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Figure 1: Current waveform of the AC-MOT. The trapping waveform is a sinusoid.

1 Motivation and Calculations for New MOT Waveform

1.1 Background and Motivation

The TRINAT experiment captures and cools a cloud of neutral atoms using a magneto-optical trap,
or MOT. The MOT at TRINAT runs current through two coils in near-Helmholtz configuration to
produce the necessary quadrupole magnetic field. Experiments which require the nuclear polariza-
tion of atoms, such as recent measurements of beta decay in potassium-37, achieve spin alignment
through optical pumping. During the optical pumping time, the quadrupole field must be turned
off, and replaced with a dipole field. However, the atom cloud will expand during this time, and
the experiment must switch back to the trapping state before the atoms stray too far. This process
repeats, the apparatus alternating between optically pumping and trapping the atoms. One period
of the current waveform in the main coils is shown in Figure 1. The nature of this current waveform
leads to the moniker AC-MOT for this version of the MOT. For the remainder of this report, I will
refer to this waveform as the AC-MOT waveform.

One might think a simpler waveform to use would be a square wave: off during the optical
pumping time and on during the trapping time. The reason for using a sinusoid has to do with the
production of eddy currents in the chamber. The main coils are surrounded by a large number of
conductors, all of which become inductively coupled1 to the main coils while the trap is running:
see Figure 2 for a diagram of the TRINAT MOT.

Changes in the magnetic field induce eddy currents in nearby conductors, and these eddy
currents themselves produce magnetic fields. Any off-axis magnetic field during the optical pumping
time (non-dipole field) somewhat spoils the polarization of the atoms. Even if the current in the

1Recall Faraday’s Law: ∇×E = −∂B
∂t
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Figure 2: Diagram of the TRINAT MOT chamber.

main coils is shut off quickly (picture the falling edge of a square wave), some residual magnetic
field is present since the eddy currents do not shut off instantly, but decay exponentially in time.

In a published paper, Harvey and Murray show that using several periods of a sinusoid during
the trapping time mitigates the problem with the leftover field from eddy currents during the optical
pumping time [4]. Melissa Anholm reproduced their results here at TRINAT: for more information,
see her thesis [2].

While the AC-MOT waveform solved this problem, it introduced another: inductive heating.
Since the frequency of the sinusoid is fairly high, a large portion of its power is inductively coupled to
surrounding conductors, heating the metal. This is a particularly insidious problem for the delicate
pellicle mirrors which are to be used in future experiments. The pellicle mirrors are mounted in a
metal casing: if the mount gets too hot, the pellicle mirrors could be damaged as a result. This
being a more pressing problem than the residual magnetic field during the optical pumping time,
it was proposed to change the current waveform to reduce this power coupling.

Reduction of power coupling may be achieved simply by using a current waveform that results
in a more slowly-varying magnetic field. Some obvious alternatives are shown in Figure 3. Before
the AC-MOT waveform, TRINAT used a “square wave” produced by a device called the Russian
coil driver. We model it here as a trapezoid wave because of the finite rise time. One possibility
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Figure 3: Alternatives to the AC-MOT waveform. Shown at the top is the original AC-MOT
waveform. The middle graph is a sinusoid of a quarter the frequency. The bottom of the graph
shows a trapezoid wave, such as that produced by the Russian coil driver.

was to return to this waveform. Another possibility was to use a sinusoid of a quarter the frequency
to produce a waveform consisting of a single bump during the trapping time.

The question now arises: how can we be sure these waveforms will reduce the coupled power?
If they do, by how much? And which is better? To answer these questions, we turn to some
mathematics.

1.2 Fourier Analysis

Taking after Harvey and Murray, we model the main coils and the surrounding conductors as
coupled inductors. Provided the mutual inductance is small compared to the self-inductance of the
main coils, we may assume the coupled inductors do not significantly load the main coils. In this
case, we may consider a single coupled conductor individually. Furthermore, we shall assume the
main coils are powered by a current generator. In the TRINAT lab, the main coils are actually
voltage-driven; as a result, the voltage waveform (which the experimenter provides) is convolved
with the impulse response function of the coils (exp(−t/τcoil)/Lcoil where τ = Lcoil/Rcoil) to produce
the current waveform. However, by observing the resultant current waveform (and still assuming
insignificant loading), we may model the power supply as a current generator which produces the
observed current waveform.

Using the previous assumptions, we model the main coils and coupled conductor as pictured in
Figure 4. The variables used are as defined in the caption.
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Figure 4: The equivalent circuit used to model the main coils and a coupled conductor. The main
coils, of self-inductance L1, are driven by a current generator. The coupled conductor has a self-
inductance of L2 and a resistance of R2. The mutual inductance between the main coils and the
coupled conductor is M . The current in the main coils and the coupled conductor is i1(t) and i2(t)
respectively, with the directions as indicated.

The equations describing this setup are as follows:

M
di1
dt

+ L2
di2
dt

+Ri2 = 0. (1)

We would like to determine the average power dissipated in the coupled conductor for a given
waveform in the main coils i1(t). This is most easily accomplished with a Fourier analysis approach,
as will be shown. Suppose the waveforms i1(t) and i2(t) have the frequency spectra (Fourier
transforms) I1(jω) and I2(jω) respectively. That is,

I1(jω) =

∫ ∞
−∞

i1(t) exp(−jωt) dt (2)

and similarly for i2(t). Given equation 1, we can relate I1 to I2 by a transfer function. Taking
the Fourier transform of equation 1 reveals this fact:

jωMI1(jω) + jωL2I2(jω) +RI2(jω) = 0 (3)

jω
M

L2

I1(jω) + jωI2(jω) + I2(jω)/τ = 0 (4)

I2(jω) = −M
L2

jω

jω + 1/τ
I1(jω) (5)

where we have defined τ as

τ =
L2

R2

. (6)

The mean-square value of an arbitrary power waveform f(t) in the time domain is directly
related to its spectrum in the frequency domain F (jω) by Parseval’s theorem, which says:

lim
T→∞

1

2T

∫ T

−T
|f(t)|2 dt =

1

2π

∫ ∞
−∞
|F (jω)|2 dω. (7)
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If the function f(t) is periodic with a period 2T0 then f(t) is expressible as a Fourier series
instead of a Fourier transform. In this case, Parseval’s theorem simplifies to a sum over the
spectrum instead of an integral.

