd strips. In the case of the edge strips the fitting

routine could be rerun with a smaller normalization to the GEANT4 spectrum and

would complete having found acceptable values for all parameters. There are less

counts in these edge spectrum but the shapes remain the same. In the case of the

upper X odd strips the situation is different. The preamps that were used to read

out those strips were damaged and were much noisier than the other preamps. In

this case the β-spectrum is on top of a large non-Gaussian noise background. In

the case of the analysis they were excluded because they could not be handled in

a consistent way. Even though it is unlikely that this calibration will be applied

to these detectors again in future experiments it is good that the information will

be preserved so that calibrations in subsequent experiments can be compared in an

effort to detect breakdown due to age or radiation damage.

In order to use the calibration to plot an energy spectrum like that shown in

Fig. A.1 the value stored in the TTree for each strip should be put into the following
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Calibration Fit Strip Lower Y #19

Energy (keV)

Data Source
Experiment
Geant4 Model

Residuals
Threshold

/dof 540.74/482 ~ 1.12χ2

normMC = 0.04     ± 0.0009
lambda = 8.09     ± 0.73

offset [chan] = -36.89  ± 1.74
slope [chan/MeV] = 722.90 ± 17.73

Figure A.1: This is a typical GEANT4 fit to a silicon strip spectrum.

formula.

Silicon Energy (MeV) =

((
TTree value

20

)
− offset (chan)

)
slope (chan/MeV)

(A.1)

The value λ reported here for each strip is an energy dependent noise parameter

where the total standard deviation of the noise for a strip is

σtotal =
√
σ2
0 + λE. (A.2)

Where σ0 is the intrinsic noise of the strip. Due to the high correlation between σ0

and λ, σ0 was fixed to 0 and only λ was allowed to vary. The values of slope and

offset for all available strips are listed in the following tables. The units of tables

that follow are slope (chan/MeV), the units on offset are (chan), and the units of λ

are (keV).
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Strip Detector Calibrations Lower Y

