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Abstract

Magneto-Optical Traps (MOTs) have long been used to produce samples
of cold trapped neutral atoms, which can be used in the measurement of
a variety of physical quantities and theories. Until recently, one limitation
of this type of trap was the necessity for the presence of a relatively large
magnetic field which would decay only slowly after the trapping mechanism
was turned off. This residual magnetic field is expected to partially destroy
any atomic polarization induced, for example, by optical pumping. As a
result, the precision of any physical measurement which requires polarization
is limited. We will discuss the construction of our version of a newer type
of MOT, the AC-MOT [2], which is designed specifically so as to minimize
residual magnetic fields. We have found that our AC-MOT has lifetimes
and cloud sizes similar to those we measured in our DC-MOT. We intend to
use a trap similar to this in upcoming nuclear beta decay parity-violation
measurements. We also discuss the numerical evolution of the optical Bloch
equations in the presence of transverse and longitudinal magnetic fields, so
as to quantify the effect of a magnetic field on atomic polarization.
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Chapter 1

Introduction and Motivation

1.1 Motivation

Since the magneto-optical trap (MOT) was first described in 1987 by Raab
et. al. [1], it has become a standard technique for confining cold samples of
neutral atoms. These cold trapped atoms may subsequently be used in the
measurement of a variety of physical quantities.

The MOT necessitates the use of a magnetic field in order to produce a
confining force on the trapped atoms. However, there exist a certain class of
experiments which require a sample of cold atoms in zero (or minimal) mag-
netic field – notably any experiment in which high polarization of atomic
angular momenta is needed. If a MOT is to be used in such a case, the
trapping mechanism must be intermittently shut off for a period of time.
Because the atoms have been cooled in the trap, they will disperse only
slowly after discontinuation of the MOT’s trapping forces, and it is possible
to restart the MOT before most of the atoms have moved beyond the trap-
ping region. It is during this “off” time that the atoms may be polarized by
a properly-tuned laser if needed, and data may be collected with minimal
interference from magnetic fields.

It is useful, therefore, to find a method to eliminate the magnetic field in
the trapping region as rapidly as possible, so that a maximal amount of time
can be spent collecting data. Recently Harvey and Murray [2] have built
and described a new type of MOT designed to do just that–the AC-MOT,
so named for the electrical current in the MOT’s electromagnets. Previous
generation of MOTs had used only DC currents for that purpose. Although
the experimental setup for an AC-MOT is more complicated, the benefit is
that the magnetic field can be eliminated much more quickly than is the
case for a DC-MOT.

This thesis will describe and characterize many aspects of two AC-MOTs
built for use in- or alongside nuclear beta decay experiments for the TRINAT
research group.
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1.2. Overview

1.2 Overview

The entirety of Chapter 2 is devoted to a description of the physical processes
involved in a functional (AC- or DC-) MOT, and Chapter 3 describes the
additional requirements for an AC-MOT.

We describe our own offline AC-MOT, including our commonly used
measurement techniques, and characterize some of its properties in Chap-
ter 4. Chapter 5 discusses and demonstrates optimal strategies for turning
off trapping forces in the offline AC-MOT.

Chapter 6 deals only with the online AC-MOT. The setup is described,
and some measurements relevant specifically to the online AC-MOT are
presented.

In Chapter 7, attention is given to quantifying the polarization problems
caused by residual magnetic fields. Beginning with a derivation of the well-
known Optical Bloch Equations, we introduce terms into the Hamiltonian to
model the effect of a non-zero magnetic field on the polarization of a sample
of atoms. Qualitative results of this model are discussed.

Chapter 8 is a discussion which provides additional context for our re-
sults, and suggests possible future work on this topic.

2



Chapter 2

The Magneto-Optical Trap

Since its invention in 1987 [1], the Magneto-optical trap (MOT) has become
a standard technique for creating samples of tightly-confined cold atoms.
The key principle is to use a magnetic field gradient, in addition to lasers
tuned near an atomic resonance, to cause atoms to absorb photons, pushing
them toward the MOT centre and simultaneously cooling them.

In order to understand the mechanism by which a MOT is able to confine
atoms, we must first introduce the Zeeman effect (Section 2.1) and a descrip-
tion of an optical molasses (Section 2.2). A functional MOT combines the
forces resulting from these two mechanisms to trap and cool atoms.

2.1 The Zeeman Shift

The atomic Hamiltonian for an atom in the presence of a weak magnetic
field (such as is present in a MOT) picks up an additional Zeeman shift
term [3],

ĤZeeman = −~µ · ~B, (2.1)

where the magnetic moment ~µ is given by

~µ = −µB
(
gS ~S + gL~L+ gI~I

)
(2.2)

= −µB gF ~F (2.3)

where µB is the Bohr magneton, and gS , gL, gI , and gF are the g-factors
associated with electron spin, orbital angular momentum, nuclear spin, and
total angular momentum, respectively. Typically, however, gI � gS , gL and
so the nuclear spin term is neglected for the purpose of laser tuning for MOT
operation. Then,

~µ ≈ −µB
(
gS ~S + gL~L

)
(2.4)

= −µB gJ ~J, (2.5)

3



2.2. Atoms in an Optical Molasses

and Eq. 2.1 becomes

ĤZeeman = gJ µB ~J · ~B. (2.6)

If we take the direction of the magnetic field as our quantization axis and
label it as ẑ, the result is a simple perturbation to atomic energy levels [3],

∆EZeeman = gJ µBMJBz, (2.7)

where we note that in the case where angular momentum ~J and magnetic
field ~B are parallel, the Zeeman contribution to the total energy of that
state is positive. This result is accurate for systems in which the magnetic
field can be taken as “small”, meaning that MJ and MI are good quantum
numbers.

It is convenient at this point to introduce new notation to describe the
Zeeman contribution to a transition as a whole – including the Zeeman shifts
in the ground and excited states within a single term. Thus, we define

µ′ := (geMe − ggMg)µB, (2.8)

where g× and M× are the Lande g-factor and the ẑ component of the angular
momentum, and the subscripts ‘g’ and ‘e’ refer to the ground- and excited
states, respectively. Then the change to the energy of a transition is

∆Etransition = µ′Bz. (2.9)

In a MOT, the magnetic field must be quadrupolar. In other words,
although the magnetic field is zero at the centre, it increases linearly with
distance in every direction. Thus, so too will the atomic energy levels vary
linearly along the paths of the beams of light, as shown in Fig. 2.1.

2.2 Atoms in an Optical Molasses

We will now consider a system of two-level atoms located at the intersection
of two counter-propagating laser beams, detuned slightly from the atomic
resonance. Such a setup is sometimes referred to as a one-dimensional “opti-
cal molasses” due to the viscous drag force induced on atomic motion, which
will be discussed in more detail shortly.

In such a system, an incident photon can excite an atom from the ground
state into the excited state, while simultaneously giving the atom a “push”
proportional to the laser’s detuning from the atomic resonance. An excited

4



2.2. Atoms in an Optical Molasses
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Figure 2.1: A level diagram to show the perturbation to hyperfine energy
levels in 41K resulting from a linear magnetic field gradient such as is used
in a MOT.

atom will eventually spontaneously decay back into its ground state, emit-
ting another photon in a random direction during the process. Thus, the
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2.2. Atoms in an Optical Molasses

atom’s overall motion within an optical molasses is partly determined by
the balance of laser intensities, and part random walk.

Additionally, laser light can also stimulate an excited atom to emit a
photon and decay back to its ground state. This effect is negligible provided
that the laser’s intensity is sufficiently small, but as the laser intensity in-
creases, so too does this effect. In the limit of infinite intensity, stimulated
emission is just as likely to occur as stimulated excitation, and as a result,
the atomic population is split evenly between the ground and excited states.

To describe the transition between these two regimes, we introduce the
saturation intensity, Isat, which is the intensity at which the decay rate by
spontaneous emission is equal to the decay rate from stimulated emission for
a laser tuned precisely to the atomic resonance. For an atomic transition of
linewidth γ (equivalently, the linewidth γ describes the spontaneous decay
rate, and is the inverse of the excited state’s lifetime, so that γ = 1/τ) and
energy ~ω0, the saturation intensity is

Isat =
~ω3

0 γ

12π c2
. (2.10)

Then, we can describe the intensity I of the on-resonance light within a
particular system in terms of its relation to the saturation intensity by in-
troducing s0, the on-resonance saturation parameter, so that

s0 :=
I

Isat
. (2.11)

In practice, it is often useful to detune the lasers slightly from the reso-
nant transition. We now introduce the detuning parameter,

δ0 := ωL − ω0 (2.12)

which describes the difference between the laser frequency and the atomic
resonance frequency. In such a situation, we still wish to be able to describe
the extent to which the transition is saturated by the laser light. We there-
fore introduce the off-resonance saturation parameter, s, which is related to
s0 by

s :=
s0

1 + (2δ0/γ)2
. (2.13)

For atoms at rest in an optical molasses, the excited state population
fraction is given by

ρee =
s

2(s+ 1)
=

s0/2

1 + s0 + (2δ0/γ)2
. (2.14)

6



2.2. Atoms in an Optical Molasses

This result emerges as a steady-state solution to the two-level Optical Bloch
Equations. (For a more in-depth treatment of the Optical Bloch Equations,
see Chapter 7.) It should be clear that in the limit of large s values, ρee ap-
proaches 1/2 as expected. Due to the very nature of a steady state solution,
the rate at which atoms are excited to the higher energy level is equal to the
rate at which atoms decay to the ground state. Therefore, the total scat-
tering rate R for photons incident on atoms at rest in an optical molasses is
given by [4]

R = γρee =
γ s0/2

1 + s0 + (2δ0/γ)2
. (2.15)

Since every photon absorbed transfers to the atom a momentum of

∆~p =
~ωL
c

êL, (2.16)

where êL is a unit vector in the direction of the laser’s propagation, we are
able to write out an expression for the average force on an atom at rest within
a single laser beam. Trivially, the average force must be the momentum
transferred multiplied by the rate at which this momentum transfer occurs,
and so we find that in general,

~F1 = R∆~p (2.17)

=
γ s0/2

1 + s0 + (2δ0/γ)2

(
~ωL
c

)
êL. (2.18)

Note that Eq. 2.18 need not include any contribution from spontaneous
emission following absorption of a photon, because the (vector) average of
any such contribution must be zero, since there is no preferred direction of
spontaneous emission.

Of course, we cannot assume that atoms within the optical molasses will
be at rest. For an atom moving with 3-velocity ~v, an incident laser beam
will be observed to have a Doppler shifted frequency ω′L, so that

ωL → ω′L(~v) := ωL

(
1− ~v · êL

c

)
(2.19)

within the atom’s reference frame. (Note that as expected, the Doppler
shifted frequency increases if the direction of atomic motion is anti-parallel
to the direction of laser propagation.) This effective frequency shift propa-
gates through to the equations of force, showing up everywhere the laser’s
frequency is referenced.

7



2.3. The Magneto-Optical Trap

We now return to consideration of the average force within a single beam.
With the Doppler shift taken into consideration, Eq. 2.18 becomes

~F ′1(~v) =
γ
(
s0 ~ωL/(2c)

)
(1− ~v · êL/c)

1 + s0 +
(

2
γ (δ0 − (ωL/c)~v · êL)

)2 êL. (2.20)

Therefore the net force on an atom moving with velocity ~v within two
such counter-propagating laser beams (that is, one beam propagates in di-
rection +êL, while the other propagates in direction −êL) is given by

~FOM(~v) =
γ
(
s0 ~ωL/(2c)

)
(1− ~v · êL/c)

1 + s0 +
(

2
γ (δ0 − (ωL/c)~v · êL)

)2 êL
− γ

(
s0 ~ωL/(2c)

)
(1 + ~v · êL/c)

1 + s0 +
(

2
γ (δ0 + (ωL/c)~v · êL)

)2 êL. (2.21)

2.3 The Magneto-Optical Trap

We now turn our focus to a description of a MOT. To create a MOT, a linear
magnetic field gradient must be applied on top of an optical molasses. By
taking advantage of the change in absorption from the Zeeman effect’s per-
turbation to atomic resonances, atoms can be preferentially pushed towards
a central region, where the Zeeman shift is zero.

To create the appropriate magnetic field, one employs a set of two elec-
trical coils with antiparallel currents, so that the magnetic field is zero at the
trap’s centre, but its local gradient is non-zero; in the immediately surround-
ing region the magnitude of the magnetic field grows linearly with distance
in any direction. The atomic energy levels are perturbed as a result, and the
MOT uses a series of six laser beams (three sets of two anti-parallel ‘twin’
beams), all intersecting at the trap’s centre, to take advantage of these en-
ergy perturbations to produce a confining force on the atoms. The geometry
of a MOT in a laboratory is shown in Fig. 2.2.

The six beams of light must each consist of two frequency components,
referred to here as the “trapping frequency” and the “repumper frequency”
[4]. Examination of Fig. 2.3 shows why this must so – without the addition
of a repumper component, it wouldn’t be long before the trapped atoms all
decayed into the “wrong” ground state, from which the original trapping
laser could not excite them. For optimal MOT function, both the trapping

8



2.3. The Magneto-Optical Trap

Figure 2.2: The necessary components of a magneto-optical trap include
two electrical coils running anti-parallel currents, and six beams of light
intersecting at the centre of the geometry. The electrical coils produce a
quadrupolar magnetic field. Each beam of light consists of two frequency
components – the “trapping” and “repumper” beams, and all are circularly
polarized and counter-propagating, so as to couple to specific atomic energy
transitions.

and repumper components should be red-detuned from their respective tran-
sitions. Typically, a MOT has much more power in the trapping component
than the repumper component.

The reasons for red-detuning the lasers are twofold. The first reason

9



2.3. The Magneto-Optical Trap
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Figure 2.3: Hyperfine transitions in 41K – Zeeman splitting of the hyperfine
states is not shown. This diagram shows only the absorption transitions
which couple to σ+ light. An absorbed laser beam with σ+ polarization
must increase the atom’s angular momentum projection along the axis of
propagation. We see this as a change in the quantum number MF by one
unit, so as to conserve angular momentum. By a similar argument, absorp-
tion of σ− light will decrease MF by one unit. For spontaneous emission,
there is no requirement on the direction or polarization of the spontaneously
emitted photon, so the process can change MF by 0, +1, or -1.

is that the atoms which are moving quickly antiparallel to the direction
of the laser’s propagation will see the light as being blueshifted closer to
resonance; photons will then be preferentially absorbed by these atoms, and
the imparted change in momentum will cause the atom to slow. By a similar
argument, atoms moving parallel to the direction of light propagation are
less likely to absorb a photon. This is the mechanism at work in an optical
molasses, and the forces involved have been quantified in Section 2.2 The
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2.3. The Magneto-Optical Trap

second reason for the detuning is simply a matter of selecting which side of
the cloud of trapped atoms is more likely to absorb a photon propagating
in a particular direction – the goal of course being that the absorbed linear
momentum should push the atoms toward the central trapping region. Thus,
when the beam interacts with the atoms near the centre of the trapping
region, it has the dual effects of slowing the atoms and pushing them towards
the centre [1].