1

2T0

∫ 2T0

0

|f(t)|2 dt =
1

2π

∞∑
n=−∞

|cn|2 (8)

where cn is the n-th coefficient in the complex Fourier series of f(t):

cn =

∫ T0

−T0
f(t) exp(−jnω0t) dt (9)

and ω0 = 2π/2T0 = π/T0 is the base angular frequency.
We shall apply Parseval’s theorem for periodic functions to our current waveforms, since i1(t)

will be periodic. Note we will have to multiply both sides by the resistance through which the
current flows to obtain the actual power and not just the mean-square value. Let the complex
Fourier series coefficients of i1(t) be cn. Then the n-th coefficient of the complex Fourier series of
i2(t), dn, is related to those of cn by a discretized form of equation 5:

dn = −M
L2

jnω0

jnω0 + 1/τ
cn (10)

Using Parseval’s theorem and the preceding coefficients, we may conclude that the average
power P carried by the induced current waveform i2(t) is:

P =
M2R2

2πL2
2

∞∑
n=−∞

n2ω2
0

n2ω2
0 + 1

τ2

|cn|2 . (11)

The problem of calculating the average power dissipated in coupled conductors by an arbitrary
current waveform in the main coils has reduced to the problem of evaluating the sum in equation
11 using the Fourier coefficients corresponding to the current waveform within the main coils.

1.3 Comparison of Alternatives

To compare the power dissipated in coupled conductors by the current waveform of Figure 3, we
begin by determining their Fourier series. We shall label the waveforms from top to bottom by the
names high-frequency sinusoid, low-frequency sinusoid, and trapezoid wave.

Let the period of the waveform be 2T0, and let the graphs of Figure 3 extend from −T0 to T0.
Let the amplitude (maximum value) of the waveforms be A. Note that this means the trapezoid
wave will carry approximately twice the power of the sinusoidal waveforms if they all have the same
amplitude. However, since the strength of the atom trap is a function of magnetic field strength, it
is waveforms of equal amplitude (not power) we wish to compare. The Fourier coefficients for one
of these waveforms, f(t), are given by:

cn =

∫ T0

−T0
f(t) exp(−jnω0t) dt (12)
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Note that the waveforms are zero for −T0 < t < 0. Also note that for the trapezoid wave we
have the following notation: tw is the full-width half-maximum of the trapezoid and tr is the rise
time (0 to maximum) of the trapezoid edge. We have made several simplifying assumptions for the
trapezoid wave. We assume tw = T0, that is, the width of the trapezoid is half the period — this
is a fair assumption if the rise time is small compared to the period. We also assume that the rise
time and fall time are equal. See the included document signals.pdf for the complete expression
and derivation for the trapezoid wave.

High-frequency sinusoid

cn =


0 n even and n 6= ±4
±A
4j

n = ±4
4A

π(42−n2)
n odd

(13)

Low-frequency sinusoid

cn =


0 n odd and n 6= ±1
±A
4j

n = ±1
A

π(1−n2)
n even

(14)

Trapezoid wave

cn =

0 n even

A
2
(−1)(n−1)/2

π
2
n

sin(π
2
tr
T0
n)

π
2
tr
T0
n

exp(−jnω0
tw+tr

2
) n odd

(15)

The corresponding summations for the power coupling are as follows.

High-frequency sinusoid

Phfs =
M2A2R2

2πL2
2

(
1

8

16ω2
0

16ω2
0 + 1/τ 2

+
∑
n-odd

n2ω2
0

n2ω2
0 + 1

τ2

16

π2(16− n2)2

)
(16)

Low-frequency sinusoid

Plfs =
M2A2R2

2πL2
2

(
1

8

ω2
0

ω2
0 + 1/τ 2

+
∑
n-even

n2ω2
0

n2ω2
0 + 1

τ2

1

π2(1− n2)2

)
(17)

Trapezoid wave

Ptrap =
M2A2R2

2πL2
2

1

4

∑
n-odd

n2ω2
0

n2ω2
0 + 1

τ2

1(
π
2
n
)2 sin2

(
π
2
tr
T0
n
)

(
π
2
tr
T0
n
)2

 (18)

The sums in the first two equations may be evaluated using the residue theorem from complex
analysis and we obtain a simpler form for the power coupling expressions. Define a = ω0τ .
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High-frequency sinusoid

Phfs =
M2A2R2

2πL2
2

(
4

1 + 16a2
−

8a3 tanh
(
π
2a

)
π(1 + 16a2)2

)
(19)

Low-frequency sinusoid

Plfs =
M2A2R2

2πL2
2

(
a2

4(1 + a2)
−
a3 coth

(
π
2a

)
2π(1 + a2)2

)
(20)

The sum for the trapezoid wave, unfortunately, cannot be simplified so easily. However, it is
trivial to prove that the sum converges. First, note that all terms are positive and therefore the
partial sum for −m ≤ n ≤ m is monotonically increasing for increasing m. As for the magnitude:

0 <
n2ω2

0

n2ω2
0 + 1

τ2

<
n2ω2

0

n2ω2
0

= 1 (21)

0 < sin2

(
π

2

tr
T0
n

)
< 1 (22)

0 <
∑
n-odd

n2ω2
0

n2ω2
0 + 1

τ2

1(
π
2
n
)2 sin2

(
π
2
tr
T0
n
)

(
π
2
tr
T0
n
)2 <

∑
n-odd

1(
π
2
n
)2 1(

π
2
tr
T0
n
)2 (23)

∑
n-odd

1(
π
2
n
)2 1(

π
2
tr
T0
n
)2 =

16T 2
0

π4t2r

∑
n-odd

1

n4
(24)

=
16T 2

0

π4t2r

π4

96
(25)

=
T 2
0

6t2r
(26)

0 <
∑
n-odd

n2ω2
0

n2ω2
0 + 1

τ2

1(
π
2
n
)2 sin2

(
π
2
tr
T0
n
)

(
π
2
tr
T0
n
)2 <

T 2
0

6t2r
(27)

So long as tr is nonzero, the sum converges. We are therefore justified in using computer code to
evaluate the sum by computing the partial sum for −m ≤ n ≤ m using an m such that adding the
m+ 1-th term produces a negligible effect on the series.