Name χ2/dof slope ∆slope offset ∆offset λ ∆λ
LY 01 0.99 8.03E+2 3.53E+1 3.40E+1 3.57 2.39E+1 3.52E+0
LY 02 0.97 7.47E+2 2.85E+1 2.49E+1 2.71 1.48E+1 2.26E+0
LY 03 0.98 7.51E+2 2.65E+1 2.89E+1 2.56 1.34E+1 1.82E+0
LY 04 0.97 6.23E+2 2.00E+1 2.86E+1 2.00 2.63E+1 3.56E+0
LY 05 1.09 6.60E+2 1.85E+1 2.90E+1 1.76 1.23E+1 1.49E+0
LY 06 1.04 7.18E+2 1.91E+1 3.31E+1 1.86 9.59E+0 9.95E-1
LY 07 1.06 6.15E+2 1.55E+1 2.84E+1 1.49 1.68E+1 1.93E+0
LY 08 1.03 6.31E+2 1.52E+1 3.33E+1 1.49 1.49E+1 1.50E+0
LY 09 1.18 7.11E+2 1.77E+1 3.42E+1 1.74 9.85E+0 9.45E-1
LY 10 1.08 5.91E+2 1.40E+1 3.30E+1 1.36 1.50E+1 1.56E+0
LY 11 1.12 6.45E+2 1.52E+1 3.28E+1 1.47 1.29E+1 1.26E+0
LY 12 0.99 5.89E+2 1.37E+1 3.37E+1 1.35 1.76E+1 1.76E+0
LY 13 1.08 6.97E+2 1.66E+1 3.79E+1 1.64 1.00E+1 8.80E-1
LY 14 1.08 6.61E+2 1.59E+1 3.71E+1 1.56 1.34E+1 1.21E+0
LY 15 1.08 6.64E+2 1.57E+1 3.57E+1 1.54 1.23E+1 1.12E+0
LY 16 1.13 7.07E+2 1.69E+1 3.82E+1 1.67 9.46E+0 8.19E-1
LY 17 1.02 6.97E+2 1.63E+1 3.73E+1 1.61 8.94E+0 7.81E-1
LY 18 1.03 5.93E+2 1.40E+1 3.33E+1 1.35 1.63E+1 1.65E+0
LY 19 1.12 7.22E+2 1.77E+1 3.68E+1 1.74 8.08E+0 7.28E-1
LY 20 1.00 6.46E+2 1.50E+1 3.65E+1 1.47 1.31E+1 1.17E+0
LY 21 1.02 6.22E+2 1.45E+1 3.37E+1 1.40 1.41E+1 1.36E+0
LY 22 1.11 6.23E+2 1.44E+1 3.49E+1 1.41 1.45E+1 1.36E+0
LY 23 1.00 5.96E+2 1.36E+1 3.50E+1 1.33 1.57E+1 1.50E+0
LY 24 1.27 7.17E+2 1.77E+1 3.77E+1 1.75 1.01E+1 9.00E-1
LY 25 1.08 6.71E+2 1.57E+1 4.00E+1 1.56 1.06E+1 9.03E-1
LY 26 1.07 6.20E+2 1.43E+1 3.43E+1 1.40 1.37E+1 1.31E+0
LY 27 1.15 7.18E+2 1.71E+1 3.53E+1 1.68 9.29E+0 8.32E-1
LY 28 0.95 6.17E+2 1.46E+1 3.57E+1 1.42 1.27E+1 1.22E+0
LY 29 0.96 5.79E+2 1.37E+1 3.41E+1 1.34 1.77E+1 1.78E+0
LY 30 1.11 6.87E+2 1.58E+1 3.28E+1 1.54 9.37E+0 8.83E-1
LY 31 0.98 5.89E+2 1.43E+1 3.26E+1 1.38 1.63E+1 1.72E+0
LY 32 1.09 6.36E+2 1.57E+1 3.43E+1 1.52 1.25E+1 1.24E+0
LY 33 1.05 6.24E+2 1.56E+1 3.45E+1 1.52 1.55E+1 1.56E+0
LY 34 1.09 6.39E+2 1.59E+1 3.35E+1 1.54 1.23E+1 1.27E+0
LY 35 1.05 6.91E+2 1.83E+1 3.08E+1 1.76 1.12E+1 1.21E+0
LY 36 1.09 6.78E+2 1.79E+1 3.40E+1 1.76 1.33E+1 1.38E+0
LY 37 1.08 7.19E+2 2.18E+1 3.30E+1 2.13 1.23E+1 1.41E+0
LY 38 0.93 6.87E+2 2.22E+1 3.23E+1 2.16 1.33E+1 1.67E+0
LY 39 1.08 7.50E+2 2.65E+1 3.22E+1 2.62 1.46E+1 1.90E+0
LY 40 0.93 7.16E+2 2.84E+1 3.40E+1 2.83 2.03E+1 2.92E+0

Table A.1: Strip detector calibration lower Y.
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Strip Detector Calibrations Lower X