We now turn to a mathematical description of the forces within a one-
dimensional MOT. Although it can be rigorously shown that a MOT is able
to confine atoms in three dimensions, as in [5], to aid clarity of description we
will consider only a one-dimensional MOT for the remainder of this section.
In effect, this means that we will apply the effects of a linearly changing
Zeeman shift, described in Section 2.1, to the optical molasses described in
Section 2.2. In these sections, no consideration was given to the polarization
of the incident laser, but this matter can no longer be ignored. As can be
seen in Figs. 2.1 and 2.3, an incoming laser with σ+ polarization will interact
with a different set of atomic transitions than it would when its polarization
was σ−, and in particular, swapping both the sign of the magnetic field
and the polarization of the laser will lead to an indentical set of couplings
between the atom and the laser, with an identical set of energy perturbations
to transitions.

We will proceed by adding the Zeeman shift terms into Eq. 2.20. The
presence of a Zeeman shift will change the effective value of the atomic res-
onance, ω0 (rather than ωL) in a manner which depends on the polarization
of the incident laser. Therefore, for a σ− or σ+ laser respectively, the atomic
resonance to which the laser couples becomes:

ω0 → ω′±0 (~r) := ω0 ± µ′Bz(~r)/~ (2.22)

where µ′ is as described in Eq. 2.8. This change makes its way through the
calculations, showing up everywhere that ω0 shows up. Eq. 2.20 becomes

~F±1 (~v,Bz) =
γ
(
s0 ~ωL/(2c)

)
(1− ~v · êL/c)

1 + s0 +
(

2
γ (δ0 − (ωL/c)~v · êL ∓ µ′Bz(~r)/~)

)2 êL. (2.23)

In a MOT, we will wish to avoid the scenario in which the atoms are
all optically pumped into one particular energy level, so we select one laser
to have σ− polarization, and its counterpropagating twin must have σ+
polarization. It is important that the correct beam be given the correct po-
larization, and to do that we recall that in a MOT, we wish to preferentially
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2.3. The Magneto-Optical Trap

push atoms toward the centre of the trap, therefore the absolute value of
the effective detuning must be smaller in regions further from the centre. If
we use the magnetic field gradient shown in Fig. 2.1 and consider only the
trapping beam, then µ′ takes the same sign as the σ± polarization (We will
write this explicitly as µ′± for clarity, remembering that µ′− = −µ′+.). We
therefore choose the σ− light to propagate in the +ẑ direction, and the σ+
light to propagate in the -ẑ direction, and Eq. 2.23 becomes

~F+
1 (~v,Bz) =

− γ
(
s0 ~ωL/(2c)

)
(1 + ~v · ẑ/c)

1 + s0 +
(

2
γ (δ0 + (ωL/c)~v · ẑ − µ′+Bz(~r)/~)

)2 ẑ (2.24)

~F−1 (~v,Bz) =
γ
(
s0 ~ωL/(2c)

)
(1− ~v · ẑ/c)

1 + s0 +
(

2
γ (δ0 − (ωL/c)~v · ẑ + µ′−Bz(~r)/~)

)2 ẑ, (2.25)

and the total average force on an atom within a MOT is simply the sum of
these two terms. Because we have chosen to work in a system where the
magnetic field along the ẑ-axis is given by

Bz =
∂B

∂z
z, (2.26)

we can now write the average force in terms of the atom’s position. We find
that

~FMOT(~v, z) =
γ s0 ~ωL

2c
ẑ

×

 −1− ~v · ẑ/c
1 + s0 + 4

γ2

(
δ0 + (ωL/c)~v · ẑ − µ′+ ∂B

∂z z/~
)2

+
1− ~v · ẑ/c

1 + s0 + 4
γ2

(
δ0 − (ωL/c)~v · ẑ + µ′−

∂B
∂z z/~

)2
 (2.27)

gives the average force on an atom within a MOT.
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Chapter 3

The AC-MOT–What Makes
It Different?

For our experiment, we need atoms which are not only cold and well con-
fined, but spin polarized as well. Although the standard “DC” MOT has
previously been demonstrated to trap and cool atoms in a confined region,
it requires the use of a non-uniform magnetic field, which hinders our ability
to polarize the atoms. Our challenge is to create an atom trap from which
the magnetic non-uniformities can be eliminated rapidly. To that end, we
have implemented an AC-MOT – a MOT in which the magnetic field gen-
erating coils are run with an AC electrical current, and laser polarizations
are switched rapidly so as to match. This setup minimizes problems from
residual eddy currents in nearby conductors, allowing us to eliminate the
magnetic field much more rapidly [2]. With the quadrupole component of
the magnetic field gone, the sample of cold atoms can be better polarized
before they disperse.

To effect these goals, an “AC-MOT” was designed and constructed, ini-
tially by Harvey and Murray [2]. The principle was straightforward: instead
of directing a DC current through the trap’s anti-Helmholz coils, an AC
current would be used. Additionally, the polarization of the trapping lasers
would need to be alternated synchronously with the current. In this way,
although both the polarity of the magnetic quadrupole field and the laser
polarization varied, a trapping force would remain.

By using a system in which the current is expected to vary, it becomes
easier to shut the current off rapidly. In particular, it is possible to select a
cut-off time for the current such that the residual magnetic field from eddy
currents is minimized.
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Figure 3.1: Sample waveform for use in an AC-MOT. Magnetic field (blue)
lags current through quadrupole coils (yellow) slightly as a result of eddy
currents in nearby conductors.
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Figure 3.2: Laser polarization (cyan) is kept in phase with the magnetic
field (blue), such that a trapping force is present at all times.

For systems in which the transient response time of the AC-MOT coils
is much faster than that of the surrounding materials, we can describe the
eddy currents after shutting off an AC-MOT driven by a voltage-controlled
amplifier, which in turn is driven by a signal of V = V0 sin(ωt+ φ), by

Ieddy(φ, t) = I0
ωτ cos(ωt+ φ)− sin(ωt+ φ) + (sinφ− ωτ cosφ)e−t/τ

1 + ω2τ2
, (3.1)

where τ is a constant that depends on the properties of nearby materials.
One can see from this expression that, given an equal number of half-cycles,
a choice of φ = tan−1(ωτ) results in the eddy currents being zero after the
AC-MOT is shut off [2].
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Chapter 4

The Offline AC-MOT

In order to test the usefulness of the AC-MOT for our purposes, we ini-
tially implemented an AC-MOT in our “offline” geometry, which was never
intended to be used for our final experiment. This allowed us to examine
systematic effects in advance of the arrival of the “online” chamber. Addi-
tionally, because our intent for the online setup was to trap 37K, which is
radioactive with a half-life of 1.2s, it was not possible to work directly with
this isotope during much of the setup and optimization processes. Instead,
we chose to work primarily with (stable) 41K, which was an ideal candidate
because its hyperfine structure is similar to that of 37K.

Our offline setup, shown in Fig. 4.1 included a vacuum-pumped pyrex cell
with a connected potassium dispenser, and vertically oriented anti-Helmholz
coils external to the cell. In the AC-MOT, these coils carry a sinusoidally
varying current. The optical details (shown explicitly in Fig. 4.6) are very
similar to those one might use in a typical DC-MOT, with the notable
addition of an electro-optic modulator (EOM), used to rapidly flip the po-
larization of the laser light between two perpendicular linear polarization
states. The geometry of the current-carrying magnetic field coils is shown
in Fig. 4.2.

4.1 Methodologies for Measuring Trap
Characteristics

In order to evaluate a variety of trap properties, we used a CCD camera to
capture images of the trapping region. Typical results are shown in Fig. 4.3.
Each such image requires a camera exposure that ∼ 10 - 100 of milliseconds,
limiting our ability to record rapid changes to the atom cloud. Because a
full AC cycle takes only ∼ 1 millisecond, this technique is not able to tell us
anything about the cloud during different phases of the AC trapping cycle.
Instead, we examine images taken over a period of many AC cycles to learn
about overall, time-averaged characteristics of the AC-MOT.
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4.1. Methodologies for Measuring Trap Characteristics

Figure 4.1: A photo of the offline MOT’s vacuum-pumped pyrex cell and
vertically-oriented current-carrying coils. The CCD camera used for fluo-
rescence and lifetime measurements is visible on the right centre, and the
potassium vaporizer is located beyond the port in the lower right corner.
Trim coils are used to keep the magnetic field at the centre of the pyrex cell
at zero, and the green and grey trim coils are clearly visible in this picture.
The vertical trim coils cannot be seen, as they are wound about the same
rings that contain the vertical quadrupole coils. To complement this photo-
graph, a schematic of the coils’ geometry is shown in Fig. 4.2, and the optics
setup is shown in Fig. 4.6.
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Figure 4.2: Geometry of the Offline MOT. Note that there are three separate
sets of ‘trim coils’, used to adjust the DC components of the magnetic field,
such that the Zeeman shift is zero at the centre of the trap (the vertical trim
coils are separate from the quadrupole coils, despite being located within the
same plastic frame). In practice, the current in these trim coils was set so as
to optimize the appearance of the cloud of trapped atoms – a method which
seemed to work reasonably well for us, given the fact that the local magnetic
field in our lab could be measurably altered by the status of TRIUMF’s
cyclotron (below our lab), or the operation of certain equipment for other
experiments (above our lab).

4.1.1 Measuring the Number of Trapped Atoms

In order to determine the number of atoms in the trap at any given time,
a smaller region of interest is selected (see Fig. 4.3), and the background
brightness is subtracted off, pixel by pixel. Then, the overall trap fluores-
cence is given by the sum of the brightness for each pixel within the region
of interest. Because trap fluorescence is expected to be proportional to
the number of trapped atoms, this type of measurement tells us how many
atoms we are able to trap at a particular time up to an overall scaling fac-
tor, provided that parameters such as laser power and frequency are kept
constant. In the majority of cases examined within this document, we will
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4.1. Methodologies for Measuring Trap Characteristics

be interested only in the way the number of trapped atoms scales – not in
the total number of atoms.

Figure 4.3: Images of the trapping region as collected by a CCD camera.
The image on the right shows a cloud of atoms trapped in a MOT, while the
image on the left shows the background for the same spatial region, collected
while the laser light was present but the magnetic field had been turned off.
Each pixel from the CCD camera’s image has a ‘brightness’ value ranging
from 0 to 255. In order to make sense of the results, it is usually necessary to
consider only some smaller region of interest immediately surrounding the
cloud of atoms, and subtract the background image from the trap image,
pixel by pixel, before analyzing the results. The green rectangles show a
typical region of interest.
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4.1. Methodologies for Measuring Trap Characteristics

4.1.2 Measuring the Lifetime

Because we are in a regime of low density, the number of trapped atoms
N(t) in a MOT with trap lifetime τ will obey the equation

dN(t)

dt
= N0 e

+t/τ (4.1)

while it is loading. We therefore chose to measure the lifetime by determining
the rate at which atoms are loaded into the trap, as shown in Fig. 4.4.
Beginning from a state with no trapped atoms, the conditions necessary for
trapping are created, and the total fluorescence in the region of interest is
monitored intermittently over a period of several seconds.

In order to obtain a measurement of the trap lifetime, we record a back-
ground image followed by a series of images of the trap over a period of time.
To increase the signal-to-noise ratio, the cloud of trapped atoms may be de-
stroyed and fluorescence measurements repeated over again several times.

One notable pitfall that must be avoided when measuring the trap life-
time in this manner is setting an incorrect region of interest. As one might
expect, the cloud has been observed to move slightly when trap settings
are adjusted. While position stability is largely a non-issue in the online
AC-MOT, the offline setup was prone to a variety of systematic effects that
were not necessarily consistent from day to day (described further in Sec-
tion 4.5). Unfortunately, if the region of interest is set to be too large,
the signal is overwhelmed by the noise and cannot be used. Therefore it
was necessary to double check, for each such lifetime measurement, that the
cloud was positioned where it was expected to be–within our defined region
of interest.

4.1.3 Measuring the Trap Width and Position

We are also sometimes interested in measurements of the size and position of
the trap. In the offline AC-MOT, we were limited to using the CCD camera
for such measurements, and even in principle one CCD camera would only
allow us to measure the width and position along two of the three spatial
dimensions. In practice, however, we used only one dimension, because the
pronounced vertical streaks in the camera output (see Fig. 4.3) make it
difficult to work with.

Once the CCD camera has collected an image, the brightnesses of its
pixels are projected along its two axes, and gaussian curves are fit to the
result, as shown in Fig. 4.5. Fig. 4.5 also demonstrates the problem inherent
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Figure 4.4: A typical set of reduced fluorescence data from the CCD cam-
era, used to extract AC-MOT lifetimes. The quantity plotted on the vertical
axis is the fluorescence measured only within a pre-defined region of interest,
after the background brightness has been subtracted off. At t=0, when the
conditions necessary for trapping begin, there is no cloud of trapped atoms
present. The fluorescence is measured at time intervals spanning a period
of several seconds, at which point the trapping mechanism is removed and
the atoms are allowed to disperse. Once the cloud has been completely de-
stroyed, the measurements may be repeated again as the number of trapped
atoms grows again. To obtain a plot such as this, with sufficiently clean
data, the cycle of measurements is repeated 3 to 5 times. A fit is then
performed to extract the trap lifetime τ , which is described by Eq. 4.1.
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Vertical FWHM = 1.73 ± 0.08 mm

Horizontal FWHM = 0.64 ± 0.14 mm

Vertical (mm)
-0.5                0.0                0.5                1.0                1.5                2.0                2.5                3.0                3.5

Horizontal (mm)
-4.5                  -4.0                  -3.5                  -3.0                  -2.5                  -2.0                  -1.5                  -1.0       

85

80

75

70

65

Average Trap Projections

108

106

104

102

100

98

96

94

92

RO
I F

lu
or

es
ce

nc
e 

(a
rb

)

Figure 4.5: A typical set of trap fluorescence projections along the vertical
and horizontal axes. The projections are fit to a gaussian, and the FWHM
used to characterize cloud width. In these plots, the background fluorescence
has been subtracted off–however the vertical lines (as seen in Fig. 4.3) are
not steady from image to image, and so they are still prominently visible
in the horizontal projection. The result of this is that our horizontal trap
width measurements are not particularly reliable. In this thesis, when the
trap width is mentioned without explicitly stating an axis of projection, it
should be assumed that a vertical projection is being used.

in working with fluorescence projections along the horizontal axis within
our system. The ‘full width at half maximum’ (FWHM) of the vertical
projection’s gaussian is used to characterize the cloud’s width, and its centre
is used to describe the cloud’s position.
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4.2 Laser Frequency Calibrations in the Offline
AC-MOT

One aspect of optimal MOT operations is that of tuning the lasers to optimal
frequencies. In many setups, the precise parameters of the MOT’s repumper
beam are of secondary importance to the MOT’s operation. However, as can
be seen in Fig. 2.3 for 41K, the repumper component in our MOT is actually
quite important, due to the proximity of the F = 1 and F = 2 excited
states to one another. That is, a high fraction of the atoms excited by
the trapping laser will end up in the ‘wrong’ excited state, increasing the
likelihood that they will decay to the ‘wrong’ ground state – therefore the
repumper component of the MOT’s laser beams plays a relatively large role.