To get some concrete numbers out of the preceding math, we will need the values of relevant
parameters, most of which we will have to calculate approximately. Since we will not know the
accuracy of such calculations, we will take several measures to extract meaningful information.
First, to reduce the number of unknown parameters, we shall compare ratios of coupled power.
Notice that the ratios

Plfs

Phfs

and
Ptrap

Phfs

(28)
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Figure 5: Plot of the ratio of the power coupled by a given waveform to the power coupled by
the high-frequency sinusoid as a function of the parameter τ/2T0. For the pellicle mirror mount,
τ/2T0 ≈ 0.0215. At this value on the x-axis, the low-frequency sinusoid couples 12.8 times less
power than the high-frequency sinusoid and 2.5 times less power than the trapezoid wave.

do not include the parameter M or A since all the power expressions contain the factor

M2A2R2

2πL2
2

(29)

which cancels out. Furthermore, we shall plot these ratios as a function of τ/2T0 since τ will not
be calculable to great accuracy and we may be interested in the behaviour for different conductors
(which will have different values of τ in general). It will be more informative to view the behaviour
of these power ratios over a range of values of τ than at one particular value.

All that being said, let us estimate relevant parameters. Because of the previous waveform for
TRINAT, I set 2T0 = 4 ms. Based on tests with the Russian coil driver, I estimate the rise time
of the relevant trapezoid wave tr ≈ 0.24 ms. Using the book “Inductance Calculations” by Grover,
I estimate the self-inductance of the pellicle mirror mount to be L2 ≈ 0.044 µH. Its resistance is
R2 ≈ 0.51 mΩ. Therefore, the time constant of the pellicle mirror mount is τ ≈ 86 µs.

I have written code using C++ and Root to evaluate the power coupling sums and plot the
ratios as a function of τ/2T0. The code and instructions for using it may be found in the directory
Calculations/. Make sure to open README.txt first. The resulting plot is shown in Figure
5. It is easy to see both the alternative waveforms are significantly better than the high-frequency
sinusoid. What is perhaps more surprising is that the low-frequency sinusoid is even better than
the trapezoid wave at reducing the power coupling.

To reduce the problem of inductive heating in the TRINAT chamber, we are thus prompted
to use a current waveform consisting of a single sinusoidal bump in the main coils — the middle
waveform of Figure 3 which I have been calling the low-frequency sinusoid. The MOT subject
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to this new waveform has been christened the Rectified -AC-MOT, or RAC-MOT2. The subject of
the following two sections is how we equipped the hardware of the MOT’s control system to use
this new waveform, and the tests we performed to measure the effectiveness of the RAC-MOT by
modifying existing software.

2 RAC-MOT Hardware

This section is a description of the hardware configuration used to implement the RAC-MOT. We
begin with a brief overview of the existing hardware that is relevant to this project and move on
to the updates from there.

2.1 Existing Hardware

Atom Traps There are actually two atom traps at TRINAT. There is a smaller trap which is
used to extract and collect the element of interest, and a larger trap which houses all the
equipment used to study the atoms. I will refer to these as the small trap and the main trap
respectively. The atoms collected in the small trap are transferred to the main trap by a
push-beam of laser light.

Raspberry Pi The Raspberry Pi, or the Pi as I will refer to it, is a small computer running
Linux. The Pi controls and monitors all the instruments needed to run the experiment using
its digital I/O pins and a control code. Claire Preston wrote this code; please see her report
to learn more. Her report also explains the whole system in more detail than I will present
here. Later in this report I will speak of “modifications to the software,” by which I mean
modifications to the code that runs on the Pi.

LRS Boxes Very close to the Pi is a set of electronic boxes I will refer to as the LRS boxes (though
not all of them are made by LRS). The LRS boxes are responsible for performing Boolean
logic operations and pulse timing modifications on various digital signals.

Acousto-optic modulators The acousto-optic modulators, or AOMs, modify the frequency of
the laser light sent to the trap. A sinusoidal electrical signal is applied to piezoelectric
material connected to an optical crystal, which produces vibrations of frequency f in the
crystal. Incoming laser light is diffracted by the crystal, but since the lattice is vibrating, the
light which exits at diffraction mode m has its frequency shifted by mf . The power of the
electrical signal sent to the AOMs may be used to directly control the intensity of the light
sent to the trap.

Function generators TRINAT has many function generators, two of which we use to produce
the RAC-MOT waveform. There is a B&K Precision 4052 and a Stanford Research Systems
DS345. I will refer to these function generators as the BK and the SRS respectively. Both
of these function generators may be triggered by an external logic signal (the rising or falling
edge of the external logic signal will produce a waveform burst at the output of the generator)

2Pronunciation is still up for debate: some say “ray-cee-mot” while other say “rack-mot.”
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Figure 6: The blue waveform is a measure of the (inverted) current output of the Matsusadas. The
pink waveform is the voltage input to the Matsusadas. The cyan waveform is a TTL logic signal
which triggers each pink sinusoid and amplitude modulates the same.

and have their output amplitude modulated by an external analog signal. Note that the SRS
can be in triggered burst mode and have its output amplitude modulated simultaneously.
The BK can only be in one of these states at a given time.

Matsusadas The Matsusadas are a pair of heavy-duty amplifiers which drive the main coils in
the main trap. Each amp is hooked up to its own coil, but both receive the same input signal
to be amplified. The Matsusadas may be placed in current output or voltage output mode.
When running a DC (constant) trap, the Matsusadas are set to output approximately 56
amps.

IR Camera As part of her work term, Claire Preston set up an IR camera to take pictures of
the fluorescing atoms in the trap. The camera faces directly into the centre of the trap at a
vacuum window which allows light to escape.

2.2 RAC-MOT Configuration

I will explain the hardware configuration by starting simply and adding layers of complexity. A
complete hardware diagram is available at the end of this section. The reader may want to read the
section, take a look at the diagram, then read the section again to obtain a solid understanding.

2.2.1 How to produce the desired waveform

The goal of reconfiguring the hardware is to produce a waveform like the one shown in Figure 6,
which I will refer to as the RAC-MOT waveform. The simplified version goes like this:

12



1. The Matsusadas are set to voltage output mode.

2. The SRS is set to external trigger burst mode. Upon receiving a rising edge at the trigger
input, the SRS will output one period of a sine wave (usually set to a frequency of 250 Hz,
or a period of 4 ms).

3. The BK is set to output a square wave which simulates a TTL signal (0 to 5 V) with an
adjustable duty cycle. I will call this waveform the BK TTL. The frequency of this square
wave must be less than the frequency of the SRS sine pulse (less than 250 Hz in normal
operation). We generally used around 210 Hz.

4. The output of the BK is hooked up to the external trigger input of the SRS and the amplitude
modulation input of the SRS.

5. When the SRS receives a rising edge of the square wave from the BK, it will output its one-
period sinusoid. This sinusoid is amplitude modulated by the BK’s square wave. The duty
cycle of the square wave may be adjusted to set the time at which the sinusoid is shut off.