Name χ2/dof slope ∆slope offset ∆offset λ ∆λ
LX 01 0.93 6.31E+2 2.25E+1 3.63E+1 2.27 2.34E+1 3.16E+0
LX 02 0.95 7.56E+2 3.49E+1 3.23E+1 3.47 2.07E+1 3.38E+0
LX 03 0.97 6.67E+2 2.06E+1 3.33E+1 2.04 2.14E+1 2.53E+0
LX 04 0.97 6.61E+2 2.31E+1 3.16E+1 2.27 2.00E+1 2.77E+0
LX 05 0.92 6.07E+2 1.59E+1 3.13E+1 1.55 1.98E+1 2.20E+0
LX 06 0.99 5.99E+2 1.75E+1 2.82E+1 1.69 1.80E+1 2.40E+0
LX 07 1.07 5.92E+2 1.36E+1 3.32E+1 1.34 1.79E+1 1.80E+0
LX 08 1.00 6.62E+2 1.74E+1 3.31E+1 1.69 1.18E+1 1.26E+0
LX 09 0.99 5.65E+2 1.34E+1 3.27E+1 1.33 2.08E+1 2.16E+0
LX 10 1.03 5.95E+2 1.49E+1 3.13E+1 1.43 1.56E+1 1.75E+0
LX 11 0.99 5.89E+2 1.37E+1 3.35E+1 1.33 1.73E+1 1.71E+0
LX 12 1.08 6.56E+2 1.59E+1 3.45E+1 1.56 1.23E+1 1.19E+0
LX 13 0.97 5.66E+2 1.32E+1 3.45E+1 1.30 1.87E+1 1.87E+0
LX 14 0.98 6.04E+2 1.47E+1 3.48E+1 1.44 1.68E+1 1.67E+0
LX 15 0.98 5.74E+2 1.32E+1 3.30E+1 1.27 1.62E+1 1.64E+0
LX 16 1.02 6.66E+2 1.61E+1 3.39E+1 1.57 1.27E+1 1.21E+0
LX 17 1.07 5.75E+2 1.31E+1 3.68E+1 1.31 1.99E+1 1.86E+0
LX 18 1.05 6.13E+2 1.39E+1 3.27E+1 1.36 1.55E+1 1.52E+0
LX 19 1.08 6.14E+2 1.41E+1 3.48E+1 1.38 1.52E+1 1.44E+0
LX 20 1.11 6.32E+2 1.44E+1 3.67E+1 1.42 1.40E+1 1.26E+0
LX 21 1.01 5.78E+2 1.33E+1 3.38E+1 1.31 1.83E+1 1.81E+0
LX 22 1.11 6.18E+2 1.43E+1 3.52E+1 1.40 1.44E+1 1.35E+0
LX 23 1.11 6.22E+2 1.48E+1 3.55E+1 1.45 1.57E+1 1.49E+0
LX 24 1.03 5.98E+2 1.37E+1 3.37E+1 1.33 1.61E+1 1.57E+0
LX 25 1.07 6.61E+2 1.58E+1 3.11E+1 1.52 1.20E+1 1.21E+0
LX 26 1.12 5.82E+2 1.33E+1 3.41E+1 1.32 2.02E+1 1.95E+0
LX 27 1.03 6.06E+2 1.46E+1 3.52E+1 1.43 1.48E+1 1.47E+0
LX 28 1.03 6.05E+2 1.42E+1 3.80E+1 1.41 1.81E+1 1.64E+0
LX 29 1.08 6.65E+2 1.66E+1 3.36E+1 1.62 1.37E+1 1.35E+0
LX 30 0.99 5.46E+2 1.29E+1 3.25E+1 1.27 2.11E+1 2.22E+0
LX 31 1.06 6.09E+2 1.51E+1 3.12E+1 1.46 1.56E+1 1.70E+0
LX 32 0.97 5.76E+2 1.35E+1 3.32E+1 1.33 1.94E+1 1.96E+0
LX 33 0.96 6.15E+2 1.56E+1 3.29E+1 1.50 1.28E+1 1.41E+0
LX 34 1.04 6.19E+2 1.51E+1 3.71E+1 1.49 1.68E+1 1.57E+0
LX 35 1.09 6.19E+2 1.77E+1 3.08E+1 1.74 2.01E+1 2.41E+0
LX 36 0.97 6.39E+2 1.62E+1 3.50E+1 1.59 1.51E+1 1.50E+0
LX 37 0.93 6.05E+2 2.10E+1 2.66E+1 2.07 2.58E+1 3.87E+0
LX 38 1.02 6.55E+2 1.79E+1 3.36E+1 1.77 1.86E+1 1.99E+0
LX 39 0.98 6.99E+2 2.65E+1 3.29E+1 2.66 2.16E+1 3.12E+0
LX 40 0.92 5.89E+2 2.00E+1 3.19E+1 2.05 3.10E+1 4.33E+0

