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Abstract 

The T R I N A T group uses optical pumping to polarize atoms for precision spin-­polarized 

beta decay experiments. This thesis describes two methods for determining the degree of 

polarization achieved in an experiment using 8 0 R b : one method using atomic observables 

and one using nuclear observables. The atomic diagnostic uses a measurement of the excited 

state population over the duration of the optical pumping process to infer the polarization, 

while the nuclear diagnostic measures the beta decay asymmetry of the polarized atoms for 

a more direct polarization measurement. 

The atomic diagnostic uses a simulation of the optical pumping process to calculate 

the excited,state population over time as the atoms are optically pumped, along with the 

resulting polarization. The excited state population is in turn measured using a pulsed 

355nm laser, wi th sufficient energy per photon to photoionize the excited state but not the 

ground state. Through variation of a 'polarization-­spoiling' parameter the simulation can be 

fit to the data and a polarization value derived. The simulation is also applied to determine 

the laser power from a measurement of hyperfme pumping. The atomic diagnostic gives 

polarization values of —0.88T±g;g|^ ta°2i a n d P -­ 8 6 8 ^ ? 0 ) -o°olo-
The nuclear diagnostic depends on a pair of back-­to-­back beta detectors placed at a 

30-­degree angle from the polarization axis. These detectors are used to measure the front-­

back asymmetry of the beta particles, which due to parity violation is proportional to 

the polarization of the decaying atoms. Due to systematic differences between the two 

detectors and their energy dependent corrections, the front-­back asymmetry did not produce 

a useful polarization. Instead, the asymmetry in each detector between positive and negative 

polarization was used, which is also proportional to the polarization if the difference between 

the two polarizations is ignored. From this, one detector gives a polarization of (0.44 ± 

0.01) and the other gives a polarization of (0.51 ± 0.01). These values are inconsistent both 

wi th each other and wi th the atomic result, but several differences between the sensitivity 

of the two methods may explain this discrepancy. 
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Chapter 1 

Introduction 

Beta decay is a powerful tool for precision measurements of weak interaction physics. There 

is a strong theoretical understanding of beta decay, derived from its status as the first weak 

interaction process to be discovered and studied. This understanding, at the same time as 

it aids interpretation of beta decay experiments, makes beta decay measurements sensitive 

to small and heretofore unknown effects. 

The T R I N A T (TRIumf Neutral A t o m Trap) apparatus at T R I U M F is designed for 

precision spin-­polarized decay experiments, using radioactive atoms produced in the I S A C 

(Isotope Separator and Accelerator) facility. T R I N A T uses a magneto-­optical trap ( M O T ) 

to confine the atoms within a detection chamber, and while so confined, the atoms can be 

manipulated. This thesis describes the process by which the atoms are polarized, and the 

measurements used to determine the degree of polarization attained in this process. 

1.1 The TRINAT Apparatus 

A M O T is a useful tool for precision experiments because it provides a well-­localized col-­

lection of hundreds of thousands or millions of approximately stationary atoms in free 

space. When it is used to trap radioactive atoms, it allows us to study their decay from 

an accurately-­known ini t ia l condition. Whi le the M O T potential is deep enough to contain 

the ini t ial radioactive atoms, it does not affect the transmuted decay product, which can 

escape freely. Having escaped the trap, the recoiling ion can then be detected. Through 

measurement of the recoil momentum and direction, many aspects of the decay can be 

reconstructed. A diagram of the T R I N A T detection trap can be found in Figure 1.1. 

The main mechanism of detection involves a static electric field of about 800 V / c m , 

combined wi th micro-­channel plate ( M C P ) particle detectors. When a nucleus undergoes 

beta decay, its sudden recoil causes one or more electrons to 'shake off' the atom. Both 

the recoiling positive ions and the electrons are accelerated by the electric field, towards 

opposite ends of the chamber', where a position sensitive M C P is used to detect the ions, 

and a non-­position sensitive M C P detects the electrons. The relative t iming of these two 

detectors provides a time-­of-­flight measurement for the recoiling ion. 

The detection chamber also contains several auxiliary detectors to measure the other 
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Chapter 1. Introduction 

15cm *H 

Figure 1.1: Diagram of the T R I N A T detection trap 

Push beam Moves atoms into detection chamber 
6 M O T trapping beams Forces for Doppler cooling and Zeeman trapping 
6 M O T repump beams Prevents hyperfine pumping during M O T operation 
Optical pumping beam Polarizes atoms; includes pump and repump frequencies 
Photoionization beam Samples excited state population during optical pumping 

Table 1.1: List of laser beams in the detection chamber 

particles produced by the decay. Two CaF2 'phoswich' detectors are situated opposite each 

other and pointed at the trap; these are designed to detect the positrons from (3+ decay 

for measurements of the beta asymmetry. The positrons are not significantly affected by 

the electric field as their high init ial velocity allows them to rapidly escape its area of 

effect. A H P G e gamma-­ray detector was placed behind the electron M C P to detect the 

gamma rays emitted when beta decay populates a nuclear excited state. In addition to 

these particle detectors, a computer-­controlled video camera is used to view the trap size 

through detection of atomic fluorescence. 

The apparatus pictured in Figure 1.1 contains the laser beams described in Table 1.1. 

The lasers are controlled wi th devices called acousto-­optic modulators, or A O M s . A n A O M 

shifts the frequency of light through interactions wi th sound waves in a crystal. A n incident 

light beam is split into components each shifted by an integer multiple of the A O M ' s driving 

frequency; these components are each deflected proportional to their frequency shift. This 

'steering' allows an A O M to be used as a switch; if the A O M is turned off the deflected beam 

vanishes. The frequency-­shifted beam can be reflected back through the A O M to double 
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Chapter 1. In tro duct ion 

the frequency shift; this 'double-­pass' configuration has the advantage that the direction of 

the final beam is independent of the frequency shift. 

1.2 Background for the 8 0 Rb experiment 

A priori, there are five possible forms for the weak interaction vertex factor, corresponding 

to the five bilinear covariants: scalar, pseudoscalar, vector, axial vector, and tensor. In 

the experiments that led to the Standard Model theory of weak interactions, two of these 

appeared to be present: vector and axial vector, combined as ( V — vl)[16]. In nuclear physics, 

this is broken down into the 'Fermi ' interaction and the 'Gamow-­Teller' interaction, where 

the leptons produced from a Fermi decay have total angular momentum 0, and the leptons 

produced from a Gamow-­Teller decay have total angular momentum 1 [22]. 

Nevertheless, small contributions to the interaction wi th the other three forms have not 

been ruled out. A n earlier T R I N A T experiment[15] searched for scalar contributions to the 

beta decay of 3 8 m K . The superallowed 3 8 m K —> 3 8 A r decay is a clean system, and is sensitive 

to scalar terms due to its pure Fermi nature. Fermi decays are sensitive to scalar and vector 

terms, while Gamow-­Teller decays are sensitive to axial vector and tensor terms. Thus, to 

search for a possible tensor contribution, a pure Gamow-­Teller decay is most useful. 

Since the T R I N A T apparatus can only trap alkali metal atoms, the field of isotopes 

available for study is relatively limited. Rubidium-­80 was chosen for several reasons, the 

most important of which is its pure Gamow-­Teller (3+ decay. Its hyperfine structure resem-­

bles that of 3 7 K , which was trapped in a previous T R I N A T experiment, making a 8 0 R b trap 

a straightforward adaptation of the preexisting apparatus. In particular, its ground state 

hyperfine splitting is comparable to that of 3 7 K . Also, the I S A C production rate for 8 0 R b is 

relatively high, and the lifetime of 8 0 R b is short enough to sustain a useful count rate wi th 

the expected trap population. The decay scheme of 8 0 R b can be found in Figure 1.2. As 

can be seen in the figure, the vast majority of the decay strength (96%) is in two decays, 

from the 1 + ground state of 8 0 R b to either the 0 + ground state or 2 + first excited state 

of stable 8 0 K r . A l l four of the decays shown in Figure 1.2 are pure Gamow-­Teller decays, 

having a change in the nuclear spin of ± 1 . Thus, the decay of 8 0 R b is sensitive only to the 

known, large axial vector component and the unknown, small tensor component. 

In the Standard Model , the angular distribution of the positron produced in / 3 + decay 

has, in the allowed approximation, a 'spin' asymmetry relative to the direction of the nuclear 

spin of the form [20] 

Ap = — \MQT\2 K\ + MGTMFK2 (1.1) 
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34 s 

80. Rb 

1.9% 5.9 
—* 9 1% 5.9 

616.6 21.6% 5.2 
— 

< - 74.4 % 4.9 

Figure 1.2: Simplified decay scheme of R b 

Similarly, the spin asymmetry of the corresponding neutrino is given by 

Bv = | M G r | 2 X ! + MGTMFK3 (1.2) 

Here, K\, K~2, and K3 are combinations of the various weak coupling constants, MQT is the 

Gamow-­Teller matrix element, and Mp is the Fermi matrix element. In a pure Gamow-­

Teller decay, Mp = 0, and thus Equations 1.1 and 1.2 show that Ap and Bv are equal 

and opposite. Since the spin asymmetry of the recoiling nucleus is given to first order 

as An — 5 /8(Ag 4-­ B„), it is thus zero in the Standard Model for a pure Gamow-­Teller 

decay. Hence, a nonzero recoil asymmetry can be interpreted as evidence of new physics, 

specifically tensor interactions. 

1.3 Observables and Polarization 

For a general beta decay, the angular distribution of the recoiling nuclei has the form [33] 

W(6) — 1 + PAR cos 6 + CT cos2 6 (1.3) 

where P is the vector polarization of the nuclei in the trap, and T is their tensor align-­

ment. ( C is a constant of the decay depending on energies and coupling constants) Since 

this angular distribution is what the T R I N A T apparatus samples, the quantity that can be 

measured is PAR, not AR by itself. Clearly, then, to accurately measure the recoil asym-­
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Chapter 1. Introduetion 

metry An, the polarization must be known. The subject of this thesis is the measurement 

of the polarization P, while the measurement of PAR is the subject of R . Pitcairn 's M.Sc 

thesis [26]. 

Two main observables are available to characterize the polarization of the trap. The 

simpler observable is the angular distribution of the beta particles. The two back-­to-­back 

beta detectors measure this at a known angle to the polarization direction. As parity is 

maximally violated in beta decay, this angular distribution wi l l be strongly forward peaked, 

and so the asymmetry between the two beta detectors wi l l depend on the polarization. The 

interpretation of this data wi l l be the subject of Part II. 

A more powerful yet more complicated observable is the variation of the atomic excited 

state population over time. The process of optical pumping used to polarize the atoms 

excites more atoms when the polarization is low than when the polarization is high. Thus, 

as the atoms pump from fully unpolarized to fully polarized, the excited state population 

wi l l drop. 

The excited state population in the trap is sampled through photoionization by a 355 

nm pulsed laser, which is only energetic enough to photoionize from the excited state of 
8 0 R b , and wi l l not affect atoms in the ground state. The photoion laser produces 0.5 ns 

pulses at about 10 kHz; these pulses each photoionize a very small fraction of the atoms in 

the trap. These photoions are accelerated out of the trap and are detected in coincidence 

wi th the laser pulse, and then are counted over the duration of the optical pumping cycle 

to establish the variation of the population. 

The relationship of this observable wi th the final polarization is complex. Part I wi l l 

describe a simulation-­based method of finding the polarization, as well as the theory behind 

both optical pumping and the basic operation of the M O T . 

5 
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Chapter 2 

Theory of Trapping and Pumping 

The polarized 8 0 R b decay experiment depends vitally on two atomic physics techniques: the 

magneto-­optical trap ( M O T ) and optical pumping. The M O T is the fundamental basis of 

the T R I N A T apparatus, while optical pumping allows for polarization of the atoms in the 

trap. This chapter w i l l discuss the theoretical underpinnings of these processes, examining 

optical pumping more comprehensively as its details are vi ta l to the goal of determining 

the atomic polarization. 

2.1 Overview of MOT Physics 

The magneto-­optical trap is built using three pairs of counterpropagating laser beams and 

a magnetic quadrupole field. These two elements combine to both cool the atoms and trap 

them in a well-­localized area, through a combination of the Doppler effect and the Zeeman 

effect. This combination provides a simple and robust device for containing atoms in free 

space. 

A M O T uses an atomic transition called a 'cycling transition' to exert optical forces on 

the atom. In a cycling transition, the probability that the atom w i l l return to its ini t ial 

ground state after being excited is high, and so optical processes involving the absorption 

and emission of many photons can be made to proceed indefinitely as in the case of a 

two-­level atom. [30] Since radiation pressure forces arise from the resonant or near-­resonant 

scattering of many photons, they are most effective near a cycling transition. 

Cycl ing transitions are most evident in atoms with simple internal structure, i.e. atoms 

wi th only a single valence electron. This chapter wi l l assume that the atom under study is, 

like 8 0 R b , an alkali metal satisfying this condition. 

2.1.1 Doppler Cooling 

The cooling action of the M O T is provided through a combination of detuned lasers and 

the Doppler effect. Consider a pair of counterpropagating laser beams detuned to the red 

of the atomic resonance by a frequency 5. Then, stationary atoms wi l l not be resonant 

wi th the light, and thus wi l l be affected symmetrically by the laser beams. If the atom 

is not stationary, but rather is moving wi th a speed v along the propagation direction of 
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Chapter 2. Theory of Trapping and Pumping 

one of the lasers, both beams wi l l appear Doppler shifted in the atom's reference frame[18]. 

The parallel beam wi l l then appear to be detuned by <5 + ^ and the antiparallel beam wi l l 

appear to be detuned by 5 — ^ (where v is the frequency of the light). Thus, when the 

speed satisfies 
<- vv 5c 
S = — v = — (2.1) 

c v 

the antiparallel beam is resonant, resulting in the absorption of photons from the antiparallel 

beam. Since the absorbed photons wi l l al l have momentum opposite that of the atom, and 

the spontaneously emitted photons wi l l have randomly directed momentum, the result is a 

net optical force on the atom opposing its motion. 