6. The output of the SRS is fed to the input of the Matsusadas

Notice in Figure 6 that the current output of the Matsusadas (blue) does not perfectly match
the input waveform from the SRS. This is because the Matsusadas are in voltage control mode and
they drive a significantly inductive load. The voltage output of the Matsusadas does look like the
pink waveform of Figure 6. The current output is related to the voltage output by convolution
with the impulse response function of the coils, which has the form

h(t) =
1

L
exp(−Rt/L) (30)

where L is the self-inductance of the coils and R is the resistance. This smooths out the waveform
to produce the blue waveform of Figure 6.

This is the reason for having a negative overshoot on the sinusoid produced by the SRS. The
duty cycle of the BK TTL signal can be adjusted to ensure the negative overshoot exists for just
such a time as to make the current output of the Matsusadas zero during the optical pumping time.
Otherwise, the exponential decay of the current in the Matsusuadas will cause the magnetic field
to be non-zero during the optical pumping time.

The reason we do not simply use the Matsusadas in current output mode is because they appear
not able to handle such an inductive load at high currents. One will see damped oscillations at the
edges of a waveform which turns on or off quickly.

Another thing to note is that although in the mathematical analysis we assumed a period of 4
ms, with the trapping phase and optical pumping phase being 2 ms each, this is not how it always
works out in practise. The trapping phase is more like 2.9 ms long because of the rather sluggish
response of the coils, while the optical pumping phase is usually kept a bit shorter, at around to
1.9 ms long. The reason for this is made clear later in the report.
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2.2.2 Timing considerations

The preceding is not the whole story, however. The main trap will slowly lose atoms because of
collisions which eject atoms from the trap. We will need to regularly replenish the trap with more
atoms, and for this we must alternate between catching atoms pushed over from the small trap —
which requires a strong DC field — and running the waveform shown in Figure 6.

The Pi controls this process and its timing. Of particular interest to us is a logic output pulse
from the A0 pin of the Pi (in the Pi code, this pin is given the name ACMOT). The pulse from the
A0 pin is only a few tens of milliseconds long: it is fed into an LRS box which lengthens the pulse
to be approximately 480 ms long. I will refer to this longer 480 ms pulse as the A0 pulse. This
pulse is used to start and stop the RAC-MOT waveform; the waveform should start on the rising
edge of the pulse and stop on the falling edge.

The (480 ms) A0 pulse is monitored by the Pi on an input pin. While the pulse is high, the Pi
simply waits. When the pulse falls to low, the Pi knows the RAC-MOT waveform is finished, and
it moves on to the next part of the control code.

The question is: how do we ensure the RAC-MOT waveform only runs while the A0 pulse is
on? Look back at step 4 of the preceding list. Instead of hooking up the BK TTL directly to the
external trigger input of the SRS, we run it over to an LRS box and take the logical AND of the BK
TTL and the A0 pulse (in practise, we have blanked the BK TTL with (NOT A0), which amounts
to the same thing). We send this logic signal, (BK TTL AND A0), to the external trigger input of
the SRS. We leave the BK TTL directly amplitude modulating the SRS, however.

This way, the SRS will only be triggered while the A0 pulse is high; if the A0 pulse is low, (BK
TTL AND A0) will be low and the SRS will not be triggered and will output nothing. While A0
is high, (BK TTL AND A0) is logically equivalent to BK TTL alone and the waveform will run
normally. The reason we use the BK TTL output directly to amplitude modulate is because the
A0 pulse falls during the final period of the RAC-MOT waveform. If we used (BK TTL AND A0)
to amplitude modulate, the final period of the waveform would be messed up.

To ensure that the BK TTL signal begins precisely with the A0 signal, we set the BK in
externally triggered burst mode and hook up A0 to the trigger input of the BK. The number of
square wave cycles to output upon a trigger is set to be sufficient to cover the entire length of the
A0 pulse. For example, if the period of the square wave is 4 ms, since the length of the A0 pulse
is 480 ms, one should set the BK to output 480/4 = 120 cycles upon a trigger.

2.2.3 Driving the AOMs

The AOMs which feed trapping laser light to the main trap must be on during the catching phase,
while the small trap pushes over atoms to the main trap. During the RAC-MOT waveform, the
AOMs must be on when trapping is desired (while the sinusoidal pulse is on) and off during the
optical pumping time. The AOMs may be shut on and off by a set of switches which pass or block
the electrical signal that drives the AOMs.

While the A0 pulse is high, the AOMs should follow the BK TTL. While the A0 pulse is low, the
AOMs should be on all the time. This is accomplished by creating the following logic combination
with the LRS boxes and sending it to the aforementioned switches: (BK TTL OR (NOT A0)).

Note that in practise, while the RAC-MOT is running, the AOM is not fed directly by the BK
TTL; rather, the rising edges of the BK TTL trigger a logic pulse sent to the AOM switches. The
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Figure 7: Diagram of the hardware setup for the RAC-MOT.

timing of this logic pulse is not set by the BK TTL, but by the LRS box which produces the logic
pulse. The length must be set manually to synchronize with the BK TTL duty cycle.

2.2.4 Full diagram

See Figure 7 for a diagram which summarizes the preceding description of the hardware. I have
used a shorthand notation for logic. A · B denotes (A AND B), A + B denotes (A OR B), and Ā
denotes (NOT A). Note that the inputs for the BK and SRS are on the back of the boxes and the
outputs on the front. Also note that the signal exiting the Pi and exiting the LRS are both called
A0, although technically the signal exiting the Pi is a shorter pulse. As soon as the signal enters
the LRS box, assume it is lengthened to the usual 480 ms.

3 Characterizing the RAC-MOT

We tested several measures of performance to determine how well the RAC-MOT functions to trap
atoms. These measurements serve as useful diagnostics: one might test potential trap improvements
by repeating these measurements. In describing these tests, I will break each down into four parts:
what we wanted to measure, how we measured it, how to do it yourself, and the results of the
measurement. Each measurement required tweaking the experiment’s software, so it is necessary
to first become acquainted with the existing code.

For all these measurements, we used stable potassium-41, obtained by sublimation from a solid
source. The main results of each measurement may be found in the folder Measurements/.
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3.1 A Primer on the Software

Let us begin by examining the existing software. There are three machines to be aware of: the
Pi and two laptops. One laptop, trinatlt2, controls the IR camera. The other laptop, trinatlt3, is
used by the experimenter to access the Pi and trinatlt2 from one location.