Table A.2: Strip detector calibration lower X.
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Strip Detector Calibrations Upper Y

Name χ2/dof slope ∆slope offset ∆offset λ ∆λ
UY 01 1.01 7.28E+2 2.79E+1 2.93E+1 2.79 2.67E+1 3.81E+0
UY 02 0.93 6.93E+2 2.45E+1 3.47E+1 2.45 2.07E+1 2.65E+0
UY 03 0.90 6.83E+2 2.32E+1 3.45E+1 2.31 2.56E+1 3.14E+0
UY 04 1.10 7.08E+2 2.21E+1 3.04E+1 2.14 1.66E+1 1.98E+0
UY 05 0.96 6.49E+2 1.86E+1 3.54E+1 1.86 2.37E+1 2.56E+0
UY 06 1.12 7.21E+2 1.91E+1 3.41E+1 1.88 1.21E+1 1.19E+0
UY 07 1.01 6.98E+2 1.92E+1 3.76E+1 1.92 1.81E+1 1.74E+0
UY 08 1.17 7.41E+2 1.89E+1 3.42E+1 1.86 1.16E+1 1.08E+0
UY 09 1.01 6.20E+2 1.56E+1 3.53E+1 1.57 2.38E+1 2.34E+0
UY 10 1.05 7.29E+2 1.79E+1 3.34E+1 1.76 1.15E+1 1.06E+0
UY 11 1.04 6.25E+2 1.53E+1 3.46E+1 1.52 2.12E+1 2.05E+0
UY 12 1.09 6.63E+2 1.62E+1 3.75E+1 1.61 1.67E+1 1.50E+0
UY 13 1.04 7.01E+2 1.72E+1 3.95E+1 1.74 1.79E+1 1.51E+0
UY 14 1.10 6.53E+2 1.52E+1 3.58E+1 1.50 1.52E+1 1.36E+0
UY 15 1.01 6.63E+2 1.54E+1 3.79E+1 1.53 1.56E+1 1.34E+0
UY 16 1.09 6.63E+2 1.53E+1 3.60E+1 1.51 1.44E+1 1.27E+0
UY 17 1.15 7.03E+2 1.60E+1 3.58E+1 1.59 1.38E+1 1.17E+0
UY 18 1.12 6.87E+2 1.66E+1 3.78E+1 1.65 1.30E+1 1.13E+0
UY 19 1.02 6.81E+2 1.62E+1 3.52E+1 1.60 1.51E+1 1.35E+0
UY 20 1.03 6.50E+2 1.56E+1 3.59E+1 1.54 1.68E+1 1.52E+0
UY 21 1.02 6.57E+2 1.54E+1 3.95E+1 1.56 1.97E+1 1.66E+0
UY 22 1.06 6.50E+2 1.50E+1 3.87E+1 1.49 1.38E+1 1.18E+0
UY 23 1.10 6.69E+2 1.55E+1 3.97E+1 1.57 1.80E+1 1.49E+0
UY 24 1.12 7.22E+2 1.76E+1 4.13E+1 1.77 1.24E+1 1.02E+0
UY 25 0.96 6.05E+2 1.47E+1 3.91E+1 1.48 2.22E+1 2.02E+0
UY 26 1.13 6.97E+2 1.63E+1 3.84E+1 1.62 1.12E+1 9.49E-1
UY 27 1.09 6.35E+2 1.48E+1 3.42E+1 1.45 1.59E+1 1.47E+0
UY 28 1.08 6.91E+2 1.63E+1 3.71E+1 1.62 1.23E+1 1.07E+0
UY 29 1.07 6.61E+2 1.55E+1 4.04E+1 1.56 1.55E+1 1.29E+0
UY 30 1.06 7.10E+2 1.71E+1 3.67E+1 1.69 1.11E+1 9.81E-1
UY 31 1.09 6.06E+2 1.43E+1 3.94E+1 1.45 2.02E+1 1.80E+0
UY 32 1.09 6.83E+2 1.68E+1 3.92E+1 1.68 1.39E+1 1.21E+0
UY 33 1.03 6.30E+2 1.55E+1 3.93E+1 1.56 1.99E+1 1.81E+0
UY 34 1.01 6.72E+2 1.73E+1 3.49E+1 1.70 1.38E+1 1.35E+0
UY 35 1.00 6.16E+2 1.61E+1 3.41E+1 1.59 2.00E+1 2.11E+0
UY 36 1.02 6.57E+2 1.88E+1 3.58E+1 1.87 2.01E+1 2.16E+0
UY 37 1.02 6.93E+2 2.15E+1 3.45E+1 2.15 2.32E+1 2.62E+0
UY 38 0.99 7.35E+2 2.50E+1 3.19E+1 2.46 1.68E+1 2.09E+0
UY 39 0.99 7.13E+2 2.67E+1 3.34E+1 2.72 3.06E+1 4.09E+0
UY 40 0.96 8.02E+2 3.19E+1 3.34E+1 3.22 2.10E+1 2.83E+0