As the absorption cross-­section decreases smoothly as the incident light moves away 

from resonance, the magnitude of the opposing force decreases smoothly as well. Thus, a 

velocity-­sensitive damping force is generated along the axis of the two beams; the situation 

• is analogous for an atom moving in the opposite direction due to the counterpropagating 

lasers. It is straightforward to generalize this using three orthogonal sets of counterpropa-­

gating lasers to generate a three-­dimensional damping force, an effect referred to as 'optical 

molasses'. 

2.1.2 T r a p p i n g T h r o u g h the Zeeman Effect 

Though optical molasses is useful for cooling, it does not provide a position-­selective force, as 

is required for trapping. Ashkin and Gordon[5] showed that a system based only on radiation 

pressure cannot provide a position-­selective force; only an optical gradient force can be 

position-­selective. These optical gradient forces are weak, as they must induce a dipole 

moment in the atom rather than proceeding through some resonant process. Thus, very 

high laser intensities are required for significant confinement. However, we can circumvent 

this restriction because atoms have manipulable internal structure, rather than being simple 

dielectric particles as used by Ashk in and Gordon in their derivation. 

In particular, atomic transitions can be shifted in energy through the application of a 

magnetic field, i.e. through the Zeeman effect. To provide the position sensitivity necessary 

for trapping, the magnetic field must vary in space. For the M O T , a quadrupole field is 

used, which has the crucial feature that it is zero at the centre and increases approximately 

linearly as one moves away from the zero; 

Therefore, the Zeeman shift of the atomic levels also varies linearly wi th distance from 

the field zero. If counterpropagating beams of circularly polarized light are applied to the 

atom, the atomic transitions wi l l move towards or away from the resonance as the atom 

moves, as shown in Figure 2.1. 

If the circular polarization of the light beams is such that the beam from the negative-­

8 



Chapter 2. Theory of Trapping and Pumping 

Figure 2.1: Diagram of Zeeman cooling 

' Excited State 

Ground State 

Figure 2.2: Diagram of optical pumping to.metastable state 

field direction has o~ polarization, and the opposing beam has cr+ polarization, then the 
atoms will experience a position-­sensitive force directed towards the field zero. As a result, 
a three-­dimensional potential, with the approximate form of a damped harmonic oscillator, 
is created with a potential minimum at the field zero. This occurs, for the most part, 
independently of the Doppler cooling effects, and the combination of these two effects is the 
magneto-­optical trap. 

2.2 O v e r v i e w o f O p t i c a l P u m p i n g 

In contrast to the cycling transitions used for trapping, optical pumping uses transitions 
that are deliberately one-­way, intending to concentrate atomic populations in one part of 
the angular momentum manifold. Similar to the optical forces exploited by optical trapping, 
optical pumping depends on the interplay between consistent excitation and random decay 
to force the atoms into a particular internal state. 

2.2.1 Basic Optical Pumping 

Ignoring hyperfme structure for the moment, the conceptually simplest case of optical pump-­
ing involves a three-­level atom with a metastable state, as shown in Figure 2.2. If the cou-­
pling between the ground state and the metastable state is weak or nonexistent, we cannot 

9 



Chapter 2. Theory of Trapping and Pumping 

directly excite atoms from the ground state to the metastable state. Rather, an indirect 

route must be taken. 

Given the presence of an excited state that couples to both the ground state and the 

metastable state, it can be used to optically pump from the ground state to the metastable 

state. If we denote the populations of the ground, excited, and metastable states as a, b, 

and c, respectively, wi th stimulated transition rate a and spontaneous decay rate /?, we can 

write the following equations to describe the population changes: 

a = —aa + (a + [3)b 

b = aa-(a + 2(3)b (2.2) 

c = f3b ' 

Here, we assume that the decay rate of the metastable state is negligible and that the 

spontaneous decay rates from the excited state to each of the other states are equal, for 

simplicity. The solution c(t) of these differential equations is 

e - ( " + / 3 ) « / : 

c(t) = 1 ((a + [3) cosh cot + cosmhtot) ;w = Ja2 + a{3 + (32 (2.3) 

This function clearly goes to 1 as time goes to infinity, though the speed of optical pumping 

depends on the details of the rates. 

5s , State 

Figure 2.3: Diagram of hyperfine pumping in 8 0 R b 

If the ground and metastable states are replaced wi th the two hyperfine levels of the 

ground state (see Figure 2.3), the situation is analogous. If the laser is tuned well enough in 

frequency and has a narrow enough bandwidth, it wi l l only excite from one of the hyperfine 

states, and by the same process as above wi l l drive all of the population into the other 

hyperfine state. The speed of this pumping depends on the input laser intensity, and so this 

can be used as an in situ probe of the pumping laser power, as wi l l be discussed in Chapter 

4. 

F = 3/2 

F = 1/2 
Laser 
Excitation^'.' '. ' 'Spontaneous 

Decay 

2 ^ - 6 p 1 f t State 

..••F = 3/2 

. F = 1/2 
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Chapter 2. Theory of Trapping and Pumping 

2.2.2 Circular ly Polarized Opt ical Pumping 

The case of optical pumping wi th circularly polarized beams is more complicated, as the full 

hyperfine structure of the atom must be taken into account. The ultimate goal of circularly 

polarized optical pumping is to add angular momentum to the atom unti l it reaches the 

state of maximum (or minimum) mp, the 'fully-­stretched' state. In the fully-­stretched 

state, both mj and mi are also maximum, so both the electron and the nucleus are fully 

polarized. 

Optical pumping wi th circularly polarized light differs from other cases of optical pump-­

ing in that a circularly polarized light beam has a definite angular momentum sign and thus 

only excites atomic transitions wi th a certain 5m p. Since spontaneous emission remains an 

unpolarized process, this has the net effect of adding angular momentum to the atom in the 

same way as radiation pressure forces add net linear momentum to the atom. A diagram 

of the intended process can be found in Figure 2.4. 

5p State 

5s State 
1/2 

mF = -3/2 

mF = -3/2 

mF = -1/2 mF = 1/2 mF = 3/2 

mF = -1/2 mF = 1/2 mF = 3/2 

Figure 2.4: Optical pumping wi th circularly polarized light 

The presence of two hyperfine levels in the ground state adds additional complications. 

The F = 1/2 sublevel cannot achieve full polarization, which requires mp = ± 3 / 2 , so 

spontaneous decay to that sublevel impedes the optical pumping process. Since the pumping 

laser can only excite from one of the hyperfine sublevels, a second laser beam is necessary 

to 'rescue' those atoms that enter the F — 1/2 sublevel. This 'repump' laser should have 

the same circular polarization as the main pumping beam to maintain optimal efficiency 

of the pumping process. If the repump laser were not used, the hyperfine pumping effect 

described in the previous section would rapidly transfer most of the population into the 

F = 1/2 ground state, spoiling the intended polarization. 

The differential equations that describe this process, ignoring both coherent effects and 
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Chapter 2. Theory of Trapping and Pumping 

A C Stark shifts, are the rate equations, 

dNGi {-RijNa + RjiNEj + ijiNEj) (2.4) 
dt j 

dNEj 

dt 53 (RijNa - RJINEJ - ijiNEj) 
(2.5) 

In these equations, the index i varies over the set of ground states, and the index j covers 

the set of excited states. The rate of excitation, Rij and the rate of stimulated emission 

Rji are equal due to time reversal symmetry[10], while the spontaneous rate 7 ^ only covers 

decay and not excitation. The form of these equations manifestly satisfies the condition 

which ensures that the total population remains constant over time, i.e. it preserves unitar-­

2.2.3 Sufficiency of the R a t e Equat ions 

The full treatment of atom-­laser interaction uses the optical Bloch equations [13], based on a 

density matrix formalism that naturally incorporates coherent couplings between the states. 

These coherent effects are ignored by Equations 2.4 and 2.5, whereas they can, in principle, 

occur in our system. The two laser beams used for pumping and repumping are derived 

from the same source and thus are coherent wi th each other, so analogous coherences could 

occur between atomic states perturbed by these lasers. In particular, the light field can 

mix states of different total angular momentum F and identical projection mp. These 

coherently mixed states can have vanishing excitation rates in the same way as the fully-­

stretched state does, and so the system could appear to have a greater polarization than 

it actually has. The coherences become considerably more unstable when the degeneracy 

of the states in each hyperfine sublevel is broken using a magnetic field [7]; the T R I N A T 

apparatus incorporates a constant axial magnetic field that satisfies this condition. 

These 'coherent population trapping' states have been investigated by the T R I N A T 

group in the past[17], and were found in the T R I N A T system to require precise tuning of 

the frequency difference to match the ground state hyperfine Raman resonance. Detuning 

the lasers from this point destroyed the dark coherent state, restoring the semiclassical 

behaviour described by the rate equations. In the system used for this work, the laser is 

appropriately detuned from the Raman resonance, and the presence of the quadrupole field 

provides additional Zeeman splitting. 

(2.6) 

3 

ity. 
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Chapter 2. Theory of Trapping and Pumping 

2.3 State Couplings and Rate Calculations 

The rate equations include two rates for transitions between any given pair of states: a spon-­

taneous rate jji, and a stimulated rate i ? ^ . The spontaneous rate, naturally, depends only 

on the properties of the atom. The stimulated rate also depends on the optical properties 

of the incident light, namely intensity, frequency, and polarization. 

Bo th of these rates depend on the degree to which the light field couples the states; 

this is quantified by a matrix element that is denoted here by p^j, and whose magnitude 

squared weights the transition rates. This matrix element is largely determined by angular 

momentum considerations, and can be derived relatively simply. 

2.3.1 N o t a t i o n 

The relationship between the basis characterized by separate angular momenta J\ and 

J 2 , denoted as \ J\m-\, J 2 m 2 ) , and the basis characterized by the total angular momentum 

T\2 — Jl + J2, denoted as | J\, J 2 ; J i 2 m i 2 ) is usually expressed in terms of the Clebsch-­

Gordan coefficients C j 1 ^ 1 } which are defined as 

C & T ^ = <Ji™i> ^ m a l J i , J 2 ; J i 2 m 1 2 ) (2.7) 

A more symmetric way to denote the relationship of these three angular momenta is to use 

the Wigner 3j symbol, defined as[24] 

cJj\ZlXm, = ( -­ i ) -­ J l + j 2 " m i 2 v ^ T + T ( J l h
 J l 2 ) (2.8) yJ\mi,J2m2 

\ m-i m2 -m12 , 

The power of the 3j symbol is that the symmetry properties of the Clebsch-­Gordan coeffi-­

cients are represented much more simply. In particular, two columns of the 3 j symbol can 

be swapped with the addition of a factor of ( — l ) J i + J 2 + J i 2 . It follows that the value of the 

3j symbol is invariant under cyclical permutation of its columns. 

Now, consider the coupling together of three angular momenta, J\, J 2 , and J3. One 

reasonable way to treat this system would be to couple two, say J\ and J 2 , into an inter-­

mediate angular momentum J i 2 , using the methods described above, and then couple this 

intermediate wi th the third angular momentum J3 to get the total angular momentum J. 

The result of this process should be independent of the choice of the ini t ial pair, by the 

associativity of vector addition, so there should be a unitary relationship between the basis 

1̂ 12 J3', J mj) and the basis \J± J23; J mj). This transformation defines the Wigner 6j 

13 
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Chapter 2. Theory of Trapping and Pumping 

symbol: [24] 

( J i J 2 3 ; Jmj\J12J3; Jmj) = (-1)J^+J3+J^/(2J12 + 1 ) (2 J 2 3 + 1) j ^ ^ | (2.9) 

The 6j symbol also has desirable symmetry properties. A n y two columns of the symbol can 

be swapped without change of value. If two columns of the symbol are inverted, the value 

also does not change. As with the properties of the 3j symbol, these symmetries are very 

useful in derivations involving angular momenta. 

2.3.2 Matrix Element for Fine Structure States 

In the | Jmj) basis, the transition matrix element between an excited state j (denoted by 

primed quantum numbers) and a ground state i (denoted by unprimed quantum numbers) 

is [25] 

Hij = e (n'J'm'j\ e • r\nJmj) (2-­10) 

where e is the polarization vector of the light. 

If we expand Equation 2.10 using Clebsch-­Gordan coefficients, we obtain an expression 

for the matrix element in terms of the more basic S and L angular momentum states. Since 

the operator e • r only couples to the orbital angular momentum L, the spin matrix element 

(S'm's \ e • r\Sms) is tr ivial , and so we get 

Mij = e J2 YI CiZ'L,S'rn's

CiZJ

L,sms (n'L'm'L\e-f\nLmL)5ss'Smsm's (2.11) 
m ' L , m ' s

m L , m s 

The dipole transition operator can be rewritten as the product of the radial coordinate 

operator |r | and a spherical harmonic Y\q, wi th q being a quantum number denoting the 

polarization of the light. The radial operator only acts upon the radial wavefunction \nL), 

and the spherical harmonic only acts on the angular wavefunction \LmC), so the matrix 

element decomposes as 

(n'L'rn'L\e • r\nLmL) = (n'L'\ \r\\nL) (L'm'L\ J-^-Ylq \LmL) (2.12) 
V o 

The angular part of this matrix element is straightforward to calculate wi th the properties 

of spherical harmonics, and can be expressed in terms of the 3j symbol as[25] 

(L'm'L\Ylq\LmL) = (-l)L'-m'LV2l7Tl( L \ 1 L ) (2.13) 
\ m'L q mL J 
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Chapter 2. Theory of Trapping and Pumping 

assuming that L' is greater than L. 
Substituting Equation 2.13 and Equation 2.12 into Equation 2.11, and re-­writing all 

Clebsch-­Gordan coefficients and 3j symbols as matrix elements gives, with some rearrange-­
ment of terms, • 

/,,',,,,, ( (SL;Jmj\LmL,Sms) (LmL,lq\Ll-,L'm'L)\ 
Hj = e(nL\\r\\nL) ^ (2.14) 

mL,ms,m'L\ * (L'm'L, Sms\L'S; J'rn'j) J 

The \L'm'L) states form a complete basis here, and summing over this basis removes it from 
the expression, leaving the sum 

Pij = e (n'L'\ \r\\nL) ^ (SL; Jmj\LmL,Sms) (Lm,L, Sms,lq\L'S; J'm'j) (2.15) 

A similar sum can now be done with the \Lrnr,, Srns) complete basis, leaving us with a 
single angular matrix element. 