When running a measurement, use trinatlt3 to access trinatlt2 and the Pi with the command
ssh. You will want two terminals open: one for the connection to each machine.

The Pi contains the main control code under the folder RunTrapSequence cp. The shell
script StartSequenceRAC.sh will do several things when called:

1. Run the code on trinatlt2, which will capture and store a picture whenever the IR camera
receives a trigger from the Pi.

2. Run the trap sequence code on the Pi.

3. Open an instance of Physica on trinatlt3 which will display the pictures stored on trinatlt2
as they are taken.

The trap sequence code on the Pi is C++ code whose name begins with TrapSeq cp3. This is
the code we were modifying (actually, making copies of, then modifying) to change the behaviour
of the trap system to make desired measurements. One must also modify the file params.txt on
the Pi, which contains a list of trap parameters. Of chief importance to us for these measurements
were:

Max n The TrapSeq cp3 code increments a variable n each time the main trap completes a
cycle of capturing from the small trap and running the RAC-MOT waveform. This variable
is used for stepping through values of some quantity, if desired, like the laser frequency. The
variable Max n determines the maximum value of n before resetting back to one.

NumPulses This variable determines how many pulses of the push-beam are used to send atoms
from the small trap to the main trap. The greater this value, the more atoms will be pushed
over each cycle.

ABDAC0Shift The frequency of the laser light which arrives at the main trap is determined by
several AOMs which shift the frequency of the light. This variable is the voltage value output
by a DAC which determines the frequency shift of one of these AOMs.

The reader should now be familiar enough with the operation of the trap to understand the
following terms I will use throughout the remainder of the report. I will use the term period to
refer to a single period of the RAC-MOT waveform (lasting 4.8 ms). The term cycle refers to a
single iteration of catching atoms from the small trap and running the RAC-MOT waveform for its
full 480 ms — in terms of the software, every time the variable n increments, one cycle has passed.
A run consists of Max n cycles, after which n resets to 1.

The laptop controlling the camera, trinatlt2, records the pictures taken by the camera in arrays.
These arrays are saved as plain-text files with the name cp*.out, where the asterisk denotes the
picture number. These files, as well as all the code run by trinatlt2, exists in a rather buried folder
whose name I have stored in an environment variable on trinatlt2 called fly. Simply enter cd $fly
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in the command line on trinatlt2 to be taken to the folder3. You will probably want this to be your
working folder from the connected terminal on trinatlt3.

In this same folder is another file called params.txt. These parameters, however, are for the
camera operation. The only one of relevance for our purposes is expTimems, which controls the
exposure time of the camera.

After an experiment has been run and pictures are stored on trinatlt2, you will want to copy the
pictures to another computer for storage. I have created two terminal functions for this purpose.
In the fly folder, enter mvdata in the command line to move all the pictures to a sub-folder data/
which will be created automatically (note that if this sub-folder exists already it will be destroyed).
On the blue HP-Stream Notebook you are doubtlessly reading this on, use the command yankdata

to copy the pictures from that data/ sub-folder created on trinatlt2 to your machine (obviously,
you will have to be connected to the network). yankdata requires one argument, a folder name.
yankdata will create a folder of this name in the current directory and put all the pictures there.
You will have to enter the password of trinatlt2 to access it.

In each section of “how to do it yourself,” I will list the relevant files which must be changed to
run the code. The format of these listings will be (machine):(filename). The (filename) will only
be the end of the file name, not the fully directory name, since there is only one relevant directory
for each machine: the ones previously mentioned. For example, Pi:StartSequenceRAC.sh refers
to the file /home/pi/RunTrapSequence cp/StartSequenceRAC.sh on the Pi.

The exception to this convention is in the naming of the Physica code used to analyze the data.
The code will be referred to by llawrence:[Physica code].pcm. You will find the Physica code
in the folder PhysicaCode/. Please refer to the Physica code itself for an explanation of how to
use it; I have included comments in the code.

3.2 Lifetime Measurements

3.2.1 What did we want to measure?

A MOT will lose atoms naturally because of collisions with gas particles in the imperfect vacuum,
collisions with high-temperature atoms in the trap, and light assisted collisions [1]. For low densities
(not too many atoms in the trap), the former two mechanisms dominate. In this regime, the number
of atoms in the trap as a function of time, n(t), is well-described by the following differential
equation:

dn

dt
= L− λn. (31)

The constant λ is the characteristic loss rate. For multiple sources of loss, each with their own rate
λi, the total loss rate λ will be the sum of all the λis. The constant L is the rate at which atoms
are added to the trap. If there is no loading mechanism, then L = 0 and the solution to the above
equation is:

n(t) = n(0) exp(−t/τ) (32)

where τ = λ−1 is the lifetime of the trap. The number of atoms in the trap decays exponentially
in time. The longer the lifetime, the better the trap. For this reason, our first set of measurements

3The folder’s full name, for reference, is:
/home/trinat/flycapture/flycapcode/src/cpAsyncTriggerEx/
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consisted of lifetime measurements of the trap with the RAC-MOT waveform, to determine the
trap’s effectiveness. We also measured the lifetime of the trap with a DC magnetic field (always
on) immediately afterwards to compare.

These lifetime measurements give us a way of optimizing the trap, as one may measure the
lifetime for different trap parameter settings (e.g laser frequency) and determine the configuration
of the trap which gives the greatest lifetime.

3.2.2 How did we measure it?

The basic idea is this: load the main trap with a large number of atoms (pushed over from the small
trap), then take a series of pictures with the IR camera of the atoms’ fluorescence while the main
trap runs and the number of atoms decays exponentially in time. The total collected light from
the cloud is proportional to the number of atoms in the trap, and this series of pictures therefore
gives a measure of the number of atoms in the trap as a function of time.

To compare the RAC-MOT lifetime to the lifetime of a DC trap, the code will run the RAC-
MOT for a given time, then switch over to a DC trap and repeat the measurement.

We use a Physica code to extract the total fluorescence as a function of time from the pictures
and fit decaying exponentials. The time constant of these exponentials is the lifetime of the trap.

We repeated these measurements for various values of laser frequency, power, and optical pump-
ing time.

3.2.3 How can you do it yourself?

Relevant files:

Pi:StartSequenceRAC.sh Shell script which begins the Pi code and the camera code.

Pi:TrapSeq cp3 RAC lifetimes ABDAC1toBDC C++ code for the Pi to run.

Pi:params.txt System parameters.

trinatlt2:params.txt Camera parameters.

llawrence:lifetimes.pcm Physica code to extract RAC and DC lifetimes from the measurement.