Table A.3: Strip detector calibration upper Y.
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Strip Detector Calibrations Upper X Even

Name χ2/dof slope ∆slope offset ∆offset λ ∆λ
UX 02 0.90 6.64E+2 2.30E+1 3.87E+1 2.35 2.86E+1 3.50E+0
UX 04 1.01 6.66E+2 1.94E+1 3.88E+1 1.96 2.08E+1 2.17E+0
UX 06 1.03 6.06E+2 1.58E+1 3.40E+1 1.57 2.18E+1 2.30E+0
UX 08 1.00 5.85E+2 1.54E+1 3.55E+1 1.55 2.79E+1 2.89E+0
UX 10 0.99 5.91E+2 1.45E+1 3.39E+1 1.44 2.33E+1 2.33E+0
UX 12 0.93 5.93E+2 1.41E+1 3.71E+1 1.41 2.09E+1 1.95E+0
UX 14 1.01 6.24E+2 1.51E+1 3.62E+1 1.50 1.97E+1 1.84E+0
UX 16 1.09 6.03E+2 1.40E+1 3.35E+1 1.40 2.17E+1 2.10E+0
UX 18 0.97 5.86E+2 1.46E+1 3.42E+1 1.44 2.20E+1 2.23E+0
UX 20 1.14 6.85E+2 1.64E+1 3.57E+1 1.62 1.54E+1 1.38E+0
UX 22 1.02 6.15E+2 1.48E+1 3.37E+1 1.46 1.92E+1 1.89E+0
UX 24 1.03 6.37E+2 1.57E+1 3.52E+1 1.55 1.90E+1 1.81E+0
UX 26 0.98 6.20E+2 1.56E+1 3.15E+1 1.52 1.83E+1 1.92E+0
UX 28 1.08 6.25E+2 1.60E+1 3.61E+1 1.59 2.10E+1 2.06E+0
UX 30 0.90 6.17E+2 1.58E+1 3.38E+1 1.55 1.97E+1 2.03E+0
UX 32 0.99 6.09E+2 1.59E+1 3.44E+1 1.58 2.28E+1 2.37E+0
UX 34 0.94 5.90E+2 1.61E+1 3.38E+1 1.60 2.26E+1 2.53E+0
UX 36 0.95 6.34E+2 1.90E+1 3.04E+1 1.84 2.10E+1 2.59E+0
UX 38 0.99 6.69E+2 2.37E+1 3.18E+1 2.33 2.19E+1 2.97E+0
UX 40 0.92 6.82E+2 3.29E+1 2.86E+1 3.28 3.61E+1 6.57E+0