Pij = e(n'L/\\r\\nL)(Jmj,lq\L'S;J'm'J) (2.16) 

This matrix element cannot be evaluated as written, since the left-­hand side is in the (J, 1) 
intermediate basis, and the right-­hand side is in the {L',S) intermediate basis. However, 
the transformation between these two bases is unitary, as shown in Section 2.3.1, and can 
be written concisely using a 6j symbol. Hence, this matrix element can be written as the 
product of a 3j symbol and a 6j symbol. 

IHj = e(n'L'\ \r\ \nL) ^rf+s+J'-J-m'j 

L' J' S ) f J 1 J' 
x A / ( 2 J ' + l ) (2J + l)(2L' + l ) x , 

J L 1 ) \ mj q —rrij 

This equation allows us to calculate the relative transition strengths for the fine structure 
sublevels of a given line without knowing the radial component of the equation, as the n and 
L quantum numbers remain the same for all of the fine structure sublevels. The method 
used in this work is to treat the quantity e (n'L'\ r \nL) as the 'total line strength', and 
divide it out to get the fractional strengths for each transition. 
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Chapter 2. Theory of Trapping and Pumping 

2.3.3 M a t r i x E lement for Hyperf ine Structure States 

A n analogous process can be used to calculate matrix elements for hyperfine structure 

states. In this case the pertinent" matrix element becomes, in the \Frtip) basis, 

Hij = e (n'F'm'p\ e • f\nFmp) (2.18) 

A s wi th the fine structure matrix element, this matrix element can be expanded, this time 

in terms of J and I. The /-­component of the matrix element has no relation to the orbital 

angular momentum and is thus tr ivial , giving 

My = e £ C)Z^mPFjZijmi^J'm^\e.r\nJraj) (2.19) 
mj ,mj ,m'j 

The third matrix element in Equation 2.19 is the fine structure matrix element defined in 

Equation 2.10. As such, we can substitute in Equation 2.17, giving (with some rearrange-­

ment) 

IMj = e (n'L'\ \r\\nL) {-l)l+L+s+J'J*(2J + 1)(2L' + 1) j ̂  '̂ ̂  | (2-­20) 
x ^ (J'P,F'm'F\Imj,J'mj)(Jl]J'm'j\Jmj,lq)(Jmj,Imr\J,P,Fmp) 

The sums can be evaluated in the same way as in the fine structure case, giving 

(J'P,F'm'p\ImI,J'mj)(Jl]J'm'j\Jmj,lq)(JmjJmI\JJ]Frnp) (2.21) 
mj ,mi ,m'j 

= (J'P,F'm'F\lq,FmF) 

The matrix element on the right hand side of Equation 2.21 is of the same form as the 

angular matrix element in Equation 2.16, and can thus be expanded in the same way in 

terms of a 3j symbol and a 6j symbol. Substituting this expansion into Equation 2.20 gives 

IMj = e (n'L'\ \r\ \nL) t_if+L'+s+J+J'+l-F+F'-m'F ( 2 2 2 ) 

x y/(2J + 1)(2J ' + 1)(2F + 1)(2F' + 1)(2L' + 1) 

V J1 S 1 f J' F' I 1 / F 1 F' \ 

J L 1 J { F J I ] \ m F q -m'F J 

This has the same form as Equation 4.33 in Metcalf, 1999[25], but has factors of ( -­ 1 ) F ' _ F 

and J2L' + 1 that were neglected there. As wi th the fine structure matrix element, the 
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. radial component of Equation 2.22 can be divided out to find the fractional strength of each 

possible transition, which wi l l only depend on angular momentum quantum numbers and 

the polarization of the light. 

In the case of spontaneous emission, any polarization of light can be involved. Thus, the 

three possibilities must be summed over in Equation 2.22. Since the different polarizations 

are emitted incoherently[2], the matrix elements must also be added incoherently, as 

I/^I2 = £ I M</)I 2 (2-23) 

From this, it is straightforward to calculate the spontaneous rate -fij, given a measurement 

of the excited state lifetime r . The total rate of spontaneous emission 7 = 1/r includes all 

possible ground states a given excited state couples to, so to find the specific rate 7 ^ the 

total 7 is weighted by the matrix elements \pij\2- Thus, the spontaneous rate is given by 

* = ( 2 ' 2 4 ) 

2.3.4 Calculation of the Stimulated Rate 

Unlike the spontaneous rate, which depends only on a single atomic property, the stimulated 

rate is a function of several input parameters. The incident light intensity naturally affects 

the stimulated transition rate, as does the energy difference between the light photon energy 

and the transition resonance energy. In the case of a two-­level atom, Al l en and Eberly[3] 

have that the stimulated transition rate R is given by 

2R = ^ - = CI'1 (2.25) 

where £ is a Lorentzian factor related to the light frequency and I' is the ratio of the light 

intensity relative to the saturation intensity of the atom. We can write down a saturation 

parameter s which is defined as s = CI'. 

O n resonance, the saturation parameter is given by SQ = I' = I/Io, where / is the 

incident intensity and the saturation intensity I0 is given by[25] 

Away from resonance, this is modified by the Lorentzian resonance parameter C, which for 

a detuning 5 for the stimulated transition rate is given by 

1 
(2.27) 

1 4- 4(2TT5 • r ) 2 
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Combining Equation 2.25 and Equation 2.27, we get 

I/Io 
) 7 (2.28) 

2[1 + 4(2TT<5 • r ) 2 ] 

This equation gives that the transition rate increases without bound as the intensity in-­

creases, giving in the limit of infinite power infinite stimulated rates, which distribute the 

population equally between the states. Equation 2.28 is easily generalized to the case of a 

multi-­level atom by weighting it by the matrix element magnitude squared \pij\2 for each 

particular pair of states. Since the polarization of the laser light is known and definite, there 

need not be the same sum over polarizations that is necessary in the case of the spontaneous 

rate. In the multi-­level case the detuning S also depends on the choice of states, since the 

states in the ground and excited manifolds are not degenerate. 
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Chapter 3 

Simulation of Optical Pumping 
Physics 

The precise relationship between the excited state population measurement described in 

Section 1.3 and the nuclear polarization is not directly obvious. A simulation of the optical 

pumping process can elucidate this relationship, by providing both the variation of the 

excited state population and the final nuclear polarization for a given set of parameters. 

These parameters can be used to fit the simulation to the data and thus provide a calculation 

of the corresponding nuclear polarization. 

A simulation based on the rate equations, as defined in Section 2.2.2, is conveniently 

simple while not approximating away important features of the system. Such a simulation 

can be made deterministic, which is much more favourable for the use of fitting algorithms 

than a simulation based on a Monte Carlo method. 

3.1 Basic Framework 

The rate equations (Equations 2.4 and 2.5) are linear first-­order ordinary differential equa-­

tions, and as such they are fairly straightforward to solve numerically. The simplest way 

to numerically solve such a system is to use Euler's method [8], defined for a differential 

equation y'(x) = f(x,y) and init ial condition y(xo) — yo by the recurrence relation 

y{xn+i) = y(xn) + hf(xn, y{xn)) (3.1) 

where h is the increment in x between iterations of the recurrence relation. Equation 3.1 

can easily be generalized to a system of equations such as the rate equations, wi th the 

replacement of the single dependent variable y wi th a vector of dependent variables, y. 

The simplicity of the rate equations ensures that no more complicated numerical method 

is necessary for an accurate simulation. 

The choice of ini t ial conditions for the optical pumping simulation is simplified by the 

action of the M O T . The randomness of the M O T processes acts to distribute the population 

evenly through the various hyperfine structure states. There is an interval between the 
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deactivation of the M O T and the activation of the optical pumping that is sufficient for all 

atoms to decay to the ground state, so the ini t ial excited state population used was zero. 

Thus, each of the six ground state levels was given an init ial population of 1/6. 

Since the full circularly-­polarized optical pumping process requires two laser beams, as 

described in Section 2.2.2, the simulation also includes two laser beams, tuned to different 

frequencies. The stimulated transition rates for these two beams are calculated separately 

and then added incoherently. The simulation implements a main pumping beam referenced 

to the F.= 3/2 —* 3/2 transition and a repump beam referenced to the F = 1/2 —> 3/2 

transition. 

Sections 2.3.4 and 2.3.3 describe the calculation of the coefficients in the rate equations 

for eigenstates of the total angular momentum F and its projection mp. This is the most 

natural basis in which to consider the problem, but its use is marred by an essential am-­

biguity: is the quantization axis the direction of the optical pumping light, or is it the 

direction of the magnetic field? These are not the same; the M O T quadrupole field is kept 

on during the optical pumping cycle as its switching speed is much slower than that of 

the optical elements of the experiment. Through most of the trap cloud, the quadrupole 

field is not aligned wi th the optical pumping beam and thus provides an off-­axis field. The 

result is both poorer polarization and greater complexity in analysis, but the gains of faster 

switching speed make this a worthwhile trade-­off. 

Polarizations in the ini t ial and final states are intended to be referenced to an axis that 

is well defined with respect to the beta decay experiment. Only the optical pumping axis 

satisfies this condition, so that axis was selected as the quantization axis. In this case, we 

must accommodate an off-­axis magnetic field, which is a significant effect that acts to spoil 

a possible perfect polarization. From a semiclassical perspective, the magnetic moment and 

thus the spin of the atom wi l l precess around the magnetic field axis. Since this direction 

is not the same as the quantization direction, the projection of the angular momentum 

w i l l change over time as the spin precesses.[23] A simple semiclassical model of Larmor 

precession was found to have inadequate theoretical backing, so a full quantum mechanical 

treatment was developed instead. This more accurate model requires abandoning the simple 

\F,mp) basis for a new basis that depends on the off-­axis magnetic field. 

3.2 A New Basis for Optical Pumping 

The Hamiltonian for an angular momentum S in a general magnetic field is given by 

H = -jl-B = -gfiBS-B . (3.2) 
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We can without loss of generality define the direction of the optical pumping light as the 

z-­axis, and the plane shared by the optical pumping light and the magnetic field vector as 

the x-z plane, so that the magnetic field can be written as 

B = B0z + B'x 

and thus the Hamiltonian can be written in terms of spin matrices as 

H = -gtMB(BoSz + B'Sx) 

(3.3) 

(3.4) 

For a given spin, this is a relatively simple matrix wi th diagonal terms proportional to So 

and off-­diagonal terms proportional to B'. The two cases that are relevant for the 8 0 R b 

5Sx/ 2 and 5P-\_/2 states used in the optical pumping process are spin 1/2 and spin 3/2. For 

spin 1/2, the Hamiltonian matrix is then, from the usual Paul i matrices, 

H -gpB B0 

' 1 0 ' 
+ B' 

' 0 1 ' 
+ B' 

0 -­ 1 _ 1 0 

B0 B' 

B' -Bo 
(3.5) 

For spin 3/2, the Hamiltonian is more difficult to write down due to the larger matrices 

involved. The spin matrix Sz is a straightforward diagonal matrix as the ini t ia l basis consists 

of its eigenstates; we have 
r 3 0 

0 1 

0 0 

0 0 

0 

0 

-­ 1 

0 

(3.6) 

To find Sx, we use the relation Sx — 1/2(S+ + SJ), since we know the form of S+ and its Her-­

mitean conjugate 5_ from the equation S+ \J,m) = i / J ( J + 1)'— m(m + 1) \ J,m+ 1)[21]. 

Thus we have 

S+ = 

0 v/3 0 0 

0 0 y/l 0 

0 0 0 VS 
0 0 0 0 

, ST — 

0 0 0 

'374 0 1 0 . 

0 1 0 \/374 

0 0 0 

(3.7) 
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Therefore, we can write the Hamiltonian for spin 3/2 as 

0 0 

H = -9Hb 
0 

\ BQ 

B' 

B' 0 
(3.8) 

0 0 

The Hamiltonians described in Equations 3.5 and 3.8 can, for a given choice of BQ and B', 

be numerically diagonalized to find a new basis in which to simulate the optical pumping 

process. The basis described by the normalized eigenvectors naturally accounts for the 

off-­axis magnetic field and its polarization-­spoiling effects. 

This process makes a significant approximation, namely that the F = 1/2 and F = 3/2 

hyperfine sublevels do not mix. The hyperfine splittings of the two states, as shown in Table 

3.2, are relatively large, especially in the ground state. The magnetic fields in this system 

are on the order of 1 G , which results in a Zeeman splitting on the order of 1 M H z . This 

is much less than the ground state hyperfine splitting of approximately 230 M H z or even 

the excited state hyperfine splitting of about 30 M H z . In systems wi th smaller hyperfine 

splittings, this approximation would be invalid and a combined, block diagonal Hamiltonian 

would have to be used instead. The same eigenvectors are used for both the ground and 

excited states, as the only difference in the Zeeman Hamiltonian is the g-­factor, which as a 

multiplicative constant only affects the eigenvalues. 

3.3 Translation into the New Basis 

The use of this new basis requires that the physical quantities calculated in Chapter 2 be 

transformed from functions of F and mp to values corresponding to the new states. A s the 

relation between the two bases is unitary, this is a relatively straightforward process. 

3.3.1 Energies in the New Basis 

The Hamiltonians in Equations 3.5 and 3.8 break the degeneracy of the mp states at the 

same time as they mix them. This is the familiar Zeeman effect, given by the eigenvalues of 

the magnetic Hamiltonian corresponding to the eigenvectors that describe the new states. 