Recipe:

1. Open StartSequenceRAC.sh and change the code called on the Pi. The instruction may be
found at the bottom of the file: change it to sudo ./TrapSeq cp3 RAC lifetimes ABDAC1toBDC.

2. Open the params.txt file on the Pi and change NumPulses to 3. This ensures that plenty of
atoms are pushed over from the small trap to the main trap at the beginning of each lifetime
measurement. The variable Max n for this code determines how many cycles are run for a
lifetime measurement — note that the RAC-MOT and DC-MOT are run immediately after
each other, and the maximum number of cycles Max n is split between them. That is, if
Max n is 60, then the RAC-MOT will run for 30 cycles, then the DC-MOT will run for 30
cycles, then the code repeats.
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Table 1: Relationship between ABDAC0Shift variable and the frequency shift of the laser from
the corresponding AOM, as measured in the lab. Note I have listed the frequency shift divided by
two, since the laser passes through this AOM twice. The first value has been linearly interpolated
from the other values.

ABDAC0Shift Value Frequency Shift/2 (MHz)
1.24 67.5 (interpolated)
1.29 68.52
1.34 69.57
1.39 70.48
1.44 71.49

3. Open the params.txt file on trinatlt2 and change the exposure time, expTimems to 25.0.

4. Call ./StartSequenceRAC.sh from the command line on the Pi to start the code.

5. The code will run indefinitely; type q and press Enter on trinatlt3 to stop the measurement.

6. Call mvdata on trinatlt2 and yankdata [folder name] on the HP-Stream.

7. Enter the folder you just created with yankdata, where the copied pictures reside, and run
Physica. Execute the code lifetimes.pcm.

3.2.4 What were the results?

First, it bears mentioning that for some reason the lifetime is systematically worse for the first run.
After the first run, the lifetime is fairly consistent for subsequent runs.

A typical lifetime plot upon running the Physica code resembles that shown in Figure 8. We
tested the dependence of the lifetimes upon: laser frequency, laser power, and optical pumping
time. See Figures 9, 10, and 11 for the plots.

A few things should be said for each. The laser frequency is set by the variable ABDAC0Shift
in the params.txt file on the Pi. I have included a table below which shows the correspondence
between the value of ABDAC0Shift and the frequency shift divided by two. See table 1.

The laser power is controlled by a digital attenuator which sets the power in the electrical signal
sent to the AOMs, which determines how much laser power is present in the first-order diffracted
light (sent to the trap). The integer variable in the Pi code called istep, ultimately determines
how much the laser power is attenuated. If istep is zero, the laser power is not attenuated. The
laser power decreases monotonically (but not linearly) with increasing istep. We only took three
measurements, using istep equal to 0, 1, and 2. This corresponds to roughly 100% power, 75%
power, and 50% power respectively. At 100% power, the laser power is approximately 200 mW.

The optical pumping time is simply the time in between pulses of the RAC-MOT sinusoid. This
may be adjusted by changing the frequency and duty cycle of the BK TTL. Notice that the lifetime
drops dramatically when the optical pumping time is greater than about 2 ms. For this reason, the
optical pumping time has been kept at around 1.9 ms, as stated previously.

19



Figure 8: Typical plot of atom fluorescence versus time in a lifetime measurement with a log scale
on the y-axis.

Figure 9: Plot of lifetime versus laser frequency (the frequency is given as an offset from the
resonant transition F = 2 to F = 3 for potassium).
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Figure 10: Plot of lifetime versus laser power. The laser power is given relative to the maximum
laser power (normalized to 1).

Figure 11: Plot of lifetime versus optical pumping time. Note that the DC values are plotted too,
though “optical pumping time” is meaningless in the context of a DC trap. The values are plotted
purely to show that the trap performance is not systematically changing for measurements made
at different times.
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3.3 Cloud Shape Measurements

3.3.1 What did we want to measure?

The IR camera is capable of taking exposures of around 90 µs at minimum. Since the trapping
time for the RAC-MOT waveform is 2.9 ms, there exists the possibility of taking pictures during a
single period of the RAC-MOT waveform and watching the cloud coalesce. We wanted to see how
the width and centroid of the cloud changed over the course of a single trapping period.

We also took longer exposures to see if there was any variation in the cloud width and centroid
over the full 480 ms cycle of the RAC-MOT (ideally, the cloud parameters should stay fairly
constant). These longer exposures average the light collected from several periods of the RAC-
MOT waveform.

3.3.2 How did we measure it?

Since the Pi simply waits after it sends the A0 signal telling the RAC-MOT to run a cycle, the Pi
can be programmed to take a picture at a certain time in the cycle.

For the longer exposures, we used an exposure time of 25 ms — this averages the light over
approximately 5 periods of the RAC-MOT waveform. We took 12 photos over a cycle of the RAC-
MOT, each one at a different time in the cycle. To accomplish this, we made use of the variable n in
the Pi code I mentioned previously (recall that n increments by one each time a cycle is complete,
until it reaches Max n, at which point it is reset to 1). We did not take all 12 photos within the
same cycle; rather, we set Max n to 12 and every time a new cycle was initiated, the Pi was made
to delay by 35× n ms and then take a picture.

For the short exposures meant to capture the cloud formation during a single period of the RAC-
MOT waveform, we used an exposure time of 0.5 ms. We took 6 photos over a period (2.9 ms),
each one at a different time in the period. We used a similar strategy to the previous measurement,
except that to ensure the timing was just right, we had the Pi monitor the BK TTL. After the first
5 periods had passed, the Pi would wait for the rising edge of the BK TTL, indicating the next
period was about to begin. The Pi was made to wait 0.5×n ms following the rising edge and then
take a picture.

We use a Physica code that takes vertical and horizontal projections of these pictures and fits
a Gaussian function to both. The mean of the Gaussian gives the centroid value in that direction
and the standard deviation of the Gaussian is taken as a measure of the width.

3.3.3 How can you do it yourself?

Relevant files:

Pi:StartSequenceRAC.sh Shell script which begins the Pi code and the camera code.

Pi:TrapSeq cp3 RAC cloudshape C++ code for the Pi to run for the long exposures for mea-
suring the cloud shape over a cycle.

Pi: TrapSeq cp3 RAC cloudshape 1period C++ code for the Pi to run for the short expo-
sures for measuring the cloud shape over a period.
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Pi:params.txt System parameters.

trinatlt2:params.txt Camera parameters.

llawrence:cloudparams gaussian.pcm Physica code to extract the cloud centroid and width
from the pictures.

llawrence:cloudparamsplot gaussian.pcm Physica code to plot the centroid and width as a
function of time using the output data from cloudparams.pcm.

