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Abstract

This report summarizes work done on understanding and implmenting recoil-order
corrections, specifically for 37K. The result is coded in the program recoil-order.c [1],
which has been checked against the results quoted by Naviliat-Cuncic and Severijns in
Ref. [2]. Some relatively minor corrections to both that paper and Holstein’s original
treatise [3] on the subject are discussed, and results for 37K are presented.

The main impetus for working on this was to be able to properly update Naviliat-
Cuncic and Severijns’ paper [2] given our improved 37K lifetime measurement [4]. Of
course, recoil-order corrections are not significant at this stage, but an eye is being kept
forward to the future when Trinat will make a precise enough measurement of the corre-
lation parameters that they do become important. Additionally, this let’s us quantifiably
determine what impact on |Vud| we may have, and how sensitive we are to second-class
currents.

1 The Recoil-Order Corrections

The lengthy and mathematically intense review on the subject of recoil-order corrections
to allowed β decay by Holstein [3] is of course our starting point. I have never tried –
and am likely never to try – to derive his decay rates from first principles, and so assume
his expressions for F (E, u, v, s) are all correct. We begin by noting the minor errors in
Holstein’s paper and then determine the correspondance between Holstein’s parameters
with the correlation parameters of Jackson, Treiman and Wyld (JTW) [7, 8]. This section
finishes with plots of these correlation parameters as a function of β energy.

1.1 Corrections to the spin-dependent functions

In addition to the erratum published two years after his original paper, there are a
few other errors that have been discovered in Holstein’s original paper and which have
not been published. As I noted previously [5], his simplified expressions for the spin-
dependent functions, Eqs (B8) of Ref. [3], are not all correct. We do assume, however, that
the expressions in terms of the Racah coefficient, W (j1j2l2l1; j3l3) are correct; hopefully
they are.

As described in Ref. [5], the relevant corrections needed here are:

• The expressions for λu,v all need to be divided by −5
√

6. It is only non-zero if u+v >

2. For the specific case if I = I ′, for example, λI,I = −1
5

√

(2I − 1)(2I + 3)/6.

• The functions for ǫuv are all rather wrong . . . there’s no simple fix like with λuv.
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Table 1: Summary of form-factors used by Holstein and the symmetry of the current to which
they belong.

2nd associated
Symbol Current Name

class? paramters

gV vector N the (usual) vector form factor a, b, e, f, g
gA axial N the (usual) axial-vector form factor c, d, h, ji

gM vector N weak magnetism b
gP axial N induced pseudoscalar h
gS vector Y induced scalar e
gII axial Y induced tensor d

The corrected expressions are:

1

(2u − 1)

[

(2u − 3)(2u − 2)(2u + 2)

2u + 3

]1/2

u = v+1; u > 2

ǫu,v =
−2√
70











































[

3(2u − 2)(2u + 4)

2(2u − 1)(2u + 3)

]1/2

u = v; u >
3
2

1

(2u + 3)

[

(2u) (2u + 4)(2u + 5)

2u − 1

]1/2

u = v−1; u > 1

1.2 Understanding the decay rate

The heart of the matter for Trinat is the decay rate, Eq. (51), in Holstein’s Rev. Mod.
Phys. paper [3]. In some ways, it is not as general as the seminal papers by JTW [7, 8] in
that Holstein assumes a (V,A) interaction; JTW’s papers allow for any current consistent
with Lorentz invariance and so in addition to vector and axial vector, include scalar and
tensor interactions (pseudoscalar is automatically supressed and cannot contribute to β
decay). Holstein’s paper is, however, more complete than JTW’s in that he has not made
the assumption that the recoiling nucleus is infinitely heavy; he has made the so-called
recoil-order corrections, terms that go like the β decay energy over the nuclear mass.
Other terms that appear like scalar, pseudoscalar and tensor interactions are induced

when including recoil terms.

First, it should be mentioned and will be used later that Holstein uses the represen-
tation of the Dirac matrices as defined by Bjorken and Drell [6] except for the sign of γ5.
This effectively means that Holstein has a V + A interaction instead of V − A; said an-
other way, in Holstein’s convention, all axial currents have the sign opposite to someone
who uses Bjorken and Drell’s convention including their γ5. Near the beginning of §V of
Holstein’s paper, he described what his various form factors are. The separation between
vector and axial-vector form factors is most manifest in his Eq. (66). Table 1 summarizes
their classification and description. I therefore propose that if c ≈ gAMGT changes sign
due to choice of the γ matrices, then so also must d, h and ji(i = 1, 3) since these too are
also associated with axial currents. I have not confirmed this with an explicit calculation,
but it seems clear that it is true (anyone is invited to to do the calculation if they have
any reservations about this assertion).