Table A.4: Strip detector calibration upper X.
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APPENDIX B

SCINTILLATOR CALIBRATIONS

The scintillator detectors were calibrated by fitting the observed spectrum to a

simulated spectrum obtained from GEANT4. The procedure used was similar to that

used to fit the silicon detectors as described in Appendix A. The one difference is

that is was necessary to add together two GEANT4 simulations in order to match

the experimental spectrum. The reason for this is that we do not explicitly model

the background in GEANT4 from sources other than the 2% branch of the decay. To

model the background in GEANT4 I had to track the β+ in the chamber and let them

annihilate. Then I filtered the energy left in the scintillators to ensure that none of

it was left by the βs and added this to the total observed spectrum with the same

conditions that we apply to accept asymmetry events. This model works well enough

and the fit values are shown in Table B.1. A graphical representation of the fit is

shown in Fig. B.1. To convert the scintillator spectrum in the TTrees to energy in

MeV the following formula should be used

Scintillator Energy (MeV) =
TTree value− offset (chan)

slope (chan/MeV)
. (B.1)

Scintillator Calibrations

Name χ2/dof offset ∆offset slope ∆slope λ ∆λ
Upper 1.35 8.11E+1 5.92E-1 5.34E+2 1.07 7.62 5.23E-2
Lower 1.57 7.55E+1 5.81E-1 5.66E+2 1.09 7.36 5.61E-2

Table B.1: Scintillator calibrations. The units of slope are (chan/MeV), the units
on offset are (chan), and the units of λ are (keV).
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Figure B.1: Upper scintillator calibration fit with GEANT4. The set of starting pa-
rameters for the fit of both the upper and lower spectrum are the same. The red
line is the fit and it is the sum of the pink and orange lines. The light blue lines are
the known reference points for the spectrum. The data being fit is the scintillator
spectrum requiring a hit on the electron MCP. The reason for using this is so that
the Compton edge of the 511 γs would be very prominent as opposed to a spectrum
with a strip detector coincidence were the peak is suppressed to the point that it
becomes very hard to fit to properly.
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The value λ reported here for the scintillators is an energy dependent noise parameter

where the total standard deviation of the noise for a strip is

σtotal =
√
σ2
0 + λE. (B.2)

Where σ0 is the intrinsic noise of the detector. Due to the high correlation between

σ0 and λ, σ0 was fixed to 0 and only λ was allowed to vary. In the future the

scintillators will be gain stabilized with a flash from a temperature controlled LED

and an analog feedback loop. This stabilization will reduce the noise term. Another

idea is to lower the gain so that the whole peak from the minimally ionizing cosmic

muons is visible and use it in the fitting routine with the endpoint and 511 Compton

edge as another reference point.
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APPENDIX C

MIRROR SPECIFICATION

The mirrors that we have in the vacuum are very specialized. The diameter is

very large and the mirror had to be very thin for for the βs to pass through it. Here

is the information that we have about the mirrors. There are very few materials

that have a sufficiently high Young’s modulus to produce an optically flat large thin

mirror.

Mirror Attributes

Substrate Material SiC

Diameter 61 mm.

Thickness 0.010” ± 0.001”.

Smoothness polished both sides to surface roughness . 125 Å

Flatness 10 waves/inch.

Reflectivity 99.5+0.25-0.5% 770 nm at 9 ◦.

Coating Same coating on front and back for stress reduction. Each coating has a

total thickness of 1140 nm SiO2 and 870 nm Nb2O5 (alternating high and low

index of refraction materials).

We measured the S3 of the mirror as a function of incident light angle to try to

quantify the effect of poor mechanical mounting. Scott Smale did these measure-

ments and they are documented in his co-op report. It was found that even for very

poor alignment that the mirrors preserved the S3 > 0.9997 which was the design

specification.
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