Recipe:

1. Open StartSequenceRAC.sh and change the code called on the Pi. The instruction may be
found at the bottom of the file: change it to sudo ./TrapSeq cp3 RAC cloudshape or sudo

./TrapSeq cp3 RAC cloudshape 1period.

2. Open the params.txt file on the Pi and change NumPulses to 1. The variable Max n for
this code determines how many pictures are taken within a cycle or period. For pictures over
the entire cycle, change Max n to 12. For pictures over a single period, change Max n to 6.

3. Open the params.txt file on trinatlt2 and change the exposure time, expTimems to 0.5.

4. Call ./StartSequenceRAC.sh from the command line on the Pi to start the code.

5. The code will run indefinitely; type q and press Enter on trinatlt3 to stop the measurement.

6. Call mvdata on trinatlt2 and yankdata [folder name] on the HP-Stream.

7. Enter the folder you just created with yankdata, where the copied pictures reside, and run
Physica. Execute the code cloudparams gaussian.pcm then cloudparamsplot gaussian.pcm.

8. After the first run of cloudparams gaussian.pcm, you only need to run cloudparam-
splot gaussian.pcm in the future to see the final results.

3.3.4 What were the results?

See Figures 12 and 13 for typical plots of the cloud parameters over one cycle and one period
respectively. Each image contains four plots. The rows are organized by direction (x and y) and
the columns by parameter (centroid and width). For example, the upper-right-hand plot shows
the width in x. The white error bars indicate an uncertainty of the mean and the red error bars
indicate the deviation of all samples taken at the same point in the cycle or period. See the Physica
code for more details.
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Figure 12: Cloud parameters as a function of cycle time using the usual half-sinusoid for the
RAC-MOT waveform. The cloud parameters should be fairly constant over the duration of the
cycle.

Figure 13: Cloud parameters as a function of period time using the usual half-sinusoid for the
RAC-MOT waveform. The cloud should crunch down over the period (the width in x and y should
decrease).
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Figure 14: Plot of the lifetime of the trap versus the current in the main coils (and therefore the
magnetic field strength) for a DC trap.

4 Magnetic Field Strength Considerations

The measurements described in the previous section, lifetime and cloud shape, serve as diagnostics
for testing trap improvements. This section is one example of how we used these measurements to
learn something about the behaviour of the trap.

The strength of the trap has an interesting relationship with the magnetic field strength. We
took lifetime measurements of the DC trap for different settings of DC current in the main coils.
The results are shown in Figure 14. There is a clear cut-off between 15 and 20 amps, below which
the trap is very poor.

The RAC-MOT waveform during the trapping time spends a significant time at currents lower
than this cut-off current. We attempted several variations on the usual waveform to make it spend
less time at lower fields. We tried voltage waveforms which produce current waveforms in the
Matsusadas as shown in Figure 15. I will refer to the black, red, and green waveforms as the sine,
square, and sine-boost waveforms respectively (named for the input voltage waveforms, not the
shape of the resultant currents).

Though the sine-boost waveform looks very ragged, the current does rise quickly above the
cut-off current, and it was hypothesized that this might do a little better than the pure sine.

We took lifetime measurements for each of these waveforms. The results are shown in Table 2.
We also took measurements of the cloud shape for each waveform; the plots are shown in Figures
16, 17, and 18.

Based on the lifetime and cloud shape measurements, we see that the sine-boost waveform
does not perform as hoped: we do not get improved performance from the faster rise time (less
time spend below the cut-off current). However, the square wave performs remarkably well, better
than the other two waveforms in both lifetime and final cloud width (smaller width). The power
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Figure 15: Current waveforms in Matsusada coils. The black waveform is the result of a sinusoidal
voltage waveform. The red waveform is the result of a square voltage waveform. The green waveform
is the result of the sum of a sinusoidal waveform and a boost pulse at the start of the sinusoid.
Note that for the latter, the Matsusadas were in current output mode and the trapping time and
off time were equal (2 ms).

Table 2: Best lifetime from a set of lifetime measurements for each of the aforementioned waveforms.

Waveform Best Lifetime (s)
sine 9.6

square 11.3
sine-boost 7.4
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Figure 16: Cloud shape measurements for the sine waveform.

Figure 17: Cloud shape measurements for the square waveform
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Figure 18: Cloud shape measurements for the sine-boost waveform.

coupling for this waveform is unknown — if this waveform is to be used in the future, someone
should calculate the relative power coupling using the technique described in the first section of
this report.

A final note on the lifetimes and their relation to the magnetic field strength: is there a way
one could calculate in advance the lifetime of the trap subject to a given waveform? The lifetime
of the trap is usually on the order of seconds, while the current in the main coils varies over the
course of milliseconds. It is a well-known fact from the theory of linear systems that if a first-order
system is subject to a periodic input whose period is much less than the system’s time constant,
the system is unable to resolve the rapid fluctuations. The output will be indistinguishable from
that produced if the input were replaced by a DC value equal to the waveform’s average value.

Perhaps a similar principle applies to our MOT for a certain regime of waveform in the main
coils. That is, the rapid fluctuations of the trapping forces (due to the rapid fluctuation of the
current) is not resolvable by the trap loss mechanisms, and it is only the average trapping force
that matters. If this is the case, we could predict the lifetime by calculating the average current
for a given waveform and comparing this value to the plot of Figure 14.

We already have a source of data we can use to test this idea: we took lifetime measurements
as a function of optical pumping time (see the previous section). We may calculate the average
current of a function f(t) with period 2T like so:

Iavg =
1

2T

∫ T

−T
f(t) dt. (33)

The average value A sin(t) over half its period is 2A/π. To obtain the average value for the RAC-
MOT waveform, one must multiply by the duty cycle: the ratio of the trapping time to the entire
period (trapping time plus optical pumping time). Let the trapping time be ttrap and the optical
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Figure 19: A plot of the lifetime versus average current. In black are the DC measurements
and in red are the equivalent average currents calculated for the different optical pumping time
measurements.

pumping time be topt. The duty cycle is:

D =
ttrap

ttrap + topt
. (34)

The average current is:

Iavg =
2A

π

ttrap
ttrap + topt

(35)

As mentioned previously in this report, the amplitude is 56 amps and the trapping time is 2.9 ms.
The optical pumping times measured are shown in Figure 11. From these values, we calculate the
average current and plot the measured lifetime (from Figure 11) against the average current, along
with the DC measurements of Figure 14. The results are shown in Figure 19.