The optical setup in our offline AC-MOT is shown in Fig. 4.6, and the
variable subscripts in Eqs. 4.2 and 4.3 make reference to that diagram. The
trapping frequency, ftrap and the repumper frequency, frepump in this system
can be described by

ftrap = flock − fAOM A − fAOM B (4.2)

frepump = ftrap + fVCO. (4.3)

We chose to lock the laser to the spectral peak at approximately 277.4
MHz from the centre of gravity in 39K. This peak was the result of a
combination of two different D2 transitions in 39K: F = 1→ F = 1 (272.7
MHz) and F = 1 → F = 2 (282.0 MHz) [6, 7]. The relative strengths of
these two transitions in our vapor cell is unclear, therefore there exists some
systematic uncertainty in the absolute value of all measured frequencies
which depend on the laser’s lock point.

In order to produce the desired coupling to both the F = 2→ F = 1 and
F = 2→ F = 2 D2 transitions (132.49 MHz and 135.87 MHz, respectively,
from the centre of gravity [6, 7]), the laser frequency was adjusted from its
lock point by passing it through two AOMs. To produce a laser beam tuned
to +130 MHz (that is, slightly red-detuned from both resonances), AOMs
A and B were adjusted to decrease the frequency of the laser light passed
through them by a total of 147 MHz. We took this as our starting trap
frequency.

Sidebands were added next – initially at fVCO = 241 MHz, and the side-
band with the positive detuning was used as the repumper. This produced
a repumper frequency of +371 MHz – red-detuned from the D1 transitions
at +386.5 MHz (F = 1 → F = 1) and +389.88 MHz (F = 1 → F = 2)
[6, 7].
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Figure 4.6: A diagram of the components of the offline AC-MOT. The geo-
metric layout of the current-carrying magnetic field coils is shown in Fig. 4.2.
The basic design is similar to that of a typical DC-MOT. The laser is locked
to a chosen carrier frequency by using standard saturation spectroscopy
techniques, and a voltage-controlled oscillator (VCO) is used to add side-
bands above and below the carrier frequency. AOM D is used only to turn
the light on and off. The EOM is used as a rapidly-changing variable wave
plate. Tuned properly, it is able to adjust a polarized laser beam passing
through it to either of two perpendicular linear polarization states, which is
essential for the operation of an AC-MOT. Subsequent half-wave plates are
used to adjust the polarization directions (in both states) so as to minimize
ellipticity after the laser passes through beam splitters, and quarter wave
plates are used immediately before the beams enter the trapping chamber
so as to produce circular polarization. Thus, when the direction of linear
polarization is switched by ninety degrees at the exit from the EOM, the
direction of circular polarization of the light in the chamber is also switched.

In Fig. 4.7, the trap frequency ftrap was swept while keeping the re-
pumper frequency fixed by a method in which fVCO and fAOM B were swept
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together, such that their combined contribution to frepump was constant.
However since fVCO does not contribute to ftrap, the change in fAOM B also
produced a change to ftrap.
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Figure 4.7: The relationships between trapping frequency, repumper fre-
quency, laser power, and trap fluorescence are shown here. Power measure-
ments were taken after the EOM (as shown in Fig. 4.6), and would include
the trapping frequency component of the laser beam as well as the two
sidebands, each of which has about 10% the power of the carrier frequency
component. One of these sidebands functions as the repumper, and the
other is simply ignored as it is not close to any atomic resonances. Fluo-
rescence is measured according to the procedure described in Section 4.1.1,
though we do not interpret the overall fluorescence as proportional to the
number of trapped atoms here, since a varying laser frequency will also have
a large effect on the fluorescence for any particular trapped atom.
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4.3 The Phenomenology of Lifetime
Measurements in the AC- and DC-MOT

It is interesting to consider the relationship between lifetimes in AC- and DC-
MOTs. Fig. 4.8 shows that lifetimes for an AC-MOT are significantly shorter
than those measured in a DC-MOT under similar operating conditions.

One possible reason for the experimentally measured decreased lifetime is
that in an AC-MOT, the restorative ‘spring’ force resulting from the Zeeman
shift is eliminated or decreased during some fraction of each AC cycle. The
author speculates that if this were the case, it might be possible to bring
the results into closer agreement if the laser frequencies were tuned closer
to resonance, so as to make the trapped atoms colder. Unfortunately, this
has never been attempted.

Another possible interpretation for this result is that our loss mechanisms
in the offline AC-MOT are dominated by systematic effects. In particular,
the gain on the two power supplies controlling each quadrupole coil indi-
vidually under AC operation were seen to drift over time. If their current
outputs became too unequal, the AC-MOT was lost entirely – that is, the
cloud positions for each “side” of the AC cycle ceased to overlap with one
another. This was a significant problem in the offline setup, but the ex-
tent to which this may have contributed to our measurement of lower AC
lifetimes is unclear.

4.4 Measured Lifetimes and AC Frequency

We were interested to find out whether the trap lifetime in an AC-MOT
changes as a function of its (AC) frequency, and to see how lifetimes in the
AC-MOT relate to the lifetimes of a comparable DC-MOT.

The results are shown in Fig. 4.9. It appears that the trap lifetimes are
roughly constant as a function of frequency, provided that the AC-MOT is
going faster than some minimum frequency (around 100 Hz). The precise
location of the cutoff drifted over the course of data collection, as we see
from the measured 1s lifetime at 100 Hz and the 4s lifetime at 50 Hz. This
cutoff effect has also been observed previously, in [2], where the cutoff was
observed to be around 2 kHz.

The astute reader may notice that the 500 Hz lifetimes in Fig. 4.9 appear
to be inconsistent with those in Fig. 4.8 – but this does come as a surprise,
as the data for the two plots was collected months apart, and any number
of trapping variables may have been changed. Parameters such as overall
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Figure 4.8: A comparison of the measured lifetimes in an AC trap and the
two equivalent DC trapping states. That is, the DC “+” trap is identical
to the DC “−” trap, except for the direction of current flow in the anti-
Helmholtz coils, and the sign of the laser polarization. In the AC-MOT,
the laser polarization flips back and forth between these two states, and the
current in the anti-Helmholtz coils varies sinusoidally at 500 Hz. It can be
seen from this plot that the AC-MOT lifetimes are shorter than those of a
comparable DC-MOT.

laser power, fraction of power in the repumper beam, frequency tuning of
either or both of these components, laser alignment, and laser polarization
in either or both of the DC ‘states’ (both of which are needed for an AC-
MOT), are all things which have been known to drift or change over longer
time periods, and these can all affect the robustness of a MOT. One must
also consider the systematic effects discussed in Section 4.5, which can alter
trap characteristics on much shorter timescales.
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Figure 4.9: Lifetimes as a function of AC frequency. Lifetimes are measured
as described in Section 4.1.2. For each datapoint, the amount of current in
each coil was normalized with respect to the other coil’s current through a
method in which the trap position as seen by a CCD camera was required
to remain constant. The peak-to-peak amplitude of the magnetic field (as
measured by a Hall probe located near one side of the trap) was also held
fixed at every data point. A new measurement at the 500 Hz baseline was
taken between datapoints at other frequencies in order to be certain that
there was no time-dependence in the results. Although the trap lifetime is
nearly constant at “high enough” frequencies, there is a sharp cutoff around
50-100 Hz – though the cutoff itself appears to have changed during the
measurement process. This change could be due to any of a number of
systematic effects described in Section 4.5. The reason for the existence of
such a cutoff is unclear, but the effect has previously been observed in [2] to
occur around 2kHz.
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4.5 Systematic Effects in the Offline AC-MOT

The offline AC-MOT setup was plagued by a variety of systematic problems.
One noteworthy problem that had been observed in the offline MOT setup
even before it was converted into an AC-MOT was the non-uniformity of
the windows on the pyrex cell. This had the dual effects of damaging laser
polarization, and distorting the beam profile. Thus, whenever the optical
setup was ajusted or bumped and recalibrated, the laser interference pat-
terns within the central trapping region would change as well. This could
be observed qualitatively in images of the trapped cloud of atoms collected
with the CCD camera–a slight recalibration of the lasers would often result
in a DC trap that had moved a few millimeters or had changed its shape.
Such problems are to be expected.

In the AC-MOT, however, this problem was compounded. In order to
produce a functional AC-MOT, it is necessary for the cloud’s location in one
DC-MOT state must be the same as (or at least overlapping with) the cloud’s
location in the other DC state. If this cannot be achieved, the AC-MOT will
fail – and to the extent that is achieved only poorly, the characteristics of the
AC-MOT will be non-optimal. The atomic cloud may be spread out, and
atoms may be ejected from the trapping region, damaging the AC-MOT’s
ability to retain atoms. This problem of was largely corrected in the online
AC-MOT setup, where lasers entered the chamber only through viewports
specifically designed to be flat, and mounted on a much more solid stainless
steel chamber.

An additional source of instability specific to the offline AC-MOT was
the power supplies controlling the current through the anti-Helmholtz coils.
In the offline MOT, it was necessary to use a different set of power supplies to
control the AC-MOT than we had used for DC control. Although the power
supplies used for DC operation of the MOT were quite stable, they were
not able to produce an alternating current. For running the anti-Helmholtz
coils in AC mode we used a pair of Peavey CS 4080Hz audio amplifiers,
which were unable to produce a DC current. It is worth noting here that
it was necessary to use two amplifiers – one for each current-carrying coil
– because a single amplifier would have been unable to drive the necessary
current through both coils. Though I am unable to comment on the quality
of this hardware when used for its intended purpose, it turned out to be
quite problematic for use in an AC-MOT.

As is typical for audio amplifiers, these devices were not able to out-
put a tunable DC offset to their current. In principle, they were expected
to produce symmetric positive and negative voltage outputs, automatically
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adjusting their average DC offsets to zero. In practice, oscilloscope readouts
suggested that the DC offsets output from these devices drifted over time.
The gain on these amplifiers drifted over time as well – perhaps as a result
of them heating with use, though the drift on these two audio amplifiers
was asynchronous. Since it was necessary to run these amplifiers at close to
their full power, it was common for the gain on one or both amplifiers to
drift upward just enough for the output waveform to be clipped on one side.

Therefore, it was necessary to closely monitor current output from the
audio amplifiers while trapping. Though nothing could be done about DC
offsets, their respective gains could be adjusted manually, and this sometimes
had an effect on the DC offset.

Problems with the audio amplifiers dominated systematic effects in the
offline AC-MOT. Instability in the anti-Helmholtz coil currents produced
instability in the atoms’ effective (Zeeman shift) potential well. Since an
AC-MOT requires that the potential minima for both ‘states’ must be in
the same spatial location, the offline AC-MOT proved to be very finicky.
Lifetime measurements and trap size measurements were very different from
day to day, and somewhat different from hour to hour.

Fortunately, this latter problem was mostly eliminated in the online AC-
MOT. The solution was simply to buy a more expensive set of power supplies
designed to do what we wanted. The online setup used two Matsusada DOP
25-80 power supplies, which are capable of outputting both DC and AC
currents and voltages, and which also had extremely minimal drift. As a
result, the online AC-MOT proved to be significantly more stable than the
offline AC-MOT.
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Chapter 5

Turning the Trap Off

The reader will recall that the goal of this work is to obtain samples of
cold, tightly confined, spin-polarized atoms for further study. To polarize a
sample of atoms well, the magnetic field gradient must be zero (or as close as
is achievable), and an incident optical pumping laser must be as completely
polarized as possible, and tuned precisely to the proper atomic resonance.
Unfortunately, these requirements (as well as the fact that the lasers used for
confining atoms within a MOT would destroy any atomic polarization) mean
that atomic polarization cannot be obtained during the normal operation of
a MOT. The trapping lasers must be shut off and the magnetic field gradient
must be eliminated before successful optical pumping can occur.

To this end, we employ a strategy of running the AC-MOT over several
AC ‘cycles’, then halting the trapping mechanism for a period of time to
allow for optical pumping. The MOT forces resume again – ideally before
too many atoms have been lost from the trapping region – and the atom
cloud is compressed once more during operation of the AC-MOT, until the
trapping forces are halted again. We will henceforth refer to this on/off
cycling – and more specifically to the fraction of the total time spent with
the AC-MOT off – as the ‘duty cycle’.

We wish to allow as much time as possible for optical pumping, while
simultaneously retaining as many atoms as possible. The residual magnetic
field during the optical pumping window is an additional consideration, and
its optimization was the reason behind our choice to develop an AC-MOT. It
is, of course, necessary to use an integer number of AC cycles between optical
pumping times so as to allow us to shut off the current in the quadrupole coils
at a moment when the residual eddy currents in the surounding materials
are zero [2]. In this way, the magnetic field gradient is minimized so as to
allow for optical pumping.

The problem of optimizing laser polarization for optical pumping is ad-
dressed by former co-op student Scott Smale in his end of term report [8].
Here, it suffices to say that in the online trap, the optical pumping laser
setup was entirely separate from the one that was used for trapping in the
MOT, and optical pumping was never implemented at all in the offline trap.
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5.1 Methods for Turning Off the Trap

The trapping mechanism in a MOT can be stopped by shutting off either
the magnetic field or the trapping laser. It is helpful to determine which
mechanism for removing trapping forces produces the best trap lifetimes
and smallest cloud sizes, as averaged over many on/off cycles during which
the cloud of atoms is retained.