To calculate the eigenvalues, we must know the g-­factor that multiplies the Hamiltonian 

matrix. The g-­factor is a function of the angular momenta and thus is different for the four 

hyperfine levels in the system. Foot, 2005[13] relates the g-­factor for a.hyperfine structure 
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state, gF, to the g-­factor for the corresponding fine structure state, gj, by 

„ ., ( J -­ F > F ( F + l) + J ( J + l ) - 7 ( / + l ) 
9 F = 9JF(FTT) = 9 3 2F(F + 1) ( 3 -­ 9 ) 

Th is equation assumes that the contribution from the nuclear magnetic moment is negligible, 

and thus the nuclear angular momentum I only enters in the transformation from gF to gj 

and does not contribute to the g-­factor on its own. It is also straightforward to calculate 

the fine structure g-­factor gj from its constituent angular momenta. Bo th the spin and 

orbital angular momenta have known g-­factors, which are related to the combined g-­factor 

as [25] • 
( L - J ) + g g ( S - J ) J(J + 1) + S(S + 1)-L(L + 1) . . . . . 

9 J = —JTJTT)
 1 + 2JT7TT) ( 3 ' 1 0 ) 

The right hand side of Equation 3.10 approximates the electron g-­factor gs to be exactly 

2, an approximation correct to one part per thousand. 

3.3.2 Rates in the New Basis 

The rates of transition between the states, as calculated in Section 2.3, are dependent on 

the transition matrix element \(n'F'm'F\ e • f\nFmF ) | 2 , for a ground state \nFmF) and an 

excited state \n'F'm'F). Those matrix elements were calculated in the original basis and in 

that basis the calculation was relatively straightforward. Since the new states are related 

to the old states by a unitary transformation, the conversion into the new basis is also 

straightforward. 

We can write the states in the new basis as 

\nFq) = ]T K F t m F i q \nFmF) (3.11) 
mp 

where K F < m F A are real constants corresponding to the values in the normalized eigenvector, 

and q is an arbitrary label for the states in the new basis. Thus, the matrix element between 

the ground state \nFq) and the excited state \n'F'q') is given by 

Pij = e (n'F'q'\e • f \nFq) = e ^ KF,tm/Fq,KFirnFiq (n'F'm'F\e • r\nFmF) (3.12) 
mF,mF 

This matrix element's magnitude squared can be used wi th Equations 2.24 and 2.28 to 

weight the stimulated and spontaneous rates in the same way as the matrix elements in the 

original basis. 

Since the states in the new basis have mixed angular momentum, two of those states 

can be coupled by more than one polarization of light. Generally, this only affects sponta-­
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n'eous emission, as for excitation and stimulated emission the light polarization is specified. 

For spontaneous emission, the rates add incoherently as the different polarizations do not 

interfere wi th each other. 

3.3.3 Power Shaping 

Ideally, the optical pumping cycle should begin with the laser already at its full power. 

In practice, though, it takes a finite amount of time for the laser to 'switch on', and in 

this time it w i l l have decreased power. In the system used in the experiment, the optical 

pumping laser is switched on and off using an acousto-­optic modulator ( A O M ) , which has 

a switching time on the order of 100 ns. 

Thus, for the first 200-­300 ns of the simulation, the power must be modulated to accu-­

rately match the data. Measurements made of the laser power as a function of time as the 

A O M switches on[6] suggest that the modulation should be of the form 

P(t) = P0- - J — — (3.13) 
w l + A e x p [ -­ i / r ] v ' 

The best fits to those measurements give that A = 9.025 and r = 38.5ns. 

3.4 Polarization of System 

The polarization that is of interest in this case is not the total atomic polarization (mj?) /F, 

but the nuclear polarization (mj) JI. The former is t r ivial to calculate in the ini t ial basis 

as the states are eigenstates of mp, but the calculation of the nuclear polarization is more 

complicated as mj is not a good quantum number. Nevertheless, the orthogonality of the 

\J,mj) states allows the calculation of the nuclear polarization to remain straightforward 

in practice. 

For a given mp eigenstate, the expectation value (mi) can be written as 

(Fmp\mi \Fmp) = 
mj,m'j,Tni,m'j 

CJmjjmiCjm'jjm'j (Jmj,Imi\mi |Jm'j,Im'j) 
x ^mF,mi+mj^m.F,m.'I+m.l

J 

(3.14) 

Since the mi operator does not act upon the \J,mj) components of the two states, the 

orthonormality of those states requires that mj = m'j. Similarly, the mi operator is clearly 

diagonal in the space described by the \I,mi) components and so the polarization is given 

by 

(Fmp\mi\FmF)= £ m / ( c ^ / m / ) ^mj ,Tnp—Tnj 
(3.15) 
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We can then translate this into the \Fq) basis in the same manner, wi th the unitary trans-­

formation coefficients Kp^mF^q appearing in the same manner as the Clebsch-­Gordan coef-­

ficients above: 

(mI) = (Fq\mI\Fq)^ £ mi (KF,mF,q)2 (c^Jm[^ < 5 m j , m F _ m / (3.16) 

Once this expectation value is calculated, the total polarization can be calculated by nor-­

malizing to the total I. 

The calculation of the tensor alignment is analogous to that of the vector polarization, 

wi th mi replaced by mi2. Unlike the vector polarization, though, the tensor alignment is 

not simply (mr2) scaled by the total angular momentum, but comes in wi th a form that is 

useful for Cartesian tensors, 
T _ 1(1 + 1) - 3 < m , » ) 
1 ~ 1(21-1) 

3.5 Known 8 0 Rb Atomic Structure 

To accurately simulate the optical pumping process, several of the atomic properties of 8 0 R b 

must be known. The wavelength of the optical pumping light is needed to calculate the 

saturation intensity (Equation 2.26). The excited state lifetime determines the width of the 

Lorentzian profile for calculating stimulated rates, and also the scale of all of the transition 

rates. Finally, the hyperfine splittings must be known to calculate the detunings of the two 

pumping beams from the various resonances and thus determine where in the line profile 

the light sits. These values are summarized in Table 3.2 below. 

We define the hyperfine constant as the constant of proportionality in the hyperfine 

Hamiltonian, which arises from the interaction of the nuclear magnetic moment, propor-­

tional to the nuclear angular momentum I, wi th the effective magnetic moment of the 

electron, proportional to its total angular momentum J . For the J = 1/2 case considered 

here, this is a pure dipole-­dipole interaction wi th no contribution from higher moments of 

the nucleus, and we get a Hamiltonian of the form 

H = A(T-J) (3.18) 

This is a simpler and more general way to express hyperfine structure than in terms of the 

explicit hyperfine splittings. The hyperfine splitting for a pair of states is related to the 

difference between the value of I • J for those states by the hyperfine constant. From the 
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Isotope and State Hyperfine Constant (MHz) 
8 5 R b 5 S 1 / 2 

8 5 R b 5 P 1 / 2 

8 7 R b 5 5 1 / 2 

8 7 R b 5 P 1 / 2 . 

1011.910813 ± 3 x 10~6[34] 
120.645 ±0.005[11] 
3417.3413[4] 
406.119 ± 0.007[11] 

Table 3.1: Hyperfine Constants of 8 5 R b and 8 7 R b 

equation F = I + J, we have that 

/ • J = ±{F(F + 1) -­ / ( / + 1) -­ J ( J + 1)) (3.19) 

and so the energy difference between two states of different F and equal I and J is given 

by , 

A E = ^ ( F i ( F i + l ) -­ F 2 ( F 2 + l ) ) (3.20) 

where P i > P 2 . Thus, for the 5 8 ^ and ^1/2 states of 8 0 R b which have sublevels wi th 

F — 3/2 and F — 1/2, the hyperfine splitting is 3/2 of the hyperfine constant, i.e. AE — 

( 3 / 2 ) A 

Thibaul t et al.[32], give the value of the hyperfine constant for the 8 0 R b ground state 

as (-­155.957 ± 0.002) M H z , which gives a splitting of (-­233.936 ± 0.003) M H z between 

the two ground state hyperfine levels. In the case of the excited state, though, there is no 

analogous measurement of the hyperfine constant. Thus, we must estimate it using other 

available data. 

Ignoring the hyperfine anomaly, the ratio of ground and excited hyperfine constants 

should be the same for all isotopes of the same element, i.e. 

4 ^ ( 8 0 ) A 5 P l / 2 ( 8 5 ) A 5 P l / 2 ( 8 7 ) 

A5Sl/2(80) ~ A5Sl/2(85) ~ A5Sl/2(87) • [ ' } 

Thus, the excited state hyperfine constant can be estimated from the ground and excited 

state hyperfine constants of stable 8 5 R b and/or 8 7 R b , along wi th the ground state hyperfine 

constant of 8 0 R b . The hyperfine constants for 8 5 R b and 8 7 R b are very well measured; these 

measurements are summarized in Table 3.1. 

Using the data from 8 5 R b , this gives the hyperfine constant for the excited state of 
8 0 R b as (-­18.5940 ± 0.0008) M H z . For the data from 8 7 R b , the 8 0 R b hyperfine constant is 

calculated as (—18.5340 ±0 .0003 ) M H z . These are not consistent w i th each other, but since 

the process for calculating these is approximate, this is not disastrous. The discrepancy 

is less than one part per thousand, which is small enough not to cause problems. The 

average of these two values, (—18.5640 ± 0.0009) M H z was used for this work. From this, 
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Wavelength of D l transition (vac.) 795.0 nm [1] 
Lifetime of 5P\/2 state 27.64 ns [29] 
Ground state (5Si/2) hyperfine splitting (-­233.936 ± 0.003) M H z 
Exci ted state (5P\/2) hyperfine splitting (-­27.846 ± 0 . 0 0 1 ) M H z 

Table 3.2: Atomic Properties of 8 0 R b 

Time (/is) 

Figure 3.1: Typica l simulation result 

the hyperfine splitting of the excited state was calculated to be (—27.846 ± 0.001) M H z . 

3.6 Fitting Simulation to Data 

The most important output of the optical pumping simulation is the total excited state 

population as a function of time. As described in Section 1.3, tlie shape of this function 

is highly dependent on the degree of polarization achieved over the course of the process. 

Figure 3.1 shows the excited state population for a typical simulated optical pumping run. 

A t the same time as the simulation produces the excited state population, it also deter-­

mines the polarization of the simulated atoms at that given time. As this output polarization 

depends on time, it is important to choose the correct time to read off the final polarization 

value. Figure 3.2 shows the variation of both positive and negative polarization wi th time. 

A s can be seen there, the polarization reaches a stable value fairly early on, and continues 

in a steady state for the rest of the simulated time interval. As such, the simulation reports 

the polarization value as the value at the final timestep. 

Importantly, the simulation can also be run so that it simulates hyperfine pumping rather 

than full optical pumping. This is accomplished in the simulation, as in the laboratory, by 
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Polarization time dependence ( t j + ) Polarization time dependence (a") 

0 10 20 30 40 0 10 20 30 40 
Time (fis) Time (/is) 

Figure 3.2: Positive and negative polarization time dependence 

setting the power of the repump beam to zero. The resulting population curve is mainly a 
function of the power of the remaining beam. 

For the purposes of fitting the simulation output to the data, a fitting routine based 
on the Marquart algorithm as described in the book Numerical Recipes in Fortran[27] was 
used. A custom fit routine was necessary to interface properly with the optical pumping 
simulation and its nonlinear relationship with its parameters. 

The Marquart algorithm, like any other fitting algorithm, works by numerically mini-­
mizing the goodness-­of-­fit function, x 2 . The location in the parameter space can be written 
as a parameter vector a; the fit algorithm determines a series of increments 5a so as to 
converge on that minimum. The data is denoted here as a series of points (xi,yi), and the 
fit function as y(a,Xi). 

The formalism of the fit algorithm is centred on the curvature matrix aki, defined as 

1 d2X2 y 1 
2 dcikdai Gi2 

dy(a,Xj)dy(a,Xj) d2y(a,xt) 

dak dai 1 ' dakd<n 
(3.22) 

where ai is the error on j/j, which for the yi used in this thesis is a Poisson error. The 
curvature matrix appears in the Taylor series of x 2 3 5 cekiakai. Approximating x2 by 
the terms up to and including this quadratic term, we find the other quantity used in 
determining the parameter increments to be the gradient of the %2, (3k, defined as 

R 1 9 X 2 - (YI ~ Y ( A ' d y ( a , Xi) 

Using the quadratic form approximation of x 2 , the ideal parameter step 5a can be calculated 
as 

aki5cn = (3k (3.24) 
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Thus, the most basic framework for a fitting algorithm based on this formalism is to calculate 
aw and Pk with numerical derivatives, and then invert the matrix to solve Equation 3.24.' 

Since ctki only affects the steps taken and not the final result, it can be used in whatever 
form is convenient for efficient convergence. The second derivative term contributes signifi-­
cantly less to the value of the curvature matrix than the cross term, since it is multiplied by 
the residual (yi — y(a, a:*)), which tends to zero for a successful fit function. It is also more 
difficult to calculate than the first derivative terms and has been found to cause instability 
due to its greater sensitivity to statistical fluctuations in the data. Thus, it is in practice 
omitted and the curvature matrix has the simpler form 

aM = E ^ 2 

Two more modifications to cxf-i are made for greater stability. The different orders 
of magnitude of the parameters are normalized away by dividing each a^i by the diagonal 
elements y/akk&ii f ° r the inversion of the matrix, with an analogous transformation restoring 
the proper magnitude for use in Equation 3.24. Also, the choice of at used was not the simple 
i /2/ ( a ,Xi) , but rather y(a ,Xj)/ \ fy l , which is almost identical to the standard Poisson choice 
near to equilibrium but which'deals better with data points that are zero. 

Marquart's addition to this method aims to curtail divergences when far from the equi-­
librium by adding a floating scale factor to the matrix a^i- This factor, usually denoted as A, 
is added to the matrix by multiplying the diagonal terms by (1 + A). Far from convergence, 
a large value of A will force ctki to be diagonally dominant, thus allowing for the simpler 
behaviour of just following the gradient until a decrease in the x 2 is found. The result is 
that the algorithm becomes markedly less sensitive to the initial guess. The procedure for 
adjusting A is simple: increase it by a factor of ten if the calculated step increases the x 2 , 

and decrease it by a factor of ten if the x 2 decreases. 