We now turn to Eq. (51) of Holstein’s review. It gives the decay rate for allowed
β decay when the parent is polarized and both momenta of the leptons are observed.
It is a very long equation in terms of many spectral functions, fi(E) = Fi(E, u, v, 0),
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where E is the β’s total energy and u, v are the initial/final spins of the nucleus. The
Fi(E, u, v, s) functions are given in his appendix B6 in terms of the parameters listed in
Table 1. We readily and easily identify f1(E) as corresponding to JTW’s ξ once recoil-
order corrections are included; in the limit that E → 0 or M → ∞, and that the weak
interaction is purely V − A:

f1(E)
E→0−−−−−→

M→∞
|a1|2 + |c1|2 = g2

A|MGT |2 + g2
V |MF |2 ≡ ξ. (1)

The only other unpolarized/non-aligned term in the equation is the following one and,
since it goes like p · k̂ (where k̂ = pν/Eν is the direction of the neutrino momentum),
leads to the identification f2(E) = ξ aβν , or

aβν(E) =
f2(E)

f1(E)
(2)

Näıvely, one might then look at this equation and conclude that f4(E), which multi-

plies a term that goes like 〈I〉
I · p

E , corresponds to ξ Aβ. However, as Holstein explicity
points out in the following section, “knowledge of the neutrino momentum involves the
difficult job of detecting nuclear recoil, so that most experiments involve an average over
neutrino momenta.” In his Eq. (52) which is this neutrino-averaged decay rate, the term

multiplying 〈I〉
I · p

E has become∗ F1(E). It is not difficult to do the integration for ones

self and confirm that F1(E) = f4(E) + 1
3f7(E) (terms linear in k̂ average to zero). Thus

Aβ including recoil-order corrections is

Aβ(E) =
H1(E)

H0(E)
=

f4(E) + 1
3f7(E)

f1(E)
. (3)

What do we do about the neutrino asymmetry parameter, Bν , though? Naviliat-
Cuncic and Severijns [2] wrongly assume it is h6(E)/f1(E), where h6(E) is given in
another paper by Holstein, Ref. [9] which, neverthless, is equal to f6(E) from his later
Rev. of Mod. Phys. paper. In neither case did Holstein (nor anyone else as far as I’m
aware) average over electron momenta; so h6(E) aka f6(E) as used by Naviliat-Cuncic
and Severijns is not the correct expression. We have to integrate Holstein’s decay rate
over dΩe ourselves and determine the factor multiplying MI

I n̂ · k̂. It’s not a big deal,
though; this time all terms linear in p average to zero. Either doing it explicity or even
just based on inspection, one can easily tell that Naviliat-Cuncic and Severijns should
add f5(E)/3f1(E) to their Eq. (15), i.e.

Bν(E) =
f6(E) + 1

3f5(E)

f1(E)
. (4)

Finally, we find the term in Holstein’s Eq. (51) corresponding to JTW’s alignment
term by finding the one that is the traceless symmetric 2nd-rank tensor constructed out of
the β and neutrino momenta, i.e. T (2)(n̂) : [p, k̂]. The only term this corresponds to is the
one multiplied by f12(E). Note that since both pe and pν appear in the alignment term of
JTW, that there is no averaging over any lepton momentum in this case; this is the only
term. The correspondence of Holstein’s f12(E) with JTW’s alignment parameter calign

is a little more work than one might imagine due to how they differ in their definitions

∗Which is not to be confused with F1(E, u, v, s)! F1(E) = H0(E, u, v, 0) is a combination of Fi(E, u, v, 0)’s
as given by his Eqs. (B7).
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of statisical population functions and 2nd-rank tensors; however, comparing Holstein’s
expression with JTW’s and equating, we see that

Λ(2)T (2)(n̂) :
[ p

E
, k̂
]

·f12(E) = ξcalign

(

pe ·pν

3EeEν
− (pe ·i)(pν ·i)

EeEν

)(

I(I+1) − 3〈I2〉
I(2I − 1)

)

(5)

which leads to

calign(E) = −f12(E)

f1(E)

(

2I − 1

I + 1

)

. (6)

1.3 Correlation parameters of
−→
37K

The above equations have been coded into the program recoil-order.c with experi-
mental inputs and the shell-model predictions of I. Towner for 37K as listed in Table 2.
Most of the input parameters listed come from Holstein’s paper, Ref. [3]; others relating
to calculating |Vud| are from Severijns et al.’s Ref. [10]. Note that using the dipole mo-
ments of Table 2 instead of the compilation [11] used by Naviliat-Cuncic and Severijns,
we arrive at a weak magnetism of b = −45.03(4) instead of −44.99(24). It seems unlikley
that Naviliat-Cuncic and Severijns included the induced quadrupole, however we do and
with the electric quadrupole moments listed in Table 2, we find g = −1.36(17) × 105.