The data used to generate Figs. 5.1, 5.2, and 5.3 was taken in the offline
MOT. We ran a continuous loop of 3 AC cycles at 1000 Hz, followed by 1
“off” cycle – 3 ms on followed by 1 ms off. We also took a series of data in
which the trapping mechanism was not stopped, in order to make a useful
comparison.

We are interested in understanding what happens to the cloud of trapped
atoms when we turn the trap off. It is possible to halt the trapping mech-
anism by turning off the magnetic field gradient, the laser, or both. We
examine the differing effects of each of these techniques, and the results are
shown in Figs. 5.1, 5.2, and 5.3.

As one might expect, increasing the laser power increases trap fluores-
cence, but it also heats the atoms, thereby decreasing trap lifetime. We
find that it is possible to preserve the trap lifetime, despite removing trap-
ping forces during some fraction of the time, as long as the trapping light
is removed. While the magnetic field is being turned off, it is non-zero and
poorly quantified for some length of time. Furthermore, since we attempt
to eliminate the magnetic field as rapidly as possible, it is entirely reason-
able to suppose that we may overcorrect the current, and thus the sign of
the magnetic field gradient would be briefly opposite of our expectation. If
at any point the sign of the magnetic field is reversed, the atoms that had
previously been trapped could be ejected upon interacting with the laser.
We did not examine the presence of this mechanism beyond what is shown
in this section.

31



5.1. Methods for Turning Off the Trap

ÊÊ

ÊÊ

ÊÊÊÊ

20000

40000

60000

80000

100000

ÊÊ

ÊÊ ÊÊÊÊ
20000

40000

60000

80000

100000

ÊÊ

ÊÊÊÊÊÊ
20000

40000

60000

80000

100000

ÊÊ ÊÊÊÊ

ÊÊ

0 2 4 6 8 10 12 14 16

20000

40000

60000

80000

100000

Ê

ÊÊÊ

0 5 10 15
0

20000

40000

60000

80000

100000 • Always On
• Kill Laser
•  Kill Magnetic Field
•  Kill Both

Ê

ÊÊÊ

0 5 10 15
0

20000

40000

60000

80000

100000 • Always On
• Kill Laser
•  Kill Magnetic Field
•  Kill Both

Trap Lifetime (s)

Fl
uo

re
sc

en
ce

 (a
rb

.)

Laser Power = 66 mW

Laser Power = 49 mW

Laser Power = 40 mW

Laser Power = 21 mW

Trap Killing Methods

Figure 5.1: Different methods for eliminating the trapping mechanism and
destroying the cloud of atoms were tested at several different levels of laser
power in the offline AC-MOT at fAC = 1000 Hz. The goal was to remove the
trapping mechanism for some part of the duty cycle while still maintaining a
long average lifetime and a high number of trapped atoms. Trap fluorescence
is treated as a stand-in for the number of atoms in the trap, and is measured
as in Section 4.1.1. Except for the points labelled as ‘always on’, the MOT
is run with a duty cycle in which the trapping forces are on for 3 ms, then
off for 1 ms.
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Figure 5.2: Different methods to eliminate the trapping mechanism, and
their effects on trap size, are shown for several different laser power mea-
surements. The AC-MOT is run at a frequency of fAC = 1000 Hz, and
except for the points labelled as ‘always on’, the MOT is run with a duty
cycle in which the trapping forces are on for 3 ms, then off for 1 ms. Laser
power is measured immediately after the EOM shown in Fig. 4.6. Trap size
is averaged over many on/off cycles, and is measured as described in Sec-
tion 4.1.3. This data seems to suggest that whether or not the magnetic
field is shut off, the trap diameter is larger if the laser is shut off. This
is consistent with what we might have guessed based on the premise that
the optical molasses from trapping lasers would create a drag force to slow
expansion of the atom cloud once the MOT’s confining force is shut off.
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Figure 5.3: The AC-MOT is run at a frequency of fAC = 1000 Hz, and except
for the points labelled as ‘always on’, the MOT is run with a duty cycle in
which the trapping forces are on for 3 ms, then off for 1 ms. Laser power is
measured immediately after the EOM shown in Fig. 4.6, and trap lifetime
is measured as in Section 4.1.2, and is averaged over many on/off cycles.
For this plot, trapping forces are removed from an AC-MOT operating with
several different values of laser power (plotted on the vertical axis). The
effect on (average) trap lifetime is shown. Whether the magnetic field is
turned off or not, the lifetimes are longer when the laser is shut off. It is
interesting to note that that the trap lifetimes measured in the case where
the trapping mechanism is always on are shorter than the trap lifetimes
measured when the laser (and therefore the trapping mechanism) is shut off
for part of the duty cycle. The mechanism behind this effect is unclear.
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5.2 Duty Cycle

It is important to maximize the percentage of time during which the mag-
netic field (which is itself needed in order to maintain the trap) is off, while
simultaneously keeping the observed trap lifetime as long as possible (as av-
eraged over many trapping/non-trapping cycles), because we are only able
to collect useful data during the time when the magnetic field is off and the
atoms are polarized. The eventual goal is optimize count-limited beta-decay
statistics using (radioactive) 37K as our trapped isotope. To this end, we
examine different methods for destroying the trapping forces, and achievable
duty cycles in an AC-MOT trapping 41K, which has a hyperfine structure
similar to that of 37K.

Initial results describing the effect of different duty cycles on average
trap lifetime and fluorescence are shown in Figs. 5.4 and 5.5. Both show
data collected in the offline pyrex chamber using 41K. It is worth noting
that the most obvious way to improve on these results would be to use a
set of laser beams which is more optimally balanced and more gaussian in
profile. However, in the offline vapor cell we were limited by the quality
of the chamber windows through which the laser passed. In particular, an
anti-reflective coating on the windows would have likely produced a large
improvement in beam profile and balance. This was later achieved in the
online chamber, however no comparable data has been collected in that
geometry.
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Figure 5.4: Initial results describing the effect of varying the duty cycle
on the (time-averaged) trap lifetime, at fAC = 2 kHz. Trapping forces are
removed by eliminating both the magnetic field and the trapping laser. Life-
time measurements are taken as per the procedure described in Section 4.1.2,
with the additional caveat that lifetime measurements are averaged over mul-
tiple on/off cycles. The green curve is intended only to guide the eye. One
can see that turning the trapping forces off for a sufficiently small fraction
of the time does not harm trap lifetime measurements; counterintuitively,
the trap lifetime may even increase slightly in some cases. This observation
is consistent with the data presented in Fig. 5.3.
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Figure 5.5: Trap fluorescence measured as a function of the trapping duty
cycle at fAC = 2 kHz. Trapping forces are removed by eliminating both the
magnetic field and the trapping laser. Brightness measurements are taken
as per the procedure described in Section 4.1.1, with the additional caveat
that fluorescence measurements are averaged over multiple on/off cycles.
The green curve is intended only to guide the eye. Since the laser is shut off
during the “off” cycles, one might expect that in the absence of atom loss,
fluorescence should be proportional to the fraction of total time used for the
AC-MOT, but this does not appear to be the case. Instead, we see that
the brightness is roughly constant provided that the duty cycle includes a
sufficient percentage of time with the AC-MOT on.
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5.3 Residual Magnetic Field in a Pyrex Cell

One of the things we attempted to optimize is the residual magnetic field
in the magneto-optical trap. In particular, our goal was to eliminate the
magnetic field in the trapping region as completely and as quickly as possible
after turning off the trapping mechanism. As a first test, we worked with
our offline AC-MOT, where we measured the residual magnetic field using
a Hall probe located outside the chamber. Typical results are shown in
Figs. 5.6 and 5.7.

Our methodology suffered from a variety of systematic effects. With the
Hall probe located outside the chamber, far from the region in which the field
gradient could be expected to be linear, we treated the measured value of the
magnetic field as being directly proportional to the size of the field gradient
within the central trapping region. Given our knowledge of the system’s
geometry, we were able to estimate the proportionality constant, but this
was made more difficult by the fact that the Hall probe’s mount was not
stable. Both the position and orientation of the probe would change between
datasets, and the result was a noticeable change in measured magnetic field
strength.

Because of the amplifiers available to us, we controlled the current through
the anti-Helmholtz coils indirectly, through their voltages. In the offline
traps, a variety of audio amplifiers were used to drive the rapidly oscillating
AC voltages we needed. Two audio amplifiers were used at any given time –
one to drive each coil – because an individual audio amplifier could not pro-
duce sufficient current to drive both coils at once. This technique produced
several systematic effects. The amplifiers’ gains drifted by approximately
10% over the course of a couple hours’ worth of measurements. Addition-
ally, the frequency dependence of the gain was different between any set
of two amplifiers. Unfortunately, when the currents through the two coils
became too unequal, the trap was destroyed.

The amplifiers were controlled in the voltage domain by means of an
arbitrary waveform. These waveforms were generated by computer to a
format which was compatible with the Stanford Research Systems DS435
function generators, to which the waveforms were uploaded. The function
generators were then used to control the audio amplifiers directly.
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5.3. Residual Magnetic Field in a Pyrex Cell

Figure 5.6: Optimal Waveform to Minimize Residual Magnetic Field in the
Offline Trap. Channel-1 shows the readout of the Bell Labs Hall probe,
while Channel-3 shows the output of an SRS-DS345 function generator as
it is being used to control (one of) the anti-Helmholtz coils. On Channel-
1, 1 mV is equivalent to 1µT at the probe’s location. The peak-to-peak
amplitude of the magnetic field is approximately 2.2 mT.
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Figure 5.7: This is a zoomed in view of the same output as is shown in
Fig. 5.6. At the time of the initial drop in magnetic field, the residual
magnetic field (Channel-1) is 3.2% of its maximum value, and decays rapidly
away. Note that this Hall probe’s overall offset drifts by approximately 1mV.
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Chapter 6

Calibrations of the Online
Trap

In addition to our offline setup, measurements and calibrations were also
done on a new “online” MOT chamber setup. The online trapping setup
differs from the offline setup in that the online setup includes two distinct
magneto-optical traps, separated by approximately two metres. The first is
used for initial collection of a sample of atoms, either from the beamline itself
in the case of radioactive atoms, or else from a dispenser to be used for offline
tests. The trapped atoms in the first MOT are then periodically loaded into
the second MOT according to the methodology described in [9]. This is done
so as to minimize the background from decaying untrapped radioactives near
the second trapping chamber where our detection apparatus is located. The
first trap is only intended to be run as a DC-MOT.

The second trapping chamber was newly constructed from 316-L stain-
less steel, which has very low electrical and thermal conductivity as com-
pared with other metals. This material was selected because while it was
necessary for our chamber to be sturdy enough to mount a series of deterc-
tors, it was also desirable to minimize electrical eddy currents resulting from
the AC-MOT in this chamber.

Around this time, we also acquired a new model of Hall probe, and
two new, more reliable amplifiers to drive the anti-Helmholtz coils in the
second trap. Additionally, in the time before the chamber was closed up
for trapping, it was possible to mount the Hall probes reliably at known
positions relative to the centre of the trapping region. This allowed for a
much more accurate estimate of the effects of eddy currents at the trap
centre than had been possible in the offline setup.

The power supplies for the online trap are both Matsusada DOP 25-80,
which are designed to run in the range of ±25V and ±80A. These were
an upgrade from the offline MOT’s audio amplifiers, not only because of
their greatly decreased propensity for drifting, but also because these power
supplies allowed for rapid switching between an AC signal and a DC voltage
or current.
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Chapter 6. Calibrations of the Online Trap

Figure 6.1: A photo of the inside of the new trapping chamber, before most
of the hardware for observing β-decay daughter particles was installed. The
two current-carrying copper quadrupole coils are clearly visible. The cham-
ber walls are made of 316-L stainless steel, a material which was selected as
a compromise between strength, cost, and minimizing eddy currents in the
chamber walls.

This ability for the second MOT to switch between AC and DC modes
of operation rapidly and without destroying the cloud of trapped atoms was
essential for two reasons, the first being the method by which the second trap
acquires its atoms. The atoms are loaded directly from the first MOT, which
transfers its atoms over to the new chamber at intervals of approximately one
second according to the method described in [9]. The atoms are transferred
by using a resonantly tuned laser to “push” the atoms over from their initial
position in the first MOT, through two optical funnels, and into the new
chamber where they are re-collected in the second DC-MOT, which already
holds any atoms remaining from previous transfers which have not yet been
lost. The optical funnels are each comprised of two sets of current-carrying
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Figure 6.2: Geometry of the quadrupole coils in the online MOT is shown
here. Water flows through the coils to cool them. These coils can be driven
in AC mode with a DC offset, so they serve a second purpose as trim coils,
cancelling out one component of the ambient magnetic field within the lab
(generated by the nearby cyclotron when it is in operation, and by the earth
itself). There are two additional sets of trim coils (not shown) which are
external to the chamber, and tuned with a DC offset so as to cancel the
magnetic field components in the other two dimensions.
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coils–effectively a two-dimensional MOT–in order to keep the atoms confined
in the transverse directions during the transfer. Once the atoms have been
collected in the second MOT, they must not be lost as we switch its operation
from a DC-MOT to an AC-MOT.

The author of this thesis speculates that it may be possible to adapt this
technique to collect atoms in an AC-MOT directly. However, the atoms’
times-of-flight are expected to be in the 10s of milliseconds, so a relatively
small spread in transfer speed would cause arrival times to vary, spanning
several AC cycles. It seems likely therefore that transferring atoms directly
into an AC-MOT would result in a less robust and less efficient transfer
mechanism. We did not attempt this.

The second reason for the importance of our ability to switch between
AC and DC operation is that our goals for data collection require a small
cloud of polarized atoms. We polarize the atoms by optically pumping them
after the MOT has been turned off, but this is ineffective in the presence
of non-uniform and non-static magnetic fields. In order for optical pump-
ing to be effective, it is necessary that any present magnetic field must be
uniform and aligned along a previously chosen axis of laser propagation.
Any misalignment of the magnetic field axis with the optical pumping axis
will prevent the atoms from being fully polarized. Similarly, a magnetic
field which is non-uniform over the extent of the atomic cloud must produce
non-uniform atomic polarization when an optical pumping laser is applied.
Though we might be tempted to simply apply a large dipole field on top of
any residual quadrupole field from the MOT so as to maximally align the
two axes, this is inadvisable. The presence of a large magnetic field will
cause energy splitting between nearby hyperfine levels, which will harm op-
tical pumping efficiency as the laser becomes more detuned from only some
of the transitions to which it was intended to couple. A large magnetic field
would also cause mixing between the states we had hoped to optically pump,
again damaging our ability to polarize the sample of atoms.