Once the value of x 2 reaches a suitable convergence point, the uncertainties in the fit 
parameters can be found from the covariance matrix Cki — ctki~l- The uncertainty in each 
parameter is then y/C~kk~. 

dy(a,Xi) dy(a, Xi 
dau dai 

(3.25) 
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Results 

In December 2005, the TRINAT group was allocated two weeks of 8 0 R b beam from ISAC. 
During this time, the data for the final asymmetry measurement was taken. This chapter 
will describe the application of the methods described in the previous chapter to this data, 
and the results thus obtained. A rough method of estimating the polarization will be 
developed to help verify these results, and the various sources of error will be examined. 

4.1 Choice of Data 

A l l of the analysis was performed using only data from the second week of the run. From 
a statistical perspective this is disadvantageous as compared to using the full data set, 
but differences in setup between the two weeks favour the data from the second week for 
systematic error analysis. 

During the first week, the same optical pumping frequency was used with both polariza-­
tions, which due to differences in the atomic response caused the trap to move differently 
during the optical pumping process. As a result, the trap was in a different final position 
for positive polarization than it was for negative polarization. During the second week, the 
frequencies were tuned separately such that the trap position was as consistent as possi-­
ble between the two polarizations. This change greatly improves the accuracy of the recoil 
asymmetry measurement, as a difference in trap position between the two polarization states 
will produce a false asymmetry, masking possible effects from tensor interactions. The 1 
mm shift observed in the first week produces a false asymmetry of about 0.04, which is a 
very large correction. 

The second week data was taken with a lower count rate. This greatly improved the 
performance of the germanium gamma-­ray detector which had severe pile-­up problems at the 
higher count rate. The lower population in the neutralization and collection chamber also 
decreased the gamma-­ray background, and lead shielding was placed around the germanium 
detector to further reduce background. The trap, holding fewer atoms, was more compact, 
which provides an additional advantage. The net result is a data set that, while smaller, is 
significantly cleaner. 

It is also the case that the timing electronics for the germanium detector were only 
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refined to a useful level during the second week; this is not important for this work, but is 

important for some of the other data analysis for the experiment. 

4.2 Power Measurements with Hyperfine Pumping 

During the run of the experiment, several hours of data were taken wi th the laser side-­

band switched off, observing the process of hyperfine pumping rather than that of optical 

pumping. The intent was to directly measure the incident laser power at the trap, as the 

time dependence of the hyperfine pumping process is largely independent of other physical 

parameters such as magnetic field and light polarization. As the hyperfine pumping process 

is fast, the excited state population stays small and the count rate of photoions during 

the pumping process is correspondingly low. F i t t ing to these peaks given the statistical 

fluctuations is difficult, but fortunately the power need not be measured to high accuracy 

for a sufficiently accurate polarization measurement. 

Hyperfine Pumping from Second Week Data 

12 

10 

O 
o 
c 6 
o 
o 
o 

a. ^ 

2 

0 
0 1 2 

Time (,us) 

Figure 4.1: Example measurement of hyperfine pumping population curve 

A typical dataset is shown in Figure 4.1. This graph represents about four hours of 

data and contains about 90 counts, including background. The low-­statistics nature of this 

spectrum causes the normal fit algorithm described in Section 3.6 to fail, overwhelmed by 

statistical fluctuations. To improve the statistics of this measurement, the data for the two 

circular polarizations was added together. Since the amount of data is approximately the 

same for both polarizations, the simulation result for the two polarizations was also added 

together directly. A s the polarization measurement is relatively insensitive to the input 

power, a simple analytic method was used to estimate the power and its uncertainty. 

Theoretical population curves were calculated at 1 m W / c m 2 intervals from 1 m W / c m 2 
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Hyperfine Pumping Fit (5.25 m W / c m 2 ) 
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Figure 4.2: F i t to hyperfine pumping data (x2/n = 0.97) 

to 10 m W / c m 2 . Each of these curves was fit to the data using a floating normalization 

factor and the x 2 of each fit was evaluated. Since the value of the normalization factor 

does not affect the power measurement, the use of a x 2 fit does not bias the result. Further 

power values were examined around the apparent centroid, and the eventual best fit was for 

5.25 m W / c m 2 , shown in Figure 4.2. A graph of x 2 versus power was produced to determine 

the error on this measurement. These values of x 2 are shown in Figure 4.3, wi th the dotted 

line marking x 2 —. X2min + 1-­ From this plot, an error of ± 1 . 3 m W / c m 2 was determined, 

giving a measurement of the total incident power of (5.3 ± 1.3) m W / c m 2 . The asymmetry 

of the x 2 plot is reasonable, as the pumping rate becomes increasingly insensitive to the 

incident power above the saturation intensity of 1.8 m W / c m 2 . 

In the full optical pumping case, this power is divided between the two laser frequencies 

used for pumping and repumping. In this case, the ratio of the two powers was measured 

using a scanning Fabry-­Perot interferometer. This instrument was used to produce a real-­

time plot of intensity as a function of frequency. A n example plot is shown in Figure 4.4. 

The ratio of the powers in the two frequency bands is then just the ratio in the heights of 

the resultant peaks. 

Dur ing the period when the data used for polarization measurements was taken, four 

measurements of this ratio were made. These measurements can be found in Table 4.1. The 

mean value of the ratio found from this data is 0.28, with standard deviation 0.01. This 

value was used in the optical pumping fits described below. 
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X Plot for Error Determination 
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Figure 4.3: x2 plot f ° r hyperfine pumping fit 
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Figure 4.4: Example of Fabry-­Perot power spectrum 

R u n # Ratio 
1136 0.275 
1149 0.280 
1168 0.296 
1183 0.274 

Table 4.1: Measurements of relative sideband intensity 
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4.3 Rough Polarization Estimates 

The polarization can be estimated from the peak-­to-­tail ratio of the population curve, to 

verify the correctness of the more precise measurement using the optical pumping model. 

This cross-­check depends on none of the assumptions used by the model, and as such is an 

independent measure of the content of the data. 

We can consider the excited state population we measure to be proportional to the 

ground state population outside the fully-­stretched mp = ± 3 / 2 state. Initially, this fraction 

wi l l be 5/6, as the operation of the M O T distributes the population evenly between the six 

\F,mp) states. Thus, we can write the final population fraction outside the fully-­stretched 

s t c i t e , X j c is 

where r is the ratio of the final excited state population to the peak excited state population 

as measured from the population curve. 

A t this point, several simplifying assumptions must be made. We assume that the 

final ground state population is only distributed through the half of the manifold with the 

'correct' angular momentum sign: the TUF = 3/2 state and the two mp = 1/2 states for 

cr+ light, for example. The nuclear polarizations of the F = 3/2 and F = 1/2 states wi th 

mp = 1/2 are different, the F = 3/2 state having polarization 1/3 and the F — 1/2 state 

having polarization 2/3; this necessitates some estimation of the ratio in population between 

these states. 

In the steady state found in the tai l of the population curve, we would expect the 

population in those states to be in proportion to the strengths of the two transitions from 

the mp = 3/2 excited state. The transition has twice the strength to the F = 1/2 ground 

state as to the F — 3/2 ground state, so the population of the F = 1/2 ground state 

should be twice that of the F = 3/2 ground state. Thus the polarization contribution 

from the fraction of the population in these states, x, is (2/3*2/3 ± l / 3 * l / 3 ) x or 5/9x. 

The population (1 — x) that is in the fully-­stretched state is fully polarized, and so the 

approximate polarization is given by 

Apply ing this formula to the experimental data, we find that optical pumping wi th cr+ 

light gives a polarization of approximately 0.86, while u~ light gives the polarization as 

approximately 0.89. A s we wi l l see below, these values are in remarkably good agreement 

wi th those found using the more detailed simulation. 

(4.1) 

P « (1 -­ x) + 5/9x = 1 -­ 4/9x = 1 -­ 20/27r (4.2) 
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4.4 Frequency Measurements 

The frequency of the optical pumping laser is set to a known value by locking it to the 

F — 3 —> 3 transition of 8 5 R b , using saturation spectroscopy[31]. This reference is offset 

from the actual laser frequency by an acousto-­optic modulator ( A O M ) tuned to shift the 

frequency from the 8 5 R b transition to those of 8 0 R b . As this is a double-­pass A O M , the 

frequency change to the light is twice the A O M driving frequency. A n additional A O M is 

placed between the laser and the vacuum chamber, which is switched on and off to chop 

the laser on and off. 

The switching A O M is held constant at a frequency of 131 M H z . This frequency cancels 

in the detuning calculation as it is the same for both the resonance and detuned settings 

of the double-­pass A O M . The 8 0 R b F = 3/2 —> 3/2 resonance was found by sweeping this 

A O M over the line profile, observing the final position of the trap and thus the net optical 

force, and then fitting a Lorentzian to the data points; the A O M frequency of the resonance 

was found to be t /3/2->3/2 — (396.1 ± 0.4) MHz[6]. This-­result is approximately 10 M H z 

larger than a previous measurement of the isotope shift found in the literature[32]. 

As a large optical force on the atoms during the optical pumping cycle causes them to 

move away from the detection region after pumping, the optical pumping beam is detuned 

from the resonance. This detuning was adjusted separately for the two circular polarizations 

to match up the post-­pumping position of the atom cloud. The A O M driving frequency 

that implements this was found to be stable to within 0.3 M H z over the length of the run. 

The cr + light was run wi th an A O M frequency of VAOM = 398.5 M H z and the cr~ light was 

run wi th an A O M frequency of VAOM = 395.4 M H z . 

Sidebands were produced in the laser's output by injecting an R F signal into the laser 

diode. The sidebands are produced at integer multiples of the R F frequency away from the 

central carrier frequency. This sideband is used as a repump beam as described in section 

2.2.2. The splitting frequency of Svught = —232.1 M H z was stable to within 0.1 M H z , and 

is different than the state splitting of Si/atam = —233.9 M H z to avoid the coherent effects 

described in Section 2.2.3. 

Thus, we can write the detunings S\ and 52 from the F — 3/2 —> 1/2 and the F = 

3/2 —> 3/2 transitions, respectively, as 

h = 2(VAOM ~ ^3/2^3/2) + {diatom ~ ^light) 

S2 = liyAOM — ^3/2^3/2) 

(4.3) 

(4.4) 
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4.5 Polarization Measurements 

Given the above measurements of power and frequency, the polarization can now be mea-­

sured from the excited state population curve. As shown above, the total power was mea-­

sured to be (7 ± 3) m W / c m 2 , and the ratio of power in the two beams is (0.28 ±.,0.01), 

and the detunings can be calculated using Equations 4.3 and 4.4. The only parameter that 

remains to be determined is the value of the on-­axis magnetic field. 

The on-­axis magnetic field was produced mainly by a set of t r im coils, which are in-­

dependent of the M O T quadrupole field. These t r im coils are used to position the trap 

while also providing a magnetic field reference for the optical-­pumping. If the M O T laser 

beams were balanced, this field would be zero as the M O T forms at the magnetic field zero. 

These beams were deliberately attenuated so as to displace the atoms from the centre of 

the chamber, and the current in the t r im coils was adjusted so as to to push the atoms 

back. These coils were powered wi th 6.0 A of current during the run, which is larger than 

the current used when the calibration measurement of'was made. The resulting magnetic 

field was estimated to be 2.4 G by simple linear extrapolation of the calibration. 

The error on the magnetic field is determined mainly by the finite size of the trap. Whi le 

the simulation treats the trap as pointlike wi th a constant magnetic field throughout, the 

actual trap has a full width at half maximum of approximately 2 mm. The magnetic field 

gradient in the vicinity of the-­ trap is about 5 G / c m , so the inherent uncertainty in the 

magnetic field associated wi th the finite trap size is ± 0 . 5 G . 

The direction of the magnetic field was also measured using a simple device, consisting 

of a bar magnet mounted to swivel freely in three dimensions. B y measuring the field at 

various locations around the vacuum chamber, the direction of the magnetic field along the 

optical pumping axis was found to be parallel to the optical pumping beam. 

The fit routine uses the off-­axis magnetic field as its polarization-­spoiling fit parameter, 

leading to a two-­parameter fit including Bx and a multiplicative normalization. The fit 

generates statistical errors for both of these parameters through the method described in 

Section 3.6. The error on the polarization-­spoiling parameter Bx is translated into an error 

in the polarization through further runs of the simulation at (Bx ± 5BX). The polarization 

values so obtained are taken as the upper and lower statistical limits on the polarization. 

4.6 Systematic Error Analysis 

Uncertainties i i i the input parameters contribute alongside the statistics of the fit to the 

uncertainty of the final polarization measurement. Whi le uncertainties in the atomic proper-­

ties (Section 3.5) are very small (less than a part per thousand), and wi l l not be propagated, 
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a -­polarization (runs 1134—1188) 
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Figure 4.5: F i t to second-­week data (cr polarization) (x2 = 0.90, polarization = (0.887 + 
0.031 -­ 0.039)) 

CT -­polarization (runs 1 134-­1188) 
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Figure 4.6: F i t to second-­week data (cr+ polarization) (reduced x2 = 1-­1901, polarization 
= (0.868 + 0.020 -­ 0.010)) 
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+ - + -

Statistical 0.031 0.039 0.023 0.011 

Total Power 0.010 0.007 0.015 0.021 
Power Ra t io ' 0.002 0.002 

Resonance Value 0.014 0.012 
Laser Split t ing 0.001 0.001 

Carrier Frequency 0.010 0.009 
On-­Axis Magnetic Field 0.010 0.009 0.013 

Total Systematic 0.022 0.021 0.026 0.030 

Table 4.2: Summary of errors in atomic polarization measurements 

20 

Figure 4.7: Comparison of 4 1 K photoion spectrum with fluorescence spectrum, (from [14]) 

vir tually all of the other parameters determined in Sections 4.2, 4.4, and 4.5 do contribute 

to the overall error. 

The effect of these parameter errors is different for the two polarizations, as the system 

is highly nonlinear. In addition, several of the larger uncertainties are, like the statistical 

uncertainties shown in Figures 4.5 and 4.6, asymmetrical. Table 4.2 summarizes the error 

contribution from each parameter. The systematic errors were added in quadrature as 

they are essentially independent. Thus, the measurement of polarization from the photoion 

spectra is -0.887±̂ ;ĝ  toill for <r~ light, and 0.868+g;gfg ±°0f£ for CT+ light. 