Figures 1–4 show the results of the calculation, including varying different parameter
values, namely the ratio of matrix elements, ρ = c1/a1, possible second-class currents
(SCCs) via d (I do not yet know how to differentiate between dI and dII) and the limit
on the precision of the predictions due to the measured electric dipole and quadrupole
moments. As one can see, we are still heavily dominated by uncertainty in ρ, with
theoretical uncertainties not contributing much to the asymmetries. To be sensitive to
SCC, we many need to improve both the branching ratio and lifetime measurements of
37K, however measuring the β asymmetry as a function of energy to 0.2% or so (the best
case) seems daunting . . . . It is unfortunate that Aβ and Bν show the least variation
with β energy; measuring calign as a funcion of energy is all but impossible, however
the energy-dependence of aβν is both large and experimentally accessible; we should re-
consider how difficult it will be to prepare a random spin-population and measure this
correlation. Note, however, that unlike Aβ, SCC do not change the slope of the energy
dependence, and so in that case determing ρ and measuring the value absolutely are more
important.

2 Turning Things Around: Determining |Vud|

As pointed out explicitly by Naviliat-Cuncic and Severijns [2], one may use T = 1/2
mirror transitions for which a measurement of a correlation parameter has been done
to determine a value of |Vud| which may complement the value deduced from 0+−→ 0+

decays. The program recoil-order.c also calculates these values, and finds (when the
same inputs are used) almost perfect agreement with Naviliat-Cuncic and Severijns.

One finds, with the inputs of Table 2 and the new lifetime for 37K, fV t = 4565(7) s
or

Ft = 4594(8) s. (7)

This can be compared to the old lifetime (with an old value for b) which led to Ft =
4562(28) s. The change in the central value of the lifetime leads to the shift in the Ft,
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Table 2: Inputs used for the calculation of the correlation parameters for 37K. When applying
this to Holstein’s expressions, each of ci, d, h, j1, j2 and j3 are passed with the opposite sign,
as discussed earlier.

M1+M2

2
=36.97007611(12) amu E◦ =5.63646(23) MeV 〈E〉=3.35 MeV

fV =3623.9(7) fA/fV =1.00456(91) I =3/2

t1/2
† =1.2335(69) s branch= 97.99(14)% PEC =0.080(2)%

δC =0.73(6)% δNS =−0.06(2)% δ′R =1.431(39)%

a1 =1 a2 =0 b= A
√

I+1
I

MF

(

µ−µ′

T3−T ′

3

)

c1 =0.5794(20) (from Ft) µ(37K)=0.20321(6)µN µ(37Ar)=1.146(1)µN

c2 =1.764 d=0 ± 0.4Ac e= 0 (by CVC)

f =0 (CVC); −3.394 (Towner) g = −MF

√

(I+1)(2I+3)
I(2I−1)

2M2

3~2c2

(

Q − Q′
)

h=−4.10 × 104 Q(37K)=10.6(4)e fm2 Q(37Ar)=7.6(9)e fm2

j1 =−1.97 × 105 j2 =0.0121 j3 =3.99 × 105

†Preliminary new value [4] is an order-of-magnitude more precise than the previous world
average of 1.2248(73) s (excludes G. Ball’s unpublished result).

Figure 1: The value of the β − ν correlation parameter with the old (dashed) and new (solid)
value for the lifetime [left], and the deviation from aβν at E = me [right]. The green curves
are the values spanned by the uncertainty in weak magnetism, b; the orange represents the
uncertainty in the induced quadrupole, g; the green is the change one would see if second-class
currents were at their limit, d/Ac = ±0.4; and the red curves cover the range due to the
uncertainty in ρ = c1/a1 as determined from the Ft value.
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Figure 2: Plots similar to Fig. 1 except of the β asymmetry parameter.

Figure 3: Plots similar to Fig. 1 except of the ν asymmetry parameter.
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Figure 4: Plots similar to Fig. 1 except of the alignment parameter.

and the order-of-magnitude improvement in the lifetime leads to a 3.5× reduction in
its uncertainty. Given this and using the value from averaging over 0+−→ 0+ decays,
Ft = 3071.81(79)(27) s, we determine ρ to have the value listed in Table 2 (and which
was used earlier in calculating the correlation coefficients). Instead, however, we use the
value of the neutrino asymmetry as measured by Trinat [12]: Bν = −0.755(20)(13)
which is actually −0.7547(227) to get

ρ = 0.5603+0.0269
−0.0253 = 0.561(26), (8)

which leads to

Ft0 = 6043(135) s, (9)

which is only slightly better precision compared to what is quoted by Naviliat-Cuncic and
Severijns prior to the lifetime re-measurement; the central value again changes because
of the new lifetime, but in fact the reduced uncertainty in Ft0 is only due to the more
detailed value for Bν I have access to that they didn’t. To improve this Ft0 value rests
entirely on measuring Bν (or any other correlation parameter) to better precision.