Thus, the best solution is to eliminate the quadrupole field used in the
MOT as rapidly as possible, while simultaneously applying a small constant
dipole field on top of any residual non-uniformities. To rapidly eliminate the
quadrupole field from the MOT, we use an AC-MOT. However, the small
dipole field is produced by generating a small DC current in the same coils
that had been producing the quadrupole field, so the necessity of switching
between AC and DC operation rapidly is clear.
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6.1 Frequency Response in the Online Setup

The first task was to calibrate the power supplies’ output in the relevant
setup. With this information, we can monitor the current output either
through the “current output monitor” port in the power supply, or if we are
running the power supplies in current-control mode, indirectly through the
amplitude of the input signal.

We first note that the power supplies’ specifications are such that they
can accept input voltages within the range [-10V, 10V], which is used to
control an output signal in the range [-80A, 80A], and [-25V, 25V]. They
are also equipped with ‘voltage monitor’ and ‘current monitor’ ports, both
of which output a voltage signal in the range [-10V, 10V], to monitor the
voltage and current outputs, respectively. Therefore we write,

Iout[A] =
80A

10V
Imon[V] (6.1)

Vout =
25V

10V
Vmon

=
25V

10V
Vin (6.2)

It is useful to measure the effective inductance of the two coils when they
are both running in their trapping (anti-Helmholtz) configuration. Because
of the limit to the amount of voltage we are able to output to the coils, it
is necessary to know their effective inductance in order to determine how
high an AC frequency we can run our MOT at, if we require some minimum
of current output. We determined both the resistive and capacitive compo-
nents of the impedance of the system to be negligible, and drove the power
supplies with a continuous sinusoid of amplitude Vin = 9.8V, at several dif-
ferent frequencies. Recall that under harmonic excitation, a system with a
purely inductive load can be described by

Imax

Vmax
=

1

2πfL
. (6.3)

The data was therefore fit to

Imon,max[V]

Vin,max[V]
=

(
25V

80A

)
1

2πfL
, (6.4)

and is shown in Fig. 6.3. The result was an effective inductance of (50.1± 0.2)
µH.
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Figure 6.3: Inductance in the online MOT setup. The coils were both driven
in voltage-control mode with a continuous sinusoidal input of amplitude
9.8V. Best fit gives L = (50.1±0.2)µH, which is reasonably close to the value
of 48µH that was obtained by direct calculation in a simplified geometry.
The coils were driven 180◦ out of phase with one another (as they would be
during trapping) so as to account for mutual inductance effects.

This result is quite close to the value of 48µH which can be calculated
by use of the Biot-Savart law (ie, assuming that changes to the current are
“slow”) in a simplified geometry – 2 sets of circular coils of 16 turns each,
with a radius of 78.7 mm, separated by a distance of 137.5 mm.

6.2 Frequency Response in the Hall Probes

We are interested in the size of the magnetic field gradient produced by an
AC-MOT at varying frequencies. It is helpful to know the inductance of the
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system, but it is also possible that the Hall probes themselves may suffer
from frequency-dependent systematic effects. We expect magnetic field to
be directly proportional to the current in the coils, so any deviation from
that would indicate either some frequency dependence in the Hall probes’
response, or (less likely) some frequency dependence in the accuracy of the
power supplies’ current monitor output.

Trap Centre

Turquoise 
Test Kit

Green 
Test Kit

Bell Labs 
Probe Bell Labs 

Probe

Trap Centre

Turquoise 
Test Kit

Green 
Test Kit

Hall Probes:  First Layout Hall Probes:  Second Layout

Figure 6.4: Hall probe configurations used in the “online” trapping chamber.
Angular tolerances on the axes of the Hall probes are all ±15◦, except where
otherwise specified. “out of page dimension” tolerances are ±6 mm. The
Bell Labs probe is constrained to measure only the ẑ component of the
magnetic field (that is, out of the page), while the Ametes Test Kit probes
measure the radial component of the field–to within given tolerances–unless
otherwise specified.
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6.2. Frequency Response in the Hall Probes

In order to quantify this effect, we set up all three of the Hall probes as
shown in the first configuration of Fig. 6.4, and drove the coils with a series
of pure sinusoids at different frequencies, while holding the amplitude of the
current output fixed. The result is shown in Fig. 6.5. Note that while some
frequency dependence clearly does exist, it is reasonably small within the
frequency range in which we are interested.
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Figure 6.5: The ratio between the measured amplitude of the magnetic field
and the measured amplitude of the coil current, as seen by three different
Hall probes configured as on the left side of Fig. 6.4, as a function of fre-
quency. Ideally, these lines would each be completely flat, indicating no
frequency dependence in the Hall probes’ outputs, however the dependence
seen is not a major concern if we only consider our region of interest for the
AC-MOT (∼ 500 - 2000 Hz).
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6.3 Acoustic Resonances

Because mechanical stability is important to any precision apparatus, we
hoped to choose a trap frequency for the AC-MOT that would excite few
mechanical resonances. In particular, mechanical vibrations in our current-
carrying coils (located inside the vacuum chamber) have the potential to
damage or shake loose the ceramic feedthroughs which maintain the vacuum
seal between the inside of the trapping chamber and the outside world (see
Fig. 6.6). The chamber must be maintained at ultra-high vacuum during
any science run, so the prospect of loosening the ceramic feedthroughs with
persistent acoustic vibrations was a very real concern.

We can see from Fig. 4.9 that below some cutoff, the trap frequency does
not have a particularly large effect on trap lifetime, so we were largely free
to select a trap frequency based on this secondary criterion – minimizing
mechanical resonances.

In the new chamber, we chose to run the AC-MOT at a frequency of
fAC = 1/(9.824× 10−4s) ≈ 1017.9 Hz. This is near a minimum of acoustic
noise, as determined by Fig. 6.7. One possible systematic problem with
this set of measurements is that they were all collected while the second
half large flange on the chamber was absent. The simple presence of this
flange would change the geometry whose resonance we are interested in, and
eliminating the atmosphere within the chamber (as during operation of the
MOT) would remove one source of the resonances observed.
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6.3. Acoustic Resonances

Water Flow

Current Flow

Figure 6.6: Ceramic feedthroughs to the top coil. The current-carrying
quadrupole coils must be kept electrically isolated from the stainless steel
chamber as they are fed voltages from the outside. These coils are kept
cool inside the vacuum chamber by pumping water through them as they
run. Each of these connections between the inside and outside of the vacuum
chamber uses such a feedthrough. There are eight of these in total, and they
are relatively brittle; they could be broken by repeated stresses between the
quadrupole coils and the ceramic, such as may result from the varying forces
of an AC-MOT.
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Acoustic Resonances

Figure 6.7: Acoustic resonances in the online chamber. This data was
taken by driving the AC-MOT magnetic field coils with a continuous si-
nusoidal waveform at a series of frequencies, as shown on the horizontal
axis, and using a nearby microphone connected to a computer with signal
processing software to measure the overall amplitude of the resulting acous-
tic noise. Note that this data is likely sampled at a rate higher than the
processing software’s built-in Nyquist limit. Datapoints are taken at 2 Hz
intervals, while the Nyquist limit was “probably” 5 Hz. (The software’s
documentation claimed a limit 5 Hz, however the program also included a
bug in which the measured frequencies were reported as being twice their
true value. Although the software’s frequency spectrum analysis capabili-
ties were not used explicitly, these limitations may still be relevant in de-
termining the Nyquist limit to the resolution of any frequency-spectrum
plots that resulted from any use of the software.) This oversampling gives
the illusion of presenting more information than is actually available, and
would have the effect of visually broadening the appearance of fine reso-
nances on the plot. We eventually chose to run the trap at a frequency
of fAC = 1/(9.824× 10−4s) ≈ 1017.9 Hz., near a local minimum of acoustic
noise.
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6.4 Control of Online Power Supplies

The newly purchased Matsusada DOP 25-80 power supplies’ specifications
allow for them to be controlled by an input signal in either “voltage-control”
or “current-control” mode. That is, the power supplies accept an input
voltage signal in the range ±10V, and translate this linearly, either directly
into an output voltage (in the range ±25V), or into an output current (in
the range ±80A).

Although we had initially intended to run the power supplies in current-
control mode so as to have more direct control over the shape of the magnetic
field, it became immediately obvious upon setup that this would not produce
the desired results. We found that when controlled by a typical waveform
in current-control mode, the output current contained large artifacts, the
shape of which was strongly dependent not only on the frequency of the
(AC) waveform and the lengths of time spent on (with a large AC signal) and
off (with either zero current or a small DC current) within each waveform,
but also on the overall amplitude of the current output as well. This would
have been extremely challenging to work with had we continued with our
original plan – however the power supplies functioned much as could have
been expected when used in voltage-control mode, with no such artifacts
present in the output. Therefore, the power supplies were always run in
voltage-control mode, and the generated input waveforms were all created
specifically to be used in this mode of operation.

The waveforms used for controlling the Matusada DOP 25-80 power
supplies are themselves produced by two SRS DS345 function generators
(one for each coil). The waveform shapes are created by running a Python
script (see Appendix A) and output in a format to match the SRS DS345
specifications, then uploaded to the function generators.

6.4.1 Determining the Number of Points for an Arbitrary
Waveform

The first thing to determine about any arbitrary waveform is the number of
points comprising it (N_points) – a matter which turns out to be less trivial
than one might have imagined. An arbitrary waveform may contain up to
16,300 points, and the function generator can sample those points at rates
of

samplerate = 4.0× 107/ N_sample (points/second). (6.5)

where N_sample is an integer chosen by us. The function generator extrapo-
lates its output voltage linearly between any set of two adjacent points in
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6.4. Control of Online Power Supplies

an arbitrary waveform.
It is clearly advantageous for the purpose of precise control to use a

waveform with as many points as possible, so as to be able to sample points
as rapidly as possible. We also would like for each individual sinusoidal
period to utilize the same number of points (points_per_cycle), so that the
exact results of shutting off the AC-MOT are reproducible independently of
the number of AC cycles in the arbitrary waveform. We therefore require
the waveform to obey the expression

N_points = N_cycles * points_per_cycle (6.6)

N_points ≤ 16300 (6.7)

This also constrains the values of AC frequency (f_AC) we may use. In
particular,

f_AC =
samplerate

points_per_cycle
(6.8)

=
(
4.0× 107 Hz

) N_cycles

N_sample * N_points
(6.9)

where we hope to keep f_AC near some desired value while simultaneously
maximizing N_points and minimizing N_sample. N_cycles is determined by the
desired duty cycle of the AC-MOT, such that

N_cycles = cycles_on + cycles_off. (6.10)

Note that while cycles_on is required to have an integer value in order for
the AC-MOT to function properly, there is no similar a priori requirement
on cycles_off. In fact, for any given f_AC, we are able to adjust the value
of cycles_off while simultaneously changing N_points, provided only that
(N_cycles / N_points) remain fixed at a value that works. N_sample should
not be adjusted without undergoing a major overhaul, as the sample rate
is relevant to the shape of the “fast” features near the start and end of
the waveform – features which use a small number of points, but which are
critical to properly controlling the magnetic field.

6.4.2 Adjusting Waveform Parameters

In addition to the AC-frequency of a waveform, there were four parameters
of the waveform which were varied in order to produce the most optimal
magnetic field for use in the AC-MOT. phi_start and phi_end controlled the
phase angle at which the sinusoidal waveform begins and ends, respectively.

53



6.4. Control of Online Power Supplies

The need for these parameters is consistent with the description of an AC-
MOT given in [2]. Additionally, t_startdelta and t_enddelta control the
length of time allocated to a maximum-amplitude voltage spike at the be-
ginning and end of the sinusoidal component of the waveform, respectively.
These were needed to overcome limitations specific to our power supplies.

Since t_startdelta produced a voltage spike in the same direction as the
beginning of the sinusoid itself, its effect on the magnetic field was similar
to starting the sinusoid up with a decreased starting phase phi_start The
primary effects of both of these two parameters were on the shape of the
sinusoidal part of the current output, rather than on the residual magnetic
field after the driving sinusoidal voltage was removed (see Fig. 6.8).
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6.4. Control of Online Power Supplies

Figure 6.8: Ch1 shows the current through the quadrupole coils, while Ch3
shows the driving voltage. Although this data was collected in the offline
trap, it shows clearly the results of using poorly-tuned starting parameters
for the sinusoidal part of the waveform. In particular, note the non-uniform
amplitude of the sinusoid, as well as its varying DC offset – both of which
have been shown to harm the AC-MOT’s ability to collect and retain atoms.
One can also see the large residual current still present while the AC-MOT
is “off”.
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6.5 Residual Magnetic Field in the Online
Chamber

As is noted elsewhere, our goal is to produce a uniform magnetic field aligned
with the axis of optical pumping as rapidly as possible after switching from
the (non-uniform) quadrupole field that is needed to run the MOT.
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Figure 6.9: Current and magnetic field are shown as read out on an oscillo-
scope. The probes were positioned as in the second layout shown in Fig. 6.4.
The waveform has been optimized to minimize the residual magnetic field in
a ‘3 cycles on/2 cycles off’ duty cycle at fAC ≈ 1017.9 Hz, and entire scale of
the readouts is shown. Yellow shows the current readout directly from the
oscilloscope, while blue shows the magnetic field readout taken directly from
the oscilloscope and converted into mT. The cyan curves which lie nearly on
top of the readouts are fits. In all cases, the background has been subtracted
off.

In Fig. 6.10, The magenta vertical lines show the time at which the
AC-MOT part of the waveform goes on or off, as taken from the larger-
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6.5. Residual Magnetic Field in the Online Chamber
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Figure 6.10: This plot shows data equivalent to that shown in Fig. 6.9 –
however in this figure, the oscilloscope has been set to a more sensitive scale
such that we are able to examine the magnetic field more closely during the
time in which we intend it to be off. Note that this results in a systematic
zero offset to the output. The backgrounds, as read out on this scale, have
been subtracted off. The cyan curves show the fits as found from the data
at a less precise scale in Fig. 6.9. On this intermediate scale, we see clearly
that at least two of the three Hall probes pick up a spike when the sinusoidal
part of the waveform begins or ends. These spikes are unlikely to accurately
portray the magnetic field, as nothing to produce such readings is shown in
the current readout from the coils. The coils are driven in voltage control
mode, and a more plausible explanation is that the Hall probes or their leads
are able to pick up on the voltage spikes sent to the coils when the AC-MOT
part of the waveform begins or ends.

scale fit to the current. The grey vertical lines show the time at which the
sinusoidal waveform resumes, as taken from the fits to the waveforms on
the Hall probes. (The green and turquoise test kit Hall probes are very

57



6.5. Residual Magnetic Field in the Online Chamber

similar, however there is not an obvious voltage spike on the green test kit’s
readout. We use the measurements from the turqoise test kit to produce
the vertical grey lines on both the green and turquoise test kits’ plots.) The
time delay between the magenta and grey lines gives us an estimate for how
long the Hall probes are affected by a voltage spike. Therefore, we consider
the waveform to be an inaccurate representation of the magnetic field during
this same time delay at both the end and the beginning of the “magnetic
field off” time. We fit the residual magnetic field only to parts of the readout
which have not been excluded by this method.