There is a possible systematic effect in the photoionization process, in that there could 

be a dependence of the photoionization cross-­section on the rap value of the atom. Such 

a dependence could skew the polarization measurement as the simulation calculates the 

total excited state population unbiased by differences in measurement between the states. 

After the run of the experiment a cross-­check was made between the time dependence of 

the photoionization rate and the time dependence of the atomic fluorescence during optical 

pumping wi th a trap of stable 4 1 K . Bo th should be proportional to the total excited state 

population, and thus fitting one to the other wi l l help verify this proportionality. The two 

observables were found[14] to agree, wi th a xV^ of 1.7, and the result of the fit can be 

found in Figure 4.7. 
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Chapter 5 

Theory of Beta Asymmetries 

While the atomic polarization diagnostics must be made using a measurement of the tran-­

sition from the ini t ial to the final state, nuclear processes can provide a direct measurement 

of the properties of the final state. A net nuclear polarization can be observed through its 

production of an asymmetry in the angular distribution of the beta particles. This chapter 

wi l l discuss the origin of this asymmetry and the means to determine the polarization from 

the asymmetry. The use of two different methods provides an important cross-­check on the 

polarization measurement. 

5.1 B e t a D e c a y B a s i c s 

W h e n radioactive decay was discovered by Becquerel near the turn of the century[12], it was 

soon discovered that the radiation thus produced is split by an electromagnetic field into 

three components. One component was found to be positively charged, a second negatively 

charged, and the third electrically neutral; these were labelled alpha, beta, and gamma 

rays, respectively. Further research determined not only that these components have vastly 

different properties but also that their origins lie in different nuclear processes. 

Beta decay is at its root the transformation of a proton in a nucleus into a neutron, or 

of a neutron into a proton. To conserve charge, the nucleon emits either an electron, which 

is the 'beta particle' observed by Becquerel, or a positron. Conservation of lepton number 

demands the simultaneous emission of a neutrino, which allows the beta particle to take 

on a spectrum of energy values rather than the monoenergetic emission characteristic of a 

two-­body decay. We can write the processes of beta decay in equation form as 

n —> p + e~ + De (5.1) 

p -­> n + e + + ue (5.2) 

The context of the nucleus allows the reaction in Equation 5.2 to proceed despite the increase 

in rest mass from the ini t ial proton to the particles on the right-­hand side. 

Beta decay is the dominant decay channel for the majority of light unstable nuclei, 

and is allowed when the mass difference between the nucleus and one wi th the same mass 
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Figure 5.1: Feynman diagram for / 3 + decay 

number and AZ — ± 1 is larger than the mass of the electron. The minimum mass isotopes 

for a given mass number thus form a 'valley of stability' in the chart of the nuclides, wi th 

the other nuclides transitioning towards the minimum through beta decay. 

Beta decay is mediated by the weak nuclear force. The nucleon decays when one of 

the quarks in the nucleon emits a vir tual W boson, which in turn decays, producing an 

electron and a neutrino. The emission of the W changes the flavour of the quark from 

up to down (or vice versa), while carrying away one unit of electric charge. The tree-­level 

Feynman diagram for (3+ decay can be found in Figure 5.1. In reality, the quark is not bare, 

but is instead incorporated in a nucleon wi th two other quarks. These two other quarks 

are 'spectator' quarks and do not directly contribute to the beta decay (and are thus not 

shown), but do interact wi th the decaying quark through the strong nuclear force. 

After emitting a beta particle, the nucleus recoils. This recoil momentum can often 

be quite large, and appears very quickly compared to atomic timescales. In addition, the 

charge of the nucleus has changed by one, changing the depth of its Coulomb potential. 

These changes suddenly shift the electron orbitals in the atom, wi th the effect that some 

of the more loosely-­bound electrons may fall out of the atomic potential. These 'shake-­off' 

electrons can be detected using the apparatus described in Section 6.2, giving both accurate 

t iming information and background reduction: In the case of 8 0 R b , the / 3 + decay produces 

a K r _ ion whose outermost electron is thought to be unbound[9] and thus guaranteed to 

shake off, and so a shake-­off electron should be detected for all decays, notwithstanding 

detector efficiency . 

Another possibility for neutron-­deficient isotopes is electron capture, i.e. 

p | e " -­ > n | j / e (5.3) 

This reaction occurs for all (3+ isotopes, but if the energy difference between the ini t ial 

and final nucleus is less than the electron mass of 511 k e V / c 2 , electron capture is the only 

possible decay. Electron capture rates increase wi th the overlap between the nucleus and 
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W+ 

Figure 5.2: Feynman diagram for electron capture 

atomic electron wavefunctions, so while it is a relatively small contribution for light elements, 

heavy elements can have large electron capture branching ratios despite the availability of 

beta decay. The Feynman diagram for electron capture can be found in Figure 5.2. 8 0 R b 

has an electron capture branching ratio of approximately 1%. 

The rarest beta decay variant is double beta decay. If we have that m(Z) < m ( Z ± l ) , but 

m(Z) > m(Z±2) + 2 m e , the isotope of atomic number Z can decay to the isotope of atomic 

number Z ± 2 via double beta decay. Such a distorted mass spectrum is commonly produced 

by nucleon pairing. Since double beta decay is a higher-­order process than ordinary single 

beta decay, the rate is much lower. 

5.2 Parity Violation 

It is usually assumed that any physical interaction wi l l be invariant under parity transfor-­

mations. If this is true, both the interaction in question and its spatial mirror image are 

equally physical. Most systems, including all classical systems, are parity invariant, but 

systems that involve the weak interaction interestingly are not. This was discovered in the 

late 1950s in experiments led by C.S . Wu[35]. Moreover, this violation is not subtle, but 

maximal; leptons produced in weak interactions have completely indeterminate parity [22]. 

In a polarized beta decay experiment like Wu's , the spin polarization direction of the 

nucleus provides a reference axis from which the decay may be viewed. As spin is an 

axial vector quantity, the polarization direction is invariant under a parity transformation. 

Thus, parity invariance would require front-­back symmetry of the angular distribution of 

the beta particles. Instead, the observed angular distribution was strongly forward-­peaked, 

which, since momentum is a vector quantity, means that the parity transformation of the 

angular distribution would be strongly reverse-­peaked wi th respect to the spin direction of 

the nucleus. These two situations are clearly distinguishable and thus the physics violates 

symmetry under parity transformations. 

Par i ty violation is a direct consequence of the (V — A) form of the weak interaction 
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discussed briefly in Section 1.2. The vector and axial vector terms have opposite behaviour 
under parity transformations, and thus under a parity transformation (V — A) becomes 
(V + A), ignoring an overall negative sign. Thus, the mixture of couplings with different 
parity violates parity invariance. The maximality of parity violation in the weak force is 
due to the two components having equal magnitude. In fact, the original formulation of 
parity-­violating (V — A) interactions had the form (V + eA), where the discovery of maximal 
parity violation set e = — 1. 

Parity violation is the cornerstone of weak interaction physics; all observed parity-­
violating processes involve the weak interaction and thus it can be used to identify the 
influence of the weak interaction in a process. In the Standard Model, parity violation is re-­
sponsible for confining the neutrino and antineutrino to a single helicity each, a statement 
that is modified only slightly by the existence of neutrino masses. A previous TRINAT 
experiment[23] searched for evidence of non-­Standard Model couplings to 'wrong-­handed' 
neutrinos, and a corresponding slight non-­maximality of parity violation in beta decay. 

5.3 Relationship with Polarization 

In our beta decay experiment, as in Madame Wu's experiment, parity violation's primary 
observable effect is in the angular distribution of the beta particle, as defined with respect 
to the nuclear spin direction. In the trap, we have atoms of various spin states, and wish to 
determine their average direction. Since the angular distribution with respect to the spin 
direction is well-­defined, the overall angular distribution of the beta particles from the trap 
is thus sensitive to the polarization of the atoms in the trap. 

Consider two beta particle detectors situated on the optical pumping axis, one in the 
forward direction and one in the reverse direction. Neglecting detector backgrounds and 
resolutions, we would expect that, since the angular distribution is peaked in the forward 
direction and zero in the reverse direction, if the nuclei in the trap are perfectly polarized, 
we will only see beta particles in the forward detector. If, instead, the trap is completely 
unpolarized, the two detectors should observe equal numbers of particles. This is because 
the nuclear spins are uniformly distributed in direction, and thus there is no preferred axis 
on which to reference an overall beta distribution. 

The interesting case for this work is when the atoms in the trap are partially polarized. 
In this case, the angular distribution will be 'smeared' out in proportion to the degree 
of polarization. Then, there will still be an asymmetry between the forward and reverse 
detectors, but it will not be 100%, and this asymmetry will be proportional to the degree 
of polarization. 
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Energy Dependence of Beta Asymmetry for Rb 
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Figure 5.3: Beta asymmetry plot for ° u R b 

Specifically, the angular distribution has, in terms of the polarization P, the form[20] 

W[B) = l + PApcos6 (5.4) 

where 6 is the angle between the polarization axis and the direction of the beta particle. In 

the Standard Model , the beta asymmetry Ap for 8 0 R b ' s J = 1 —> J = 0 decays is exactly 

1, and for the I = 1 —> I = 2 decays it is exactly -­1/2[19]. A n y correction to this due 

to the unknown tensor interaction w i l l be small, so for the purpose of determining the 

polarization it w i l l be neglected. Since the two decays have different endpoints, the fraction 

of beta particle that derive from one decay or the other varies wi th energy. In particular, 

the highest-­energy betas are beyond the endpoint of the I = 1 —> I — 2 decay and should 

have a beta asymmetry of exactly 1. The variation of the asymmetry with energy can be 

found in Figure 5.3[6]. 

If the beta spectra are summed over energy, then the beta asymmetries are just scaled 

by the branching ratios. Since the total branching ratio to I — 0 states is 76.3%, and the 

total branching ratio to I — 2 states is 23.7%, we have that the overall beta asymmetry for 
8 0 R b i s 

Ap = 1 x 0.763 -­ 0.5 x 0.237 = 0.645 (5.5) 

Thus, if the beta detectors were along the optical pumping axis then the number of 

counts in the forward detector would be proportional to (1+PAp), and the number of counts 

in the reverse detector would be proportional to (1 — PAp). Therefore, their difference is 

proportional to the polarization P, and the asymmetry (Nf — Nb)/(Nf + Nt,)/Ap is equal 

to the polarization. However, the beta detectors in the T R I N A T apparatus are actually 
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mounted on an axis inclined by 30 degrees from the optical pumping axis. We have that 

cos(7r/6) = \ /3 /2 , so the polarization is given by 

There are small corrections to this equation due to the deviation of the electron velocity from 

the speed of light, which like the beta asymmetry vary wi th energy. Since this correction 

cannot be applied in a summed-­up form as in Equation 5.5, the variation of asymmetry 

wi th energy wi l l be examined in Section 6.3. 
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Chapter 6 

Beta Detection for Polarization 
Measurements 

6.1 Phoswich Operation 

The 'phoswich' detectors used to detect the beta particles consist of a thin, fast plastic scin-­

tillator bonded to the front of a larger Eu-­doped CaF2 scintillator. The plastic scintillator 

component is a 2mm thick 1-­inch diameter piece of BC408, while the CaF2 is 20mm long 

and has a 1.5-­inch diameter. The plastic scintillator, being thin, measures the dE/dx of the 

incident particle, while the CaF2's size allows it to measure the total energy E. The intent 

of the dual-­component detector is to distinguish between beta particles and gamma rays, 

the latter being prevalent in the system due both to gamma emission following beta de-­

cay and to positron annihilation. A s gamma rays and charged particles interact differently 

over the thin plastic scintillator, that signal can be used to distinguish between a photon 

and a positron of the same energy. The plastic scintillator has an energy loss of about 1.8 

M e V / c m for beta particles in our energy range, so we expect to see about 360 keV of energy 

deposited in the thin plastic. 

The two scintillators are read out by a single photomultiplier tube, but the difference in 

t iming allows the two signals to easily be separated electronically. The plastic scintillator 

produces a 'spike', which can be measured using a charge-­sensitive A D C and serves as a 

trigger for a peak-­sensitive A D C that detects the slower signal from the C a F 2 . This is 

possible because the total width of the plastic scintillator signal is much less than the rise 

time of the CaF2. 

For simplicity in handling and in electrical connections, the phoswich detectors are 

situated outside the vacuum system at atmospheric pressure. The drawback to this approach 

is that the beta particles to be detected must pass out of the vacuum chamber, and thus 

necessarily through some form of window. The penetrating power of beta particles is limited, 

so most conventional choices for the window are not feasible. A thin (0.015") beryl l ium foil 

was used as a window for the beta particles to minimize the effect of the window on the 

beta particles escaping from the vacuum system. 

One can plot the data from the phoswiches as a 2D histogram, wi th the AE (fast) 
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i i i i i i 

Figure 6.1: 2D histogram of phoswich data 

signal along one axis and the total energy (slow) signal along the other axis. In this form, 

beta particles and gamma rays can be distinguished, appearing in different regions of the 

histogram. A n example phoswich spectrum from 8 0 R b (in coincidence wi th a shake-­off 

electron as described in Section 6.2) can be found in Figure 6.1. In this figure, the beta 

particles fall in the thick diagonal band, and gamma rays fall into a thin streak below the 

betas. Few gamma rays are present in the spectrum for 8 0 R b as the gamma ray energies of 

616 keV, 1.2 M e V , and 1.3 M e V are smaller than the usual beta energy of 2-­3 M e V , they 

have small branching ratios, and the electronics has an effectively higher threshold due to 

a short delay in the constant fraction discriminator. 

6.2 Electron Detection for Background Control 

As described in Section 5.1, an atom undergoing beta decay 'shakes off' one or more electrons 

as it recoils from the decay. Detection of these electrons in coincidence wi th the recoiling 

ion was demonstrated by a group at Berkeley[28], and a similar setup was constructed for 

the T R I N A T 8 0 R b experiment. 

A second micro-­channel plate ( M C P ) was installed at the opposite end of the detection 

chamber from the original M C P detector. This geometry allows the same static electric field 

to collect both the shake-­off electrons and the (positive) ions onto their respective detectors. 