Finally, the Ft0 value in turn leads to a new value for |Vud| for 37K:

|Vud| = 0.9823(110) (10)

which, compared to the older value 0.9857(119), approaches and is better aligned with
the average value of other mirror transitions: 0.9710(22) (19Ne), 0.9696(35) (21Ne),
0.9445(643) (29P) and 0.9756(39) (35Ar). These results are shown graphically in Fig. 5
and for comparison Vud = 0.97425(22) deduced from 0+−→ 0+ decays is also shown
(blue). Due to the large uncertainty in 37K compared to most of the others, it does not
change the average.
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Figure 5: Values of |Vud| from T = 1/2 mirror transitions, adapted from Naviliat-Cuncic and
Severijns [2]. The red point is the previous value as quoted in Ref. [2] and has the same
uncertainty as the new value and so is not shown for clarity. The green dashed lines show
the uncertainty in the average value from mirror transitions, while the result from 0+−→ 0+

decays is shown in blue.

A Expressions for the relevant spectral functions

We assume all of Holstein’s parameters are real in what follows. We consider a1a2 and
c1c2 terms, but drop the very small a2

2 and c2
2 terms in the radiative corrections.

f1(E) + ∆f1(E) = c1

{

2c2

[(

20E(E◦ − E) + m2
e(11 − 2E◦

E )

9M2

)

±8αZ

3π

(

1
3E◦X − 4E(4

3X + Y ) − m2
e

E
(X + 2Y )

)]

−d

(

2E◦ − m2
e

E

3M

)

± b

(

2(2E − E◦) − m2
e

E

3M

)

+ h

(

m2
e(E◦ − E)

6M2E

)

}

+ c2
1

{

1 − 2(E◦ − 5E − m2
e

E )

3M
± 8αZ

3π

(

1

3
E◦X − 4E(4

3X + Y ) − m2
e

E
(X + 2Y )

)

}

+ a2
1

[

1 +
2E

M
∓ 8αZ

3π

(

4E(X + Y ) + E◦X +
m2

e

E
(X + 2Y )

)]

+ a1

[

2a2

(

4E(E◦ − E) + m2
e(1 + 2E◦

E )

3M2
∓ 8αZ

3π

{

4E(X + Y ) + E◦X +
m2

e

E
(X + 2Y )

}

)

+e

(

m2
e

ME

)]

(11)
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f2(E) + ∆f2(E) = c1

{

d

(

2E◦

3M

)

± b

(

2(E◦ − 2E)

3M

)

+2c2

[

±8αZ

3π

(

4
3E(2X + Y ) − E◦X

)

− 8E(E◦ − E) + m2
e

3M2

]}

+ c2
1

{

−1

3
+

2(E◦ − 2E)

3M
± 8αZ

3π

(

4
3E(2X + Y ) − E◦X

)

}

+ a2
1

[

1 ∓ 8αZ

3π

(

4
3E(2X + Y ) − E◦X

)

]

+ 2a1a2

[

m2
e

M2
∓ 8αZ

3π

(

4
3E(2X + Y ) − E◦X

)

]

(12)

f4(E) + ∆f4(E) +
1

3
f7(E) = c1

{

√

I

I + 1

[

a1

(

2 − 4(E◦ − 7E)

3M

)

+ 2a2
4E(E◦ − E) + 3m2

e

3M2

]

± γI,I

I + 1

[

d
2E◦ + E

3M
± b

2E◦ − 5E

3M
− 2c2

8E(E◦ − E) + m2
e

3M2

]

− λI,I

I + 1

[

f
5E

M
+ g

√

3

2

(

E◦(E◦ − 11E) + 5E2 + 6m2
e

6M2

)

±3j2

(

E◦(E◦ − E) − 4E2 + 2m2
e

4M2

)]

+
8αZ E(5X + 4Y )

3π

(

2c2
γI,I

I + 1
∓
√

I

I + 1
2(a1 + a2)

)}

∓ c2
1

{

γI,I

I + 1

(

1 − E◦ − 4E

3M
+

8αZ E(5X + 4Y )

3π

)}

− 2a1

√

I

I + 1

[

(d ± b)

(

E◦ − E

M

)

+ h
m2

e

4M2

+c2

(

8E(E◦ − E) + 3m2
e

3M2
± 16αZ E(5X + 4Y )

3π

√

I

I + 1

)]

(13)
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