Figure 6.11: This plot shows the same data that can be seen in Fig. 6.10,
however on this scale we are better able to see the features of the residual
magnetic field. Fits to this data (for times after the grey lines) are shown
in red.
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6.6 Magnetic Field During Optical Pumping
Time

The goal is to make a uniform dipole field while the AC-MOT is off, with as
small a transverse field as possible, so as to allow optical pumping to better
polarize the atoms. The results are shown below. All the figures in this
section were created while using a waveform with three cycles on and two
cycles off, at fAC ≈ 1017.9 Hz.

Figure 6.12: Current in the top and bottom power supplies during the optical
pumping phase, as read out on the oscilloscope. The blue outline shows the
systematic uncertainty due to limitations in the precision with which the
power supplies were calibrated.

Unfortunately, it was not possible to measure the optical pumping field
directly with a Hall probe, so estimates of the magnetic field must be made
only from current data output from the power supplies. This fails to take
into account any effects from eddy currents in the surrounding chamber,
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6.6. Magnetic Field During Optical Pumping Time

Figure 6.13: A model of the magnetic field resulting from the current in the
coils. The blue outline shows the systematic uncertainty due to limitations
in the precision with which the power supplies were calibrated. This was
created by combining the current measurements in the coils (as shown in
Fig. 6.12) with a COMSOL model of the coil geometry showing that each
coil produces a magnetic field of magnitude 1.1 G/Amp at the centre, and
a magnetic field gradient (along the vertical axis) of 0.2 G/cm/Amp at the
centre. The current in the two coils may be run in parallel or antiparallel
configurations to cancel out the quadrupole or dipole components of the
field.

which is an important effect, so the quality of this method as an estimator
for the magnetic field is not entirely clear.
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6.6. Magnetic Field During Optical Pumping Time

Optical pumping
 begins at 200 µs.

Fit:  
@B

@z
= A e�t/⌧ + C

A = (6.8 ± 1.5)⇥ 10�1

B = (3.22 ± 0.04)⇥ 10�2

⌧ = (1.85 ± 0.03)⇥ 10�4

C = (3.22 ± 0.04)⇥ 10�2

Monday 15 April, 2013Figure 6.14: A closer look at the residual magnetic quadrupole field shown
in Fig. 6.13. The field decays with a time constant of τ = 185µs. The
optical pumping laser is turned on 200mus after the AC-MOT is shut off,
so as to avoid dealing with the worst of the residual quadrupole field during
optical pumping.
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Chapter 7

The Optical Bloch Equations

The optical Bloch equations are useful to describe the evolution of the quan-
tum states in a sample of atoms in an optical molasses. In particular, we are
interested in quantizing the extent to which the polarization of our sample
of atoms is destroyed by stray magnetic fields.

The Optical Bloch Equations are specifically concerned with an atomic
system including one valence electron in an electromagnetic field, usually
produced by a laser. Though we speak of the density of states for a single
atom, the description developed here may just as easily be applied to a
statistical ensemble of many such atoms, provided that they do not interact
with one another.

7.1 Explicit Form of the Density Matrix

Recall the standard definition of the density matrix,

ρ̂(t) := |ψ(t)〉 〈ψ(t) | . (7.1)

We wish to describe ρ̂(t) and its time evolution explicitly in a basis chosen to
simplify calculations. We select a basis such that the basis kets, | i〉, contain
no time dependence. Thus, we write:

|ψ(t)〉 =
∑
i

ci(t) | i〉 (7.2)

〈ψ(t) | =
∑
i

c∗i (t) 〈 i | (7.3)

and

ρ̂(t) =
∑
i, j

ci(t) c
∗
j (t) | i〉〈j | . (7.4)
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Equivalently, we show the matrix representation for a system of n basis
states:

|ψ 〉 ←→


c0
c1
...
cn

 (7.5)

〈ψ | ←→
(
c∗0 c∗1 · · · c∗n

)
(7.6)

ρ̂ ←→


c0c
∗
0 c0c

∗
1 · · · c0c

∗
n

c1c
∗
0 c1c

∗
1 · · · c1c

∗
n

...
...

. . .
...

cnc
∗
0 cnc

∗
1 · · · cnc

∗
n

 . (7.7)

7.2 The General Form of Rotating Coordinates

We begin with a statement of the Schrödinger equation and its Hermitian
conjugate.

d

dt
|ψ 〉 =

1

i~
Ĥ |ψ 〉 (7.8)

d

dt
〈ψ | = − 1

i~
〈ψ | Ĥ (7.9)

We wish to describe the time-evolution of the density operator, ρ̂, which we
define as

ρ̂ := |ψ 〉〈ψ | . (7.10)

It must then be the case that

dρ̂

dt
=

d

dt

(
|ψ 〉

)
〈ψ | + |ψ 〉 d

dt

(
〈ψ |

)
(7.11)

=
1

i~
Ĥ |ψ 〉〈ψ | − 1

i~
|ψ 〉〈ψ | Ĥ (7.12)

=
1

i~

(
Ĥρ̂− ρ̂Ĥ

)
(7.13)

=
1

i~

[
Ĥ, ρ̂

]
. (7.14)

We now consider the Hamiltonian, Ĥ for our system. Although in Sec-
tion 7.1 we have constrained the basis kets of our system to have no time-
dependence, we cannot guarantee that this will result in a time-independent
Hamiltonian – in general, this will not be the case.
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Although Eq. 7.14 is true for any Hamiltonian Ĥ, we will henceforth take
Ĥ0 = Ĥ to be the atomic Hamiltonian for a hydrogen-like atom with no ex-
ternal field and we consider a generalized change of coordinates described by
a unitary transformation, Û . In general, Û = Û(t) may be time-dependent,
but it is useful to remember that any unitary transformation is only a gen-
eralized rotation matrix, and so the condition for unitarity is

Û Û † = Û †Û = I˜. (7.15)

We define a new operator, H̃0, by

H̃0 := Û †Ĥ0Û . (7.16)

It follows trivially that

Ĥ0 = ÛH̃0Û
†, (7.17)

and so we return to considering the evolution of the density matrix ρ̂. From
Eq. 7.13, we find that:

dρ̂

dt
=

1

i~

(
Ĥ0ρ̂− ρ̂Ĥ0

)
(7.18)

=
1

i~

(
ÛH̃0Û

†ρ̂− ρ̂ Û H̃0Û
†
)

(7.19)

Û †
dρ̂

dt
Û =

1

i~

(
Û †ÛH̃0Û

†ρ̂ Û − Û †ρ̂ Û H̃0Û
†Û
)

(7.20)

=
1

i~

(
H̃0 Û

†ρ̂ Û − Û †ρ̂ Û H̃0

)
. (7.21)

At this point, we begin to suspect that it may be advantageous to define a
“transformed” density matrix, ρ̃, as

ρ̃ := Û †ρ̂ Û . (7.22)

Then,

Û †
dρ̂

dt
Û =

1

i~

(
H̃0ρ̃− ρ̃H̃0

)
, (7.23)

but we will wish to eliminate all references to ρ̂, instead writing this expres-
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sion in terms of only ρ̃. Thus, remembering that Û may be time-dependent,

dρ̃

dt
=

d

dt

(
Û †ρ̂ Û

)
(7.24)

=
dÛ †

dt
ρ̂ Û + Û †

dρ̂

dt
Û + Û †ρ̂

dÛ

dt
(7.25)

=
1

i~

(
H̃0ρ̃− ρ̃H̃0

)
+
dÛ †

dt
ρ̂ Û + Û †ρ̂

dÛ

dt
(7.26)

=
1

i~

(
H̃0ρ̃− ρ̃H̃0

)
+
dÛ †

dt
ÛÛ †ρ̂ Û + Û †ρ̂ Û Û †

dÛ

dt
(7.27)

=
1

i~

(
H̃0ρ̃− ρ̃H̃0

)
+
dÛ †

dt
Û ρ̃+ ρ̃ Û †

dÛ

dt
. (7.28)

We must now recall the unitarity condition, Eq. 7.15, which allows us to
further simplify our expression for dρ̃

dt , using

d

dt

(
Û Û †

)
=

d

dt

(
Û †Û

)
=

d

dt

(
I˜
)

= 0 (7.29)

dÛ †

dt
Û = −Û †dÛ

dt
(7.30)

Û
dÛ †

dt
= −dÛ

dt
Û †. (7.31)

Then Eq. 7.28 becomes

dρ̃

dt
=

1

i~

(
H̃0ρ̃− ρ̃H̃0

)
+
dÛ †

dt
Û ρ̃− ρ̃ dÛ

†

dt
Û (7.32)

=
1

i~

[
H̃0, ρ̃

]
+

[
dÛ †

dt
Û , ρ̃

]
. (7.33)

Thus, we will find it useful to define an “effective Hamiltonian”, H̃ ′0, by

H̃ ′0 := H̃0 + i~
dÛ †

dt
Û (7.34)

= Û †Ĥ0Û + i~
dÛ †

dt
Û . (7.35)

This notation considerably simplifies our expression for the evolution of ρ̃.
Indeed, we find that

dρ̃

dt
=

1

i~

[
H̃ ′0, ρ̃

]
, (7.36)
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just as we might have guessed from Eq. 7.14.
It would be nice, at this stage, to select a transformation Û will be

useful. We’ll assume from this point forward that Ĥ is a basis in which the
Hamiltonian is already diagonalized. We hope to find a Û such that dρ̃

dt = 0,
which will simplify evaluating the time evolution of our system. Therefore,
from Eq. 7.33,

[
H̃0, ρ̃

]
= − i~

[
dÛ †

dt
Û , ρ̃

]
, (7.37)

which can be solved by setting

dÛ †

dt
= − 1

i~
H̃0 Û

† = − 1

i~
Û †Ĥ0. (7.38)

Then Û † has the form of an exponential. In particular,

Û † = A e+iĤ0t/~

Û = A∗e−iĤ0t/~,

and enforcing unitarity, we note that A∗A = 1, so without loss of generality
we choose A = 1 and find that our equation is solved by

Û † = e+iĤ0t/~ (7.39)

Û = e−iĤ0t/~. (7.40)

7.3 Derivation of a Toy-Model Set of Optical
Bloch Equations

We’ll derive the model used in Ref. [10], and also extend it. We’ll use an
I = 1/2 atom (eg, Hydrogen), and consider only the F = 0 excited state
and F = 1 ground states. See Fig. 7.1, which was taken from Ref. [4].

We’ll want to find a Hamiltonian, H, which describes all the relevant
physical processes in our system. Therefore, we write,

H = H0 +HL +HB, (7.41)

where H0 is the unperturbed atomic Hamiltonian, HL represents the interac-
tion between the laser and the atoms, and HB is the part of the Hamiltonian
resulting from magnetic effects.
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Figure 7.1: Transition strengths for a Hydrogen-like atom with nuclear spin
I = 1/2, in a σ+ radiation field [4]. To find the σ− transition strengths,
multiply all the m values by −1.

Initially, we will use the following as our basis states:

|Fg = 1,mz = +1〉 =


1
0
0
0

 ; |Fg = 1,mz = 0〉 =


0
1
0
0



|Fg = 1,mz = −1〉 =


0
0
1
0

 ; |Fe = 0,mz = 0〉 =


0
0
0
1

 . (7.42)

Then, our unperturbed atomic Hamiltonian is given by

H0 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ~ω0

 . (7.43)

Note that we have selected a system in which the spin-orbit coupling is iden-
tically zero for the ground states, and may be considered already included
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in the excited state energy, ~ω0.
We now consider magnetic perturbations to our Hamiltonian. In general,

HB = −~µ · ~B (7.44)

= gµ0 ~F · ~B. (7.45)

It is standard practice to take the magnetic field as being directed along the
axis of quantization, and to label this direction as ẑ. Instead, we shall refer
to the orientation of the magnetic field as ẑ′, as it is not, in general, exactly
aligned with the axis of optical pumping, which will later be referred to as
ẑ. Furthermore, primes will be used to designate terms which are described
under the basis in which the ẑ′ axis is used as the axis of quantization.
Under this convention, the perturbation to atomic energy levels is simply

∆EB′ = gµ0B Fz′ . (7.46)

Letting γ = µ0g, we also define the Larmor frequency ΩL according to

ΩL = γB = µ0g B, (7.47)

so that our Hamiltonian in this basis becomes

HB′ =


~ΩL 0 0 0

0 0 0 0
0 0 −~ΩL 0
0 0 0 0

 . (7.48)

This result must still be transformed into the laboratory frame coordi-
nate basis so that it can be combined with the other terms in the complete
Hamiltonian. We seek to apply a rotation operator of the form

HB = R†HB′R (7.49)

= eiφJn̂ HB′ e−iφJn̂ (7.50)

for a rotation of angle φ about the n̂-axis, where Jn̂ is the generator of this
rotation, and is normalized to obey the commutation relation,[

Jî, Jĵ

]
= i εijk Jk̂. (7.51)

Our Hamiltonian combines an F = 1 and F = 0 representation, therefore
we define the following generators of rotation:

Jx̂ =
1√
2


0 1 0 0
1 0 1 0
0 1 0 0
0 0 0 0

 , (7.52)
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Jŷ =
1√
2


0 −i 0 0

+i 0 −i 0
0 +i 0 0
0 0 0 0

 , (7.53)

Jẑ =


+1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 . (7.54)

Without loss of generality, we take the transverse component of ~B to be
directed along the ŷ axis. That is,

~B = B ẑ′ (7.55)

= B cosφ ẑ +B sinφ ŷ, (7.56)

so that the ẑ′-axis is related to the ẑ-axis by a rotation of angle φ about the
x̂ = x̂′ axis. Explicitly,

HB =


1
2(1 + cosφ) i√

2
sinφ 1

2(cosφ− 1) 0
i√
2

sinφ cosφ i√
2

sinφ 0
1
2(cosφ− 1) i√

2
sinφ 1

2(1 + cosφ) 0

0 0 0 1



~ΩL 0 0 0
0 0 0 0
0 0 −~ΩL 0
0 0 0 0



×


1
2(1 + cosφ) −i√

2
sinφ 1

2(cosφ− 1) 0
−i√
2

sinφ cosφ −i√
2

sinφ 0
1
2(cosφ− 1) −i√

2
sinφ 1

2(1 + cosφ) 0

0 0 0 1

 , (7.57)

and we find that

HB =


~ΩLcosφ −i√

2
~ΩLsinφ 0 0

i√
2
~ΩLsinφ 0 −i√

2
~ΩLsinφ 0

0 i√
2
~ΩLsinφ −~ΩLcosφ 0

0 0 0 0

 . (7.58)

We now turn our attention to the system’s interaction with the laser
beam. Quite generally, this part of the Hamiltonian may be written as

HL = −~d · ~E (7.59)
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where ~E is the electric field, and ~d is the induced dipole moment between
sets of atomic states, and is taken to always be parallel to ~E. It is now
incumbent upon us to find a proper mathematical description for both ~E
and ~d.