Unlike the ion M C P , the M C P for shake-­off electron detection is not position sensitive; this 

is both for simplicity and because the position of the shake-­off electrons at the detector is 

not of kinematic importance. 

To maintain the uniformity of the electric field in the chamber, a grid electrode was 

placed in front of the electron M C P . This is necessary as the potential at the end of the 
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chamber is 5 kV, but restrictions in the power supply and feedthroughs prevent the M C P 
from being floated to this level. With the grid held at 5 kV, the front of the M C P can be 
set to any necessary level without significantly perturbing the electric field in the chamber. 
At the same time, the grid allows electrons to pass unhindered towards the M C P , which 
will collect the electrons as long as the potential on the front electrode is higher than the 
potential at the trap position. 

This detector also works, though with a different efficiency, as a detector for beta par-­
ticles. The beta particles are approximately unaffected by the electromagnetic fields that 
focus the shake-­off electrons onto the detector, so only beta particles emitted in the direc-­
tion of the electron detector can hit it. Nevertheless, this is a'significant background for 
the electron-­recoil coincidence. Several runs with the detector voltages adjusted to exclude 
shake-­off electrons from the trap were made to examine this background. 

This detector has two main purposes. The first is to provide a time reference to de-­
termine the time-­of-­flight (TOF) of the recoiling ions. The variation in the electron T O F 
is on the order of a few nanoseconds, much smaller than the microsecond variation of the 
ion T O F , as the electrons are accelerated more strongly by the electric field, so the time 
difference between the electron detector hit and the ion M C P hit is a good measure of the 
ion T O F . 

The second purpose, more important for this work, is to control backgrounds in other 
detectors. Coincidence with an electron detector hit makes it much more likely that a 
detector hit is the result of beta decay from a trapped atom. This is especially important for 
the phoswich detectors described above. The background in these detectors is considerable, 
but the electron detector rejects much of it. While using the raw phoswich signal as an 
event trigger would overwhelm the data acquisition system with background events, the 
coincidence of an electron detector hit and a phoswich hit provides a useful subsidiary 
event trigger. 

Triggering on the electron-­phoswich coincidence allowed the collection of data for mea-­
suring the asymmetry in the angular distribution of the betas independent of the character-­
istics of the ion M C P . Given the efficiency and limited solid angle of the M C P , this provides 
a more accurate sampling of the beta angular distribution. 

6.3 Results 

In Figure 6.1, the beta particles form a thick diagonal band in the E -­ A E plane. To exclude 
gamma rays and scattered beta particles, a cut was made that encompassed the beta band. 
Since the other phoswich has a threshold effect around 1 MeV and sees no counts below 
that energy, an energy cut was made to restrict the count to the region examined by the two 
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Cuts to Data for Beta Asymmetry Calculation 
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Figure 6.2: Illustration of energy cuts applied for beta asymmetry measurement 

detectors. These cut are shown in Figure 6.2. From the data in this region, the polarization 

for < 7 + was found to be (0.543 ± 0.006), and the polarization for o~ was found to be (0.617 
± 0.006). The errors on these values are purely derived from counting statistics and do 

not include any possible systematic effects. These values are inconsistent wi th the values 

derived from the atomic physics. 

As there exist energy-­dependent corrections to the polarization, the polarization should 

be calculated as a function of energy. Figure 6.3 shows the phoswich data from Figure 6.2 

projected onto the energy axis. Once the energy cuts were applied to deal wi th threshold 

effects, the data was segmented into 100 keV wide bins, and the asymmetry calculated as 

per Section 5.3. These values were then corrected by the corresponding value of v/c for a 

beta particle of that energy, as well as the energy-­dependent beta asymmetry as shown in 

Figure 5.3. The result can be found in Figure 6.4. These graphs are far from linear. The 

profiles towards the high end are very similar, which suggests a systematic trend favouring 

one phoswich over the other. This area contains the region wi th Ap = 1, preventing the 

polarization from being read directly off the graph. 

Differences in efficiency, gain, and calibration between the two phoswich detectors can 

act to produce these systematic differences and skew the results obtained from the asym-­

metries. It is also possible to estimate the polarization from the asymmetry in a single 

detector between the two polarizations, i.e. ( A L — A L ) / ( A L + A L ) . Graphs of the polar-­

ization as determined from this observable can be found in Figure 6.5. The polarization 

was determined by fitting a horizontal line to each energy profile. In the case of phoswich 

A , the polarization was found to be (0.51 ± 0.01), the fit having a x2' jv of 3.44. In the case 
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Phoswich Beta Energy Profile 
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Figure 6.3: Phoswich beta energy spectrum 
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of phoswich B, the polarization was (0.44 ± 0.01) with a x 2 / V o f °-­934. 
Even with the corrections, the value of polarization derived from the nuclear physics is 

highly inconsistent with that derived from the atomic physics. This may be the.result of 
unknown systematic problems in beta detection, but could also be related to the approxi-­
mations of the optical pumping simulation. The simulation makes the crucial assumption 
that the trap is pointlike and so therefore all sees the same magnetic field and incident 
laser power. The actual trap is 2-­4 mm in diameter, so it is entirely possible that the outer 
part of the trap would be optically pumped less than the core of the trap. As the nuclear 
diagnostic is not sensitive to the location of atoms in the trap, these lower-­polarization 
atoms would be measured directly by the nuclear diagnostic. Nevertheless, there remain 
systematic differences in the polarization measured with the two detectors. 
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Conclusion 

Polarization diagnostics are important for any spin-­polarized experiment. In the case of 

the 8 0 R b beta-­decay experiment, two independent diagnostic methods were available, one 

based on the atomic physics of optical pumping, and one based on the nuclear physics of 

beta decay. 

For evaluating the polarization from atomic physics, a simulation based on the rate 

equations was used. The rate equations were found to be sufficient for the system, rathef 

than requiring the optical Bloch equations. Al though the basic rate equations in the \Fmp) 

basis were sufficient to include most of the trap conditions, the off-­axis magnetic field re-­

quired the introduction of a more sophisticated technique. The Hamiltonian was calculated 

for the interaction of the atomic angular momentum and the magnetic field, and then nu-­

merically diagonalized to find a new basis to be used in the rate equations. This simulation 

was compared to the excited state population as measured by photoionization of the excited 

state during the optical pumping. This photoionization method gives the variation of the 

excited state population as a function of time over the length of the optical pumping cycle. 

The background from this method is measurable and was found to be negligible. 

The resulting fits to the photoion data from the second week of the experiment give 

polarizations of -­0 .887±g^ for a~ light, and 0.868±g;g?g for a+ light. These 

. values agree wi th values estimated from a simple, approximate model based on the peak-­

to-­tail ratio of the excited state population graph. 

The nuclear diagnostic can be used in two different ways: wi th an asymmetry between 

detectors in a given polarization state, or wi th an asymmetry between polarization states 

for a given detector. Bo th of these methods were used in the work, wi th differing degrees 

of success. In both cases, energy dependent corrections appear due to relativistic effects 

and the energy dependence of the beta asymmetry for 8 0 R b which arises from the different 

endpoints of branches wi th different beta asymmetries. 

The asymmetry between detectors was found to be sensitive to too many systematic 

differences between the two detectors, including differing backgrounds, to provide a sensible 

polarization value. In comparison, the single-­detector asymmetries ignore these effects, and 

as such they provide a much cleaner measurement of the polarization, though they ignore 

any difference in polarization between the two signs. The energy dependent effects match 
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the theoretical understanding to within the statistical accuracy, giving polarization values of 

(0.44 ± 0.01) and (0.51 ± 0.01) for the two detectors. These values are grossly inconsistent 

wi th the values from the atomic diagnostics. 

A possible source of this discrepancy is non-­uniformity of the optical pumping over the 

trap; the atomic diagnostic only measures the component of the trap that is being pumped 

and in proportion wi th the amount of pumping, which may vary over the extent of the 

trap wi th variations in absorption probability. The absorption probability can vary due to 

nonuniform in the magnetic field and in the pumping laser power. In contrast, the nuclear 

detectors view the entire trap, presumably without bias. Addit ionally, while the nuclear 

diagnostics measure the polarization averaged over the optical pumping cycle, the atomic 

diagnostics measure the final polarization attained at the end of the cycle. Furthermore, 

the uncertainty given for the nuclear diagnostics is purely statistical in nature, wi th system-­

atic errors and backgrounds remaining unknown and possibly large. Nevertheless, wi th the 

discrepancy between the two detectors and a large difference between the two diagnostics, 

there remain many unanswered questions. Future work of the collaboration w i l l also use 

polarization diagnostics from ion-­beta coincidences, which though they require more elabo-­

rate theoretical setup should have substantial polarization sensitivity and low background. 

Segmenting the spatial extent of the trap and measuring the variation of the apparent po-­

larization wi th position should help explain the discrepancy, and studies of the polarization 

wi th stable 4 1 K should also aid in an understanding of the characteristics of the magnetic 

field and photoionization laser for future spin-­polarized decay experiments. 
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Appendix A 

Source Code of Simulation 

opdr.F: 

s u b r o u t i n e 0 P ( s p o l , p i , d l , p2, d2, Bz , Bx) 

i m p l i c i t none 

* Parameters are as follows: 

* spot(-1:1) 

* pi 

* dl 

* p2 

* d2 

* Bz 

* Bx 

Coefficients of the three polarizations 

Power of F=l/2->F=3/2 beam (in mW/cm'2) 

Detuning of F=l/2->F=3/2 beam (in MHz) 

Power of F=3/2->F=3/2 beam (in mW/cm"2) 

Detuning of F=3/2->F=3/2 beam (in MHz) 

B-field along the quantization axis (in G) 

Off-axis B-field (in G) 

* 
* Uses a rate equation formalism and re-diagonalization of 

* the Hamiltonian to accomodate the off-axis magnetic field. 

**************************************************** 
r e a l * 8 s p o l ( - 1 : 1 ) , p i , d l , p2, d2 , Bz , Bx 

i n t e g e r Fg, mg, Fe, me, q, mi, k, 1, Hg, qg, He, qe 

r e a l * 8 xFg , xmg , xFe , x i e , xq, xmi , xmj , gF 

r e a l * 8 . mueg(1:3, -3:3, 1:3, -3:3, -1:1) 

r e a l * 8 m a t e g ( l : 2 , 1:4, 1:2, 1:4, -1:1) 

dat a mueg/1323*0.0/, mateg/192*0.0/ 

r e a l * 8 p o l n ( l : 3 , - 3 : 3 ), E g ( l : 3 ) , E e ( l : 3 ) 

r e a l * 8 a l g n ( l : 3 , -3:3) 

dat a poln/21*0.0/, Eg/3*0.0/, Ee/3*0.0/, algn/21*0.0/ 

r e a l * 8 n p o l ( l : 2 , 1:4), E g n d ( l : 2 , 1:4), E e x c ( l : 2 , 1:4) 

r e a l * 8 n a l g ( 1 : 2 , 1 : 4 ) 
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d a t a n p o l / 8 * 0 . 0 / , Egnd/8*0.0/, Eexc/8*0.0/, n a l g / 8 * 0 . 0 / 

r e a l * 8 gamma(l:2, 1:4, 1:2, 1:4), 

$ s t i m f a c ( 1 : 2 , 1:4, 1:2, 1:4) 

data gamma /64*0.0/, s t i m f a c / 6 4 * 0 . 0 / 

r e a l * 8 H32(4,4), H12(2,2), lambda32(4), lambdal2(2) 

data H32/16*0.0/, H12/4*0.0/, lambda32/4*0.0/, 

$ lambdal2/2*0.0/ 

r e a l * 8 c o e f f ( l : 2 , 1:4, -3:3), e i g v a l ( l : 2 , 1:4) 

data c o e f f / 5 6 * 0 . 0 / , e i g v a l / 8 * 0 . 0 / 

i n t e g e r conv32(4) , convl2 (2) , HFconv(2) 

data conv32/3, 1, -1, -3/, c o n v l 2 / l , -1/, HFConv/1, 3/ 

r e a l * 8 popg(1:2,1:4), p o p e ( l : 2 , 1:4) 

dat a popg/8*0.0/, pope/8*0.0/ 

r e a l * 8 dpopg(1:2,1:4), d p o p e ( l : 2 , 1:4) 

r e a l * 8 work(136), sum, usum, l o r e n t z f , time 

r e a l * 8 p o l a r i z a t i o n , change, a l i g n m e n t 

i n t e g e r i n f o 

r e a l * 8 d i e , d2c, d e l t a l , d e l t a 2 , p a t t e n 

############################################################## 

* Declare external functions 

############################################################## 

r e a l * 8 DWIG3J, DWIG6J, DCLEBG 

r e a l * 8 g f a c t o r 

* Specify physical and mathematical constants 

r e a l * 8 muB, p i , h, c 

* muB in Hz/G 
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parameter (muB = 1.3996E6) 

parameter ( p i = 3.14159265358979, h = 6. 6260755e-34, 

$ c = 2 . 99792458e + 10) 

* Specify all angular momenta 

r e a l * 8 . L g , Le, J g , Je, S, I , one 

parameter (Lg = 0.0, Le = 1.0, Jg = 0.5, Je = 0.5, 

$ S = 0.5, I = 1.0, one =1.0) 

* Specify atomic parameters 

*********************************************** 

r e a l * 8 dg, de, t a u , lambda 

parameter (dg = -233.936E6, de = -27.846E6, 

$ • t a u = 27.64E-9, lambda = 1.0/12579.0) 

r e a l * 8 10 

parameter (10 = p i * h * c / ( 3 . 0 * ( l a m b d a * * 3 ) * t a u ) ) 

* > 

* Specify timestep and length of simulation 
* > 

r e a l * 8 d t , t i m e l e n g t h 

i n t e g e r nsteps 

parameter (dt .= 2.5E-9, t i m e l e n g t h = 40.0E-6, 

$ nsteps = t i m e l e n g t h / d t ) 