We begin by considering the dipole operator, ~d. Ref. [10] is kind enough
to suggest a decomposition of the x̂-component of the dipole operator into
its raising and lowering operator components, as:

dx ≡ ~d · x̂ =
1√
2

(d−1 − d+1) , (7.60)

and we define the related quantity,

dy ≡ ~d · ŷ =
i√
2

(d−1 + d+1) , (7.61)

which is chosen so as to satisfy properties of linear independence and Her-
miticity.

We will now consider the electric field, which we treat as a semiclassical
electromagnetic wave oscillating in the xy-plane. For the case of circularly
polarized light in which we are interested, we write

~E =
1√
2
E0 [cos(ωLt)x̂+ cos(ωLt± π/2)ŷ] (7.62)

=
1√
2
E0 [cos(ωLt)x̂∓ sin(ωLt)ŷ] (7.63)

=
1√
2
E0

[
1

2

(
e+iωLt + e−iωLt

)
x̂∓ 1

2i

(
e+iωLt − e−iωLt

)
ŷ

]
(7.64)

for σ− and σ+ polarizations respectively, and the atom-laser Hamiltonian
from 7.59 becomes

HL = −1

2
E0 [(d−1 − d+1) cos(ωLt)∓ i (d−1 + d+1) sin(ωLt)] (7.65)

= −1

2
E0

[
1

2

(
e+iωLt + e−iωLt

)
(d−1 − d+1)

∓1

2

(
e+iωLt − e−iωLt

)
(d−1 + d+1)

]
. (7.66)

If we consider only one mode of circular polarization, this result may be
simplified. We will now substitute HL = H− or HL = H+ (where the
subscript denotes the handedness of polarization), and we find that

H− = E0

(
e+iωLt d+1 − e−iωLt d−1

)
(7.67)

H+ = E0

(
e−iωLt d+1 − e+iωLt d−1

)
. (7.68)
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We’ll need to find our raising and lowering operators, d+1 and d−1 in
this basis. We define the Rabi frequency (the factor of

√
3 is specific to this

system) as

ΩR ≡
E0

~
√

3
〈F1 ||d||F2 〉 . (7.69)

The Wigner-Eckart Theorem states that

〈F1m1 ||d±||F2m2 〉 =
~
√

3

E0
ΩR(−1)F1−m1

(
F1 1 F2

−m1 ±1 m2

)
, (7.70)

and therefore,

d+1 =
~ΩR

E0


0 0 0 0
0 0 0 0
0 0 0 +1
−1 0 0 0

 (7.71)

d−1 =
~ΩR

E0


0 0 0 +1
0 0 0 0
0 0 0 0
0 0 −1 0

 . (7.72)

Our atom-laser interaction Hamiltonians become

H− = ~ΩR


0 0 0 +e+iωLt

0 0 0 0
0 0 0 −e−iωLt

+e−iωLt 0 −e+iωLt 0

 (7.73)

H+ = ~ΩR


0 0 0 +e−iωLt

0 0 0 0
0 0 0 −e+iωLt

+e+iωLt 0 −e−iωLt 0

 . (7.74)

Finally, we are in a position to add together all the pieces of the Hamil-
tonian. We find, for polarizations σ− and σ+:

H = ~


ΩLcosφ −i√

2
ΩLsinφ 0 +ΩR e

±iωLt

i√
2

ΩLsinφ 0 −i√
2

ΩLsinφ 0

0 i√
2

ΩLsinφ −ΩLcosφ −ΩR e
∓iωLt

+ΩR e
∓iωLt 0 −ΩR e

±iωLt ω0

 . (7.75)

We are now ready to make the customary change to rotating coordinates.
We choose as the basis for the coordinate change,

U = e−iAt (7.76)
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and

A =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ωL

 , (7.77)

and define the following quantities:

ρ̃ ≡ U †ρ U (7.78)

H̃ ≡ U †HU − ~A. (7.79)

In terms of these new variables, the time evolution equation is

dρ̃

dt
=

1

i~

[
H̃, ρ̃

]
. (7.80)

We write out the full rotating-coordinate Hamiltonians explicitly:

H̃tot− = ~


ΩLcosφ −i√

2
ΩLsinφ 0 ΩR

i√
2

ΩLsinφ 0 −i√
2

ΩLsinφ 0

0 i√
2

ΩLsinφ −ΩLcosφ −ΩR e
−2iωLt

ΩR 0 −ΩR e
+2iωLt (ω0 − ωL)

 (7.81)

H̃tot+ = ~


ΩLcosφ −i√

2
ΩLsinφ 0 +ΩR e

−2iωLt

i√
2

ΩLsinφ 0 −i√
2

ΩLsinφ 0

0 i√
2

ΩLsinφ −ΩLcosφ −ΩR

ΩR e
+2iωLt 0 −ΩR (ω0 − ωL)

 . (7.82)

The “fast-rotating” terms which will be discarded to make the rotating wave
approximation immediately suggest themselves, and we find that

H̃tot− ≈ ~


ΩLcosφ −i√

2
ΩLsinφ 0 ΩR

i√
2

ΩLsinφ 0 −i√
2

ΩLsinφ 0

0 i√
2

ΩLsinφ −ΩLcosφ 0

ΩR 0 0 (ω0 − ωL)

 (7.83)

H̃tot+ ≈ ~


ΩLcosφ −i√

2
ΩLsinφ 0 0

i√
2

ΩLsinφ 0 −i√
2

ΩLsinφ 0

0 i√
2

ΩLsinφ −ΩLcosφ −ΩR

0 0 −ΩR (ω0 − ωL)

 . (7.84)
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We will henceforth take the incident light to be entirely σ+ polarized, and
take H̃ = H̃tot+ as the Hamiltonian of the system, dropping the subscripts.

The master equation (7.80) is still incomplete without additional terms
to describe spontaneous decay from the excited state to the ground states.
These must be added in by hand. In general, we are able to describe this
dephasing behavior by

∂ρ

∂t

∣∣∣∣
spont

=
∂ρ

∂t

∣∣∣∣
relax

+
∂ρ

∂t

∣∣∣∣
repop

, (7.85)

where

∂ρ

∂t

∣∣∣∣
relax

= −1

2

(
Γ̂ρ+ ρ Γ̂

)
(7.86)

∂ρ

∂t

∣∣∣∣
repop

= Λ̂, (7.87)

and where Γ̂ and Λ̂ are both diagonal matrices [10]. In the system we
are considering, there is only a single excited state with equal coupling to
each of the three ground states. Therefore, if atoms in the excited state
spontaneously decay at a rate Γρex = Γρ33 = Γρ̃33,

Γ̂ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Γ

 . (7.88)

Because each of the three ground states are repopulated at an equal rate
as a result of spontaneous emission from the population ρ33 = ρ̃33, we find
that

Λ̂ =
1

3
Γρ33


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 . (7.89)

It should be noted that the form of Eqs. (7.86), (7.87), (7.88), and (7.89)
remains unaltered under a coordinate transformation between laboratory
and rotating coordinates. The master equation becomes

dρ̃

dt
=

1

i~

[
H̃, ρ̃

]
+
∂ρ̃

∂t

∣∣∣∣
spont

(7.90)

=
1

i~

[
H̃, ρ̃

]
− 1

2

(
Γ̂ρ̃+ ρ̃ Γ̂

)
+ Λ̂. (7.91)
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We write the matrices of Eq. 7.91 out in explicit detail:

d

dt


ρ̃00 ρ̃01 ρ̃02 ρ̃03

ρ̃10 ρ̃11 ρ̃12 ρ̃13

ρ̃20 ρ̃21 ρ̃22 ρ̃23

ρ̃30 ρ̃31 ρ̃32 ρ̃33

 =

−i


ΩLcosφ −i√

2
ΩLsinφ 0 0

i√
2

ΩLsinφ 0 −i√
2

ΩLsinφ 0

0 i√
2

ΩLsinφ −ΩLcosφ −ΩR

0 0 −ΩR (ω0 − ωL)



ρ̃00 ρ̃01 ρ̃02 ρ̃03

ρ̃10 ρ̃11 ρ̃12 ρ̃13

ρ̃20 ρ̃21 ρ̃22 ρ̃23

ρ̃30 ρ̃31 ρ̃32 ρ̃33



+i


ρ̃00 ρ̃01 ρ̃02 ρ̃03

ρ̃10 ρ̃11 ρ̃12 ρ̃13

ρ̃20 ρ̃21 ρ̃22 ρ̃23

ρ̃30 ρ̃31 ρ̃32 ρ̃33




ΩLcosφ −i√
2

ΩLsinφ 0 0
i√
2

ΩLsinφ 0 −i√
2

ΩLsinφ 0

0 i√
2

ΩLsinφ −ΩLcosφ −ΩR

0 0 −ΩR (ω0 − ωL)



−1

2


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Γ



ρ̃00 ρ̃01 ρ̃02 ρ̃03

ρ̃10 ρ̃11 ρ̃12 ρ̃13

ρ̃20 ρ̃21 ρ̃22 ρ̃23

ρ̃30 ρ̃31 ρ̃32 ρ̃33



−1

2


ρ̃00 ρ̃01 ρ̃02 ρ̃03

ρ̃10 ρ̃11 ρ̃12 ρ̃13

ρ̃20 ρ̃21 ρ̃22 ρ̃23

ρ̃30 ρ̃31 ρ̃32 ρ̃33




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Γ

+
1

3
Γρ33


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , (7.92)

and the result is given in Eq. 7.96 on the following page (displayed in land-
scape orientation due to its size).

Equation 7.96 is quite large and any solution would need to be obtained
numerically. However, we can still gain a bit of insight from considering its
form. We are particularly interested in effects resulting from the transverse
components of the magnetic field, which enter the equation as factors of
ΩL sinφ.

From Eq. 7.96, we extract the component ρ̃00 and find that

˙̃ρ00 =
−1√

2
ΩLsinφ (ρ̃01 + ρ̃10) +

1

3
Γρ̃33, (7.93)

and furthermore,

ρ̃01 + ρ̃10 =

∫ t

0

(
˙̃ρ01 + ˙̃ρ10

)
dt′ (7.94)

=
1√
2

ΩLsinφ

∫ t

0
(2(ρ̃00 − ρ̃11)− (ρ̃02 + ρ̃20)) dt′. (7.95)
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7.3. Derivation of a Toy-Model Set of Optical Bloch Equations

Substitution using Eqs. 7.93, 7.94, and 7.95 produces

˙̃ρ00 = −1

2
Ω2

Lsin2 φ

∫ t

0
(2(ρ̃00 − ρ̃11)− (ρ̃02 + ρ̃20)) dt′ +

1

3
Γρ̃33. (7.97)

While the behavior of (ρ̃02 + ρ̃20) over any period of time is not immediately
obvious, it must be real, though there is no requirement that it be positive.
The magnitude of this term is also limited by maintaining normalization. By
contrast, if we expect the system to approach a steady state of some sort–
and we do–the term 2(ρ̃00 − ρ̃11) must itself approach some constant value.
Over many cycles, any oscillations in either term will average themselves
out, and we find that

ρ̃00 ∼ Ω2
L sin2 φ. (7.98)

Note that we do not rule out further dependence on ΩLsinφ buried in the
other terms, but it is clear that the dominant effect is proportional to the
square of the transverse component of the magnetic field. Similar arguments
may be also made regarding the populations ρ̃11 and ρ̃22.
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Chapter 8

Conclusions

8.1 Results

We have developed an AC-MOT in hope that it would be useful to help us
obtain samples of cold, confined, spin-polarized hydrogen-like atoms, partic-
ularly 37K, which is the subject of our experiments on nuclear beta decay.
As this isotope is radioactive and fairly short-lived (t1/2 ≈ 1.2s), it is not
normally available to us for testing purposes. As a result, we chose to use
(stable) 41K for testing and calibrations of the AC-MOT, due to its similar
hyperfine structure.

The majority of the measurements in this thesis were performed in the
“offline” AC-MOT, which was never intended to be used with radioactive
isotopes. This was necessary because the “online” apparatus was not yet
constructed at the time. Unfortunately, the offline AC-MOT was plagued
by systematic problems, making it very difficult to produce reproducible
measurements. This data is therefore of questionable value to the scientific
community as a whole, however our qualitative findings are sufficient to
provide useful guidance for us within the context of the larger nuclear beta
decay experiment.

In particular, we have found that the AC-MOT has trap lifetimes that
are long enough to be useful to us, even in spite of the many systematic
effects that could not be fixed in the offline setup. We don’t require a
particularly long trap lifetime – the necessary consideration is that the trap
lifetime must be significantly longer than the radioactive lifetime of 37K (τ =
t1/2/ ln(2) ≈ 1.8s ) so that the dominant loss mechanism is radioactive decay,
rather than something we might be able to improve upon by adjustments to
the apparatus.

Furthermore, the AC-MOT is robust enough to allow for it to be shut
off intermittently for short periods of time – sufficient to allow us to op-
tically pump the atoms and observe them before they disperse – without
doing too much damage to the “average” trap lifetime. We’ve found that
it is possible to have the AC-MOT off for a full 40% of the time without
increasing the atom loss rate beyond what is tolerable, which in turn allows
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8.2. Future Work

us to spend (nearly) 40% of our running time collecting beta decay data
on spin-polarized atoms. This result is comparable to the 45% ‘MOT off
time’ that has been used previously in the TRINAT research group with a
DC-MOT, as in Dan Melconian’s thesis work [11]. It may still be possible
to push the duty cycle further within the AC-MOT.

Additionally, in the AC-MOT, the residual magnetic quadrupole field
not only decays rapidly, it starts out from close to zero as well, which is a
great improvement on what could be accomplished with a DC-MOT. This
in turn allows for better polarization of atoms within the cloud.

The included work on the Optical Bloch Equations is intended to be used
as a qualitative theoretical ‘sanity check’ for numerical evolution codes [12]
developed separately by our collaborator Ben Fenker in his Master’s the-
sis [13], and based on the description given in [14] .

8.2 Future Work

The TRINAT online setup, which is mainly designed for use in nuclear beta
decay experiments, presents us with some novel possibilities for character-
izing and working with the AC-MOT.

The first item of note is that the trapped atom cloud may be placed in an
electrical potential, such that when an atom is ionized (or when it decays),
the negatively charged electrons will be accelerated towards one side of the
chamber, while the positively charged ions are accelerated towards the other.
Negatively charged ions are unstable in an electric field of that magnitude
(≥ 350 V/cm). This is useful in combination with additional hardware: at
either end of the chamber, we have placed a stack of microchannel plates (to
measure the time at which a particle hits), and a delay line (to determine
the position of the hit).

Additionally, the online setup is equipped with a pulsed laser which
is used to selectively photoionize trapped atoms from their excited state.
This process is largely non-destructive, since the intensity of the laser is low
enough that only a tiny fraction of the excited state atoms are photoionized.

In combination, this additional equipment will allow us to create a two-
dimensional image of the atom cloud, with time-domain accuracy of ∼5 ns
– a great improvement from the 10s of milliseconds needed for a single CCD
image. With AC frequencies of ∼1 kHz such as we have been able to achieve,
we will be able to image the trap at a wide range of phases during the AC-
MOT cycle.

It is also possible to use the online AC-MOT as a crude electron spec-
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8.2. Future Work

trometer – a fact that was discovered accidentally. When an atom beta
decays within the trap, one or more orbital electrons also become separated
from the daughter atom, and these electrons and ions are accelerated by the
electric field to microchannel plates on opposite ends of the chamber. In the
past, the sudden approximation has been used to approximate the energies of
such “shake-off” electrons. After TRINAT’s December 2012 run, we noticed
that the number of electrons collected in the microchannel plate varied with
the magnitude of the magnetic field. This effect can be explained by taking
into account the characteristic helical motion of a charged particle within a
magnetic field, and so a larger magnetic field had the effect of decreasing the
number of shake-off electrons impacting the microchannel plate. It may be
possible to use this effect to measure the energy spectrum of these shake-off
electrons directly, and thereby test the validity of the sudden approximation
in this specific circumstance.

One problem we discovered in the online setup that had not been present
in the offline AC-MOT (or even in shorter test runs with the online AC-
MOT) was inductive heating of other materials within the chamber. As the
online AC-MOT had much more metal than the offline MOT, this perhaps
should not have come as such a surprise. Unfortunately, this inductive
heating caused problems in the strip detectors (positioned directly above
and below the quadrupole coils, outside of the vacuum chamber) which
were intended to measure the energy spectrum of betas from decays within
the trap. It may be possible to alleviate this problem by cooling the strip
detectors. A second problem resulting from inductive heating is that it
appears to cause materials within the vacuum system to outgas hydrogen,
which is damaging to the MOT. However, it should be possible to mitigate
the problem by running the AC-MOT at a lower frequency. Both of these
fixes must be implemented before further use of the AC-MOT in TRINAT’s
beta decay experiments.
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Appendix A

Waveform Generation Code

1 # Python 2.7.3

2 import os

3 import numpy # numpy version 1.6.2

4 import matplotlib # matplotlib version 1.2.0

5 from matplotlib import pyplot

6 import math

7

8 pi = numpy.pi

9 deg = pi /180.0

10

11 plotting = False # Show the waveform on screen too?

12 maxpoints = 16300.0 # Maximum number of points. 16300 is

max. 7500 is editable.

13 minpoints = 500.0 # Minimum points to allow in a waveform

. No idea what coarseness is acceptable here.

14 maxsample = 40000000.0 # Max sample rate (Hz). Allowable

values are this number / N_sample. N_sample has some max ,

too.

15

16 t_AC = 9.824e-4 # Seconds.

17 f_AC = 1.0/ t_AC # Hz. Must be a float.

18 cycles_on = 3.0

19 cycles_off = 2.0

20 A = 1.0 # Amplitude of the output waveform.

21

22 sinfile = "s_15q.dat"

23 phi_start = 0.0* deg + 1.0*pi/2.0

24 t_startdelta = 1.2e-5 # Time for the delta -spike at the

beginning of the sinusoid.

25 phi_end = -6.0*deg + 1.0*pi/2.0

26 t_enddelta = 6.0e-6 # Time for the delta -spike at the end

of the sinusoid.

27

28 def fileclear(filename):

29 fileclear1 = open(filename , ’w’)

30 fileclear1.close()

31 print filename , "cleared."

32 return 0

33
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Appendix A. Waveform Generation Code

34 def main():

35 # I’m not sure why Python requires some global variables but

not others

36 # to be explicitly declared within a function , but whatever.

37 global phi_start

38 global phi_end

39

40 print "f_AC =", f_AC

41 if cycles_off == 0.0:

42 # This would be a continuous sinusoid. No point in messing

it up

43 # with extra parameters that I forgot to adjust.

44 phi_start = pi/2.0

45 phi_end = pi/2.0

46 print "phi_start - pi/2 =", (phi_start - 1.0*pi /2.0)/deg , "

degrees."

47 print "phi_end - pi/2 =", (phi_end - 1.0*pi /2.0)/deg , "

degrees."

48 N_cycles = cycles_on + cycles_off

49

50 # Figure out how many data points to use.

51 N_points = 16000.0 # 16000.0 (float !!) will work for lots

of setups.

52 N_sample = (maxsample*N_cycles) / (f_AC*N_points) # All of

these things must be floats s.t. N_sample will be a float

.

53 points_per_cycle = N_points / N_cycles

54 # If the guess fails , try to find some other number of points

to use.

55 if maxsample/f_AC != float(int(maxsample/f_AC)):

56 # maxsample/f_AC should be a whole number , otherwise the

true trap frequency will be wrong.

57 print "maxsample/f_AC =", maxsample/f_AC

58 print "*** Yeah , this isn’t going to work. Adjust trap

frequency."

59 # It’s better to just adjust the trap frequency you’re

going for manually (and pick something that will work),

so that you actually know what you’re going to get.

60 return

61 elif ( (float(int(N_sample)) != N_sample) or (float(int(

points_per_cycle)) != points_per_cycle) ):

62 N_points = maxpoints

63 points_per_cycle = N_points / N_cycles

64

65 # N_sample = (maxsample*N_cycles) / (f_AC*N_points)

66 # This is N_sample as in "samplerate =40 ,000 ,000.0/ N_sample ".

67 N_sample = maxsample / ( points_per_cycle*f_AC)

68 while (( float(int(N_sample)) != N_sample) or (float(int(

points_per_cycle)) != points_per_cycle)) and (N_points
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Appendix A. Waveform Generation Code

>= minpoints):

69 N_points = N_points - 1.0 # We are iterating over a

float. Crazy , right?

70 points_per_cycle = N_points / N_cycles

71 N_sample = maxsample / ( points_per_cycle*f_AC)

72 if (N_points == minpoints - 1.0):

73 print "A waveform cannot be generated with these

parameters."

74 print "Adjust the trap frequency , the number of trap

cycles in the waveform , and/or the minimum acceptable

number of points."

75 return # No point continuing when we’ve already failed!

76 N_points = int(N_points)

77

78 # Now find the sample rate.

79 # awc.exe will *round* samplerate to the nearest value of

40 ,000 ,000/N, and reads to 4 places past the decimal.

80 # For N_sample < ~100 ,000 , there is no ambiguity. This is

much higher N_sample than we require.

81 samplerate = maxsample / N_sample # float.

82

83 delta_t = delta_t = 1.0/ samplerate

84 print "* The waveform is", N_points*delta_t , "seconds long."

85 n_on = int( points_per_cycle*cycles_on + points_per_cycle *(

phi_end - phi_start)/(2.0* pi) )

86

87 if cycles_off == 0.0:

88 n_enddelta = 0

89 n_startdelta = 0

90 else:

91 n_enddelta = int(t_enddelta / delta_t)

92 n_startdelta = int(t_startdelta / delta_t)

93

94 n_off = N_points - n_on - n_enddelta - n_startdelta

95 print "n_off =", n_off , "; n_on =", n_on

96 print "n_enddelta =", n_enddelta

97 print "n_startdelta =", n_startdelta

98 print "N_points =", N_points

99

100 v_arr = numpy.zeros(N_points)

101 t_arr = numpy.zeros(N_points)

102 for i in range(N_points):

103 t_arr[i] = float(i)*delta_t

104

105 # Make sure voltage is well -zeroed.

106 # For some reason , this seems to actually matter.

107 for i in range(N_points):

108 # Make every point this way. We’ll over -write some later.

109 if (i%2 == 0):

84



Appendix A. Waveform Generation Code

110 v_arr[i] = 0.00000000001000

111 else:

112 v_arr[i] = -0.00000000001000

113

114 # Make the starting spike.

115 for i in range(n_off , n_off+n_startdelta):

116 v_arr[i] = A

117 # Make the ending delta -spike.

118 if n_enddelta != 0:

119 for i in range(N_points -n_enddelta -1, N_points):

120 v_arr[i] = -1.0*A

121 # Make datapoints for the sinusoid itself.

122 for i in range(n_off+n_startdelta , N_points -n_enddelta):

123 v_arr[i] = A*numpy.sin(phi_start + 2.0*pi*f_AC*( t_arr[i] -

t_arr[n_off+n_startdelta ]) )

124

125 line1 = "%i" % N_points

126 line2 = "%8.4f" % samplerate

127 line3 = "%i" % 0 # ’0’ works.

128 line4 = "%8.4f" % 1000.0000 # ’1000.0’ works.

129

130 # Write out the waveform , header first.

131 fileclear(sinfile) # Clear any files with the same names

that may have already been there.

132 sinhandle = open(sinfile , ’a’)

133 sinhandle.write(line1+’\n’)

134 sinhandle.write(line2+’\n’)

135 sinhandle.write(line3+’\n’)

136 sinhandle.write(line4+’\n’)

137 numpy.savetxt(sinhandle , v_arr , fmt=’%1.14f’)

138 sinhandle.close()

139 print sinfile , "saved.\n"

140

141 if plotting == True:

142 print "Beginning to plot."

143 fig1 = pyplot.figure ()

144 t_arr = numpy.linspace (0.0, N_points*delta_t , num=N_points ,

endpoint=False)

145 p1 = fig1.add_subplot (1, 1, 1)

146 p1.grid(True)

147 p1.plot(t_arr , v_arr)

148 p1.set_ylabel("Voltage")

149 pyplot.show()

150 return 0

151

152 if __name__ == ’__main__ ’:

153 main()

wavegen new3.py
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Appendix B

Things that Are Very
Obvious

B.1 The Center of Gravity

It’s what happens when you set A = 0 and B = 0. That is all.

B.2 Diagonalizing the Hamiltonian

Given a Hermitian matrix Ω̂, there exists a unitary matrix Û such that
Û †Ω̂Û is diagonalized. Solving for this matrix Û is, in this case, equivalent to
solving the eigenvalue problem for Ω̂ [15]. As it turns out, Û is the matrix of
eigenvectors of Ω̂, by which I mean that the eigenvectors are column vectors,
and they’re all squished together to make Û . It doesn’t matter what order
you put them in, but they probably have to be normalized.

Then, if
Ω̂

′
:= Û †Ω̂Û , (B.1)

we find that Ω̂
′
is the diagonal matrix with its elements being the eigenvalues.

They’re in the same order as the eigenvectors we squished together to make
Û previously.

Also, a unitary operator, Û is one which satisfies:

Û Û † = Û †Û = I˜. (B.2)

B.3 Rotating Coordinates

If by Ω̂ we really mean the Hamiltonian Ĥ, and by Û we really mean a coor-
dinate change that takes us to rotating coordinates such that we can easily
make a rotating wave approximation, we must take more things into ac-
count. In particular, we find that our new rotating-coordinate Hamiltonian,
H̃ is given by:

H̃ = Û †ĤÛ − ~Â (B.3)
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where
Û := e−iÂt. (B.4)

This additional term arises from our statement of the Schrodinger equation,

Ĥ |ψ 〉 = i~
∂

∂t
|ψ 〉 . (B.5)

In particular, note that B.5 includes only a partial derivative of the wave-
function. I derive this result explicitly in Chapter 7.2. See also Ref. [10],
pg. 195.

B.4 Lifetimes and Half-Lifes

Since different people use different notation to describe exponential decay of
a physical quantity, it is useful to be able to relate two of the most common
methods for describing the decay. We begin with the rate equation,

dN

dt
= −γ N, (B.6)

where it is clear that the “rate” of decay must be γ N . If we initially have
N0 of the quantity in question, then Eq. B.6 has as its solution

N(t) = N0 e
−γ t. (B.7)

Note that the physical interpretation of γ is the “linewidth”.
We’ll wish to convert γ into other quantities of interest. In particular,

we can re-write the solution B.7 as

N(t) = N0 e
−t/τ , (B.8)

where τ = 1/γ is referred to as the “lifetime”. Then, we find the half-life t1/2
by enforcing the fact that it is the time at which the number of remaining
atoms is equal to half of what was originally present. Therefore,

N(t1/2) = N0e
−t1/2/τ =

1

2
N0 (B.9)

e−t1/2/τ = 1/2 (B.10)

t1/2/τ = ln(2). (B.11)

Thus, we see that

t1/2 = ln(2) τ, (B.12)

where τ is the “lifetime” of the state, and t1/2 is its “half-life”.
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B.5. Reduced Matrix Elements

B.5 Reduced Matrix Elements

The Wigner-Eckart Theorem says, for vector operator V q,

〈α′j′m′|V q|αjm〉 = 〈j′m′|j1mq〉〈α′j′‖V ‖αj〉. (B.13)

The point being that 〈α′j′‖V ‖αj〉 is the same for all m and q.

B.6 Doppler Cooling Limit

Here it is!

kTD =
1

2
~Γ (B.14)
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