* Include the output matrices from the inc file 

# i n c l u d e " o p d r s u b . i n c " 

d a t a outtime / o u t l e n * 0 . 0 / , outexc / o u t l e n * 0 . 0 / , 

$ outgnd / o u t l e n * 0 . 0 / , o u t n p o l / o u t l e n * 0 . 0 / , 

$ o u t n a l i g n / b u t l e n * 0 . 0 / 

************************************************************** 

59 



Appendix A. Source Code of Simulation 

* First do the pertinent calculations in the original basis 

* mueg is the matrix element between iFg, mg> and 

* IFe, me> for light ofpolarization quantum number q 

* (Section 2.3.3) 

do Fg = 1 , 3 , 2 

x F g = D B L E ( F g ) / 2 . 0 

do mg = -­ F g , F g , 2 

xmg = D B L E ( m g ) / 2 . 0 

do Fe = 1 , 3 , 2 

x F e = D B L E ( F e ) / 2 . 0 

do me = -­ F e , Fe , 2 

xme = D B L E ( m e ) / 2 . 0 

do q = -­ 1 , 1 , 1 

x q = D B L E ( q ) 

mueg ( F g , mg , Fe , me , q) = 

$ ( -­ 1 . 0 ) * * ( 1 + L g + S + J g + J e + I -­ x F g + x F e -­ x m e ) 

$ * s q r t ( ( 2 * J g + 1 ) * ( 2 * J e + 1 ) * ( 2 * x F g +1)* 

$ ( 2 * x F e + l ) * ( 2 * L e + l ) ) * 

$ D W I G 6 J ( L e , J e , S , J g , L g , o n e ) * 

$ D W I G 6 J ( J e , x F e , I , x F g , J g , o n e ) * 

$ D W I G 3 J ( x F g , o n e , x F e , x m g , x q , -­ x m e ) 

end do 

end do 

end do 

end do 

end do 

* calculate polarizations of states 

* (Section 3.4) 

do Fg = 1 , 3 , 2 

x F g = D B L E ( F g ) / 2 . 0 

do mg = -­ F g , F g , 2 

xmg = D B L E ( m g ) / 2 . 0 

p o l n ( F g , mg) = 0 . 0 

a l g n ( F g , mg) = 0 . 0 
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do mi = -1,1 ,1 

xmi = DBLE(mi) 

xmj = xmg - xmi 

p61n(Fg, mg) = p o l n ( F g , mg) + 

$ xmi *(DCLEBG ( I , J g , xFg, xmi, xmj, xmg))**2 

a l g n ( F g , mg) = a l g n ( F g , mg) + 

$ xmi**2*(DCLEBG(I, Jg,- xFg, xmi, xmj, xmg))**2 

end do 

i f ( a b s ( p o l n ( F g , mg)).It.1E-10) then 

p o l n ( F g , mg) =0.0 

end i f 

i f ( a b s ( a l g n ( F g , mg)).It.1E-10) then 

a l g n ( F g , mg) = 0.0 

end i f 

end do 

end do 

* energies all referenced against unshifted F=3/2 state 

E g ( l ) = -dg 

Ee ( 1 ) = -de 

*********************************************** 

* Now calculate out the new basis (Section 3.2) 

* Diagonal elements of Hamiltonians 

H32 (1 ,1) = muB*Bz*l.5 

H32(2,2) = muB*Bz*0.5 

H32(3,3) = muB*Bz*-0.5 

H32(4,4) = muB*Bz*-1.5 

H12 ( l ,1) = muB*Bz*0.5 

H12(2,2) = muB*Bz*-0.5 

* Off-diagonal elements of Hamiltonians (only upper triangle) 

H 3 2 ( l , 2 ) = muB*Bx*sqrt(0.75) 

H32(2,3) = muB*Bx 

H32(3,4) = muB*Bx*sqrt(0.75) 
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H 1 2 ( l , 2 ) = m u B * B x * 0 . 5 

* now do the eigensolves 

c a l l D S Y E V C V , ' U ' , 4 , H32 , 4 , l a m b d a 3 2 , w o r k , 1 3 6 , 

$ i n f o ) 

i f ( i n f o . n e . 0 ) t h e n 

p r i n t * , ' e i g e n s o l v e b r o k e d o w n , g i v i n g u p ! ' 

s t o p 

end i f 

H 1 2 , 2 , l a m b d a l 2 , w o r k , 6 8 , 

b r o k e d o w n , g i v i n g u p ! ' 

* and reorganize the eigenvectors into coefficients 

do k = 1, 4 

do 1 = 1, 4 

mg = c o n v 3 2 ( k ) 

c o e f f ( 2 , 1, mg) = H 3 2 ( k , 1) 

end do 

e i g v a l ( 2 , k ) = l a m b d a 3 2 ( k ) 

end do 

do k = 1, 2 

do 1 = 1 , 2 

mg = c o n v l 2 ( k ) 

c o e f f ( 1 , 1, mg) = H 1 2 ( k , 1) 

end do 

e i g v a H l , k ) = l a m b d a l 2 ( k ) 

end do 

c a l l D S Y E V ( > V , ' U ' , 2 , 

$ i n f o ) 

i f ( i n f o . n e . O ) t h e n 

p r i n t * , ' e i g e n s o l v e 

s t o p 

end i f 

********************************************* 
* Calculate the matrix elements and expectation values 

* in the new basis 
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* do matrix elements first 

* (Section 3.3.2) 

do Hg = 1 , 2 , 1 

F g = H F c o n v ( H g ) 

do qg = 1 , 2 * H g , 1 

do He = 1 , 2 , 1 

Fe = H F c o n v ( H e ) 

do qe = 1 ,2*He , 1 

do q = -­ 1 , 1 , 1 

sum = 0 . 0 

do mg = -­ F g , F g , 2 

do me = -­ F e , Fe , 2 

sum = sum + 

$ c o e f f ( H g , qg , mg) * 

$ c o e f f ( H e , q e , me)* 

$ m u e g ( F g , mg, Fe , me, q) 

end do 

e n d do 

m a t e g (Hg , qg , He , qe , q) = sum 

end do 

end do 

end do 

end do 

end do 

* calculate polarization and alignment 

* (Section 3.4) 
do Hg = 1 , 2 , 1 

F g = H F c o n v ( H g ) 

do qg = l , 2 * H g , l 

sum = 0 . 0 

usum = 0 . 0 

do mg = -­ F g . F g . l 

sum = sum + p o l n ( F g , m g ) * c o e f f ( H g , qg , m g ) * * 2 

usum = usum + a l g n ( F g , m g ) * c o e f f ( H g , qg , mg)**2 
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end do 

n p o l ( H g , qg) = sum 

n a l g ( H g , qg) = usum 

end do 

end do 

* calculate energies of states 

* (Section 3.3.1) 

do Hg = 1 , 2 , 1 

F g = H F c o n v (Hg) 

gF = g f a c t o r ( D B L E ( F g ) / 2 . 0 , J g , I , S , L g ) 

do qg = 1 , 2 * H g , 1 

E g n d ( H g , qg) = E g ( F g ) + g F * e i g v a l ( H g , qg) 

end do 

end do 

do He = 1 , 2 , 1 

Fe = H F c o n v ( H e ) 

gF = g f a c t o r ( D B L E ( F e ) / 2 . 0 , J e , I , S , L e ) 

do qe = 1 , 2 * H e , 1 

E e x c ( H e , qe ) = E e ( F e ) + g F * e i g v a l ( H e , qe ) 

end do 

end do 

* Now calculate the rates in the new basis 
**************************************************** 

* reference to the same place as everything else 

d i e = d l * l E 6 + dg 

d2c = d 2 * l E 6 

•* rate calculations are Sections 2.3.3 and 2.3.4 

do Hg = 1 , 2 , 1 

do qg = l , 2 * H g , l 

do He = 1 , 2 , 1 

do qe = l , 2 * H e , l 
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sum = 0 . 0 

usum = 0 . 0 

do q = -1,1,1 
sum = sum + s p o l ( q ) * m a t e g (Hg , qg , He , qe , q) 

usum = usum + m a t e g (Hg , qg , He , qe , q ) **2 

end do 

g a m m a ( H g , q g , H e , q e ) = u s u m / t a u 

d e l t a l = d i e -­ E e x c ( H e , q e ) + E g n d ( H g . q g ) 

d e l t a 2 = d2c -­ E e x c ( H e , q e ) + E g n d ( H g , q g ) 

l o r e n t z f = p i * 1 E -­ 3 / ( 1 0 * 2 . 0 * 

s t i m f a c ( H g , q g , H e , q e ) = l o r e n t z f * s u m * * 2 / t a u 

end do 

end do 

end do 

end do 

do Hg = 1 , 2 , 1 

do qg = 1 , 2 * H g , l 

p o p g ( H g , qg) = 1 . 0 / 6 . 0 

end do 

end do 

do He = 1 , 2 , 1 

do qe = l , 2 * H e , l 

p o p e ( H e , q e ) = 0 . 0 

end do 

end do 

$ 
$ 
$ 

( 1 . 0 + 4 . 0 * ( 2 . 0 * p i * t a u * d e l t a l ) * * 2 ) ) 

+ p 2 * l E -­ 3 / ( I 0 * 2 . 0 * 

( 1 . 0 + 4 . 0 * ( 2 . 0 * p i * t a u * d e l t a 2 ) * * 2 ) ) 

* and initialize the populations 
* 



Appendix A. Source Code of Simulation 

* Now loop over all timesteps 

t i m e = 0 . 0 

k = 0 

do n = 1 , n s t e p s 

t i m e = t i m e + d t 

* Rezero all of our changes 

do Hg = 1 , 2 , 1 

do qg = 1 , 2 * H g , l . 

d p o p g ( H g , qg) = 0 . 0 

end do 

end do 

do He = 1 , 2 , 1 

do qe = 1 , 2 * H e , 1 

d p o p e ( H e , qe ) = 0 . 0 

end do 

end do 

* •• 

* Shape the power (Section 3.3.3) 

* •• 
p a t t e n = 1 . 0 / ( 1 . 0 + 9 . 0 2 5 * E X P ( -­ t i m e / 3 8 . 5 E -­ 9 ) ) 

* Calculate the changes 

do Hg = 1 , 2 , 1 

do qg = l , 2 * H g , l 

do He = 1 , 2 , 1 

do qe .= 1 , 2*He , 1 

* This is the change 'upward' into the excited state 

c h a n g e = ( p a t t e n * s t i m f a c ( H g , q g , H e , q e ) * 

$ ( p o p g ( H g , q g ) -­ p o p e ( H e , q e ) ) -­
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$ gamma (Hg , qg , He , qe ) * 

$ p o p e ( H e , q e ) ) * d t 

d p o p e ( H e . q e ) = d p o p e ( H e , q e ) + c h a n g e 

d p o p g ( H g . q g ) = d p o p g ( H g . q g ) -­ c h a n g e 

end do 

end do 

end do 

end do 

******************************************** 

* Execute the changes 

do Hg = 1 , 2 , 1 

do qg = l , 2 * H g , l 

p o p g ( H g , qg) = p o p g ( H g , qg) + d p o p g ( H g . q g ) 

end do 

end do 

do He = 1 , 2 , 1 

do qe = l , 2 * H e , l 

p o p e ( H e , qe ) = p o p e ( H e , qe ) + d p o p e ( H e , q e ) 

end do 

end do 

************************************************************** 

* Write out on every fourth timestep 
************************** 

i f ( m o d ( n , 4 ) . e q . O ) t h e n 

k = k + 1 

o u t t i m e ( k ) = t i m e 

sum = 0 . 0 

p o l a r i z a t i o n = 0 . 0 

a l i g n m e n t = 0 . 0 

do Hg = 1 , 2 , 1 

do qg = l , 2 * H g , l 

sum = sum + p o p g ( H g , qg) 
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p o l a r i z a t i o n = p o l a r i z a t i o n + 

$ np o K H g , qg)*popg(Hg,qg) 

ali g n m e n t = alignmen t + 

$ n a l g ( H g , qg)*popg(Hg, qg) 

end do 

end do 

outgnd(k) = sum 

sum =0.0 

, do He = 1,2,1 

do qe = 1,2*He , 1 

sum = sum + pope(He, qe) 

p o l a r i z a t i o n = p o l a r i z a t i o n + 

. $ np o l ( H e , q e ) * pope(He,qe) 

alignment = ali g n m e nt + 

$ na l g ( H e , qe)*pope(He, qe) 

end do 

end do 

o u t e x c ( k ) = sum 

o u t n p o l ( k ) = p o l a r i z a t i o n / I 

o u t n a l i g n ( k ) = (I * ( I + 1 ) - 3 . 0 * a l i g n m e n t ) / ( I * ( 2 * I - 1 ) ) 

end i f 

end do 

n p o i n t s = k 

end s u b r o u t i n e OP 

********************************************* 
r e a l * 8 f u n c t i o n g f a c t o r ( F , J , I , S, L) 

************************************************************** 

* Calculates the g-factor for a given F-state. (Section 3.3.1) 
************************************************************** 

i m p l i c i t none 

r e a l * 8 F, J , I , S, L 

r e a l * 8 g J , gF 

i f (F > 0.0) then 
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$ 

$ 

gF = 

1.0 + (J*(J+1.0) + S*(S+1.0) - L * ( L + 1 . 0 ) ) / 

( 2 . 0 * J * ( J + l . 0 ) ) 

g J * ( F * ( F + l . 0 ) + J*(J+1.0) - I * ( I + 1 . 0 ) ) / 

(2.0*F*(F+1.0)) 

e l s e 

' gF = 0.0 

end i f 

g f a c t o r = gF 

end f u n c t i o n g f a c t o r 

opdrsub.inc: 

i n t e g e r o u t l e n 

parameter ( o u t l e n = 4000) 

i n t e g e r n p o i n t s 

r e a l * 8 o u t t i m e ( o u t l e n ) , o u t e x c ( o u t l e n ) , o u t g n d ( o u t l e n ) , 

$ o u t n p o l ( o u t l e n ) , o u t n a l i g n ( o u t l e n ) 

common /0P0UT/ o u t t i m e , o u t e x c , outgnd, o u t n p o l , 

$ o u t n a l i g n , n p o i n t s 
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