There appears to be agreement here, given the optical pumping time measurements were taken
more than a month before the DC field measurements and any number of things may have changed
in the interim. More testing would have to be done, but if this relationship holds, it would provide
a quick method of evaluating the efficacy of waveforms for trapping purposes.

This section concludes the description of the work done on the RAC-MOT during the summer
of 2016. The remaining sections are a collection of miscellaneous ideas I had over the summer
related to the TRINAT experiment.

5 Fast Shut-off of the Quadrupole Field

While the RAC-MOT waveform helps with the heating problem in the chamber, there still remains
the question of how to minimize the eddy currents during the optical pumping time (these eddy
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Figure 20: Ideal current waveform in main coils to kill the eddy currents.

currents lead to a magnetic field which spoils the polarization of the atoms). One proposal is to
allow the current in the main coils a brief negative overshoot before turning off the Matsusadas —
see Figure 20.

One can understand the idea intuitively like so: roughly, the eddy currents are proportional to
the derivative of the current waveform in the main coils. While the sinusoid in the main coils has a
negative slope, the eddy currents will be induced in one direction. If the sinusoid is brought to zero
from its positive value (no overshoot), the eddy currents will decay exponentially from whatever
value they had before the shut-off of the coil current. However, if the current is allowed to overshoot
negatively and then shut off, the derivative during the shut-off has a positive slope, inducing eddy
currents in the opposite direction and cancelling the existing eddy currents. One could imagine
tuning the timing of this negative overshoot in the lab to minimize the residual magnetic field from
the eddy currents.

Unfortunately, there is a practical problem: the current in the main coils will itself decay
exponentially because of the inductance of the coils. This current would also produce a non-dipole
field (obviously) during the optical pumping time, spoiling the polarization. The way the electronics
is set up now, if you shut off the driving waveform to the Matsusadas after a negative overshoot,
the current in main coils would not look like that shown in Figure 20, but more like that shown in
Figure 21.

The main coils each form an LR circuit which limits the maximum rate of change of the current:

L
di

dt
= −iR (36)

The solution to this differential equation yields the exponentially decaying current seen in Figure
66:

i(t) = i(0) exp

(
−tR
L

)
(37)
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Figure 21: The current waveform in the main coils upon shut-off decays exponentially because of
the inductance of the coils.

So how can we improve this situation and hopefully obtain a current closer in character to that
shown in Figure 20?

Notice what equation 36 says: since di/dt is proportional to the voltage across the coils, the
maximum rate of change of the current is the product of the initial current i(0) and the resistance
R through which that current flows (generating a voltage). The voltage across the coils decreases
as the current decays, which lessens di/dt over time, and leads to the leisurely exponential decay.
Suppose we could pin the voltage across the coils at a given value? Then di/dt would be constant,
and the current would ramp down linearly. If this pinned voltage is equal to or greater than i(0)R,
this circuit would lead to a lower current at every point in time as compared to the LR circuit.

This idea comes from The Art of Electronics, page 53, in a discussion about inductors: “For
fastest decay with a given maximum voltage, a zener could be used instead, giving a ramp-down of
current rather than an exponential decay” [5]. A zener diode is a common component often used to
clamp a voltage to a maximum value. The book goes on to mention the use of a metal-oxide varistor
(MOV), which essentially acts as a bi-directional zener. Approximately, a MOV will conduct no
current below a certain threshold voltage (I’ll call it the clamping voltage); above this clamping
voltage, the MOV acts like a short with a voltage source at the clamping voltage.

In the context of this experiment, consider Figure 22. Assume we are running the RAC-MOT
waveform, and let us consider what happens during the trapping time and the optical pumping
time.

During the trapping portion of the cycle, the Matsusadas output a voltage waveform. The BK
TTL is high, so the relay switch is closed. Suppose the MOV is selected such that its clamping
voltage, Vclamp is above the maximum voltage output of the Matsusadas. This should not be a
problem, as MOVs are available at “voltage ratings from 10 to 1000 volts and can handle tran-
sient currents up to thousands of amperes” [5]. During the trapping time, then, this circuit acts
identically to the original circuit; one can ignore the relay and the MOV.
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Figure 22: Sketch of circuit for fast shut-off of current in coils.

Now, when the optical pumping time begins, the BK TTL falls low, and the relay switch is
opened. If there is still current flowing through the coils when this happens (i.e. if we allow the
current a negative overshoot just before the optical pumping time), then the voltage across the
coils will build and build as the the inductor looks for a way of pumping out the current. When
this voltage exceeds Vclamp, the MOV “turns on” and the current may flow through this path, with
the voltage across the coils clamped at Vclamp. The current in the coils will plunge to zero linearly,
decaying to a negligible value faster than if the coils were made to pump out their current through
the resistor.

I propose using such a circuit would allow the current waveform to resemble that shown in
Figure 20 more closely, and the eddy currents could be killed before the optical pumping time
begins as described previously. Note that the MOV would have to be chosen such that Vclamp is
higher than the maximum voltage output of the Matsusadas, but lower than the sparking voltage
of the relay; otherwise, the current will jump across the open relay switch. You would want it as
high as possible, though, for the fastest ramp-down of the current.

6 Ballistic Cloud Expansion and the Boltzmann Equation

In section 4.6.4 of Dan Melconian’s doctoral thesis, he considers the ballistic expansion of the atom
cloud when the trapping forces are turned off, and determines an expression for the relationship
between the width of the atom cloud as a function of time and the temperature of the atoms [6].
Assuming the cloud begins as a 3-dimensional Gaussian, he proposes that the cloud will expand as
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a 3-dimensional Gaussian with a variance given by:

σ2(t) = σ2
0 +

1

2
v20t

2 (38)

where σ2(t) = (σ2
x(t), σ

2
y(t), σ

2
z(t)) is a vector of the variances in x, y, and z; σ2

0 is the initial variance
vector; and v0 is the most probable velocity of atoms in the gas. For a gas in thermal equilibrium,
the most probable velocity is related to the temperature like so:

v20 =
2kBT

m
(39)

where m is the mass of the atoms.
Dr. Melconian shows equation 38 to be reasonable using Monte Carlo simulations of cloud

expansion for a given temperature. Claire Preston used his results to measure the temperature of
the atom cloud by taking short-exposure pictures of the cloud after the trapping forces are turned
off and fitting Gaussians to the x and y projections of the image. The temperature of the cloud is
related to the variance of these projections, σ2, as a function of time like so:

T =
m

kB

d(σ2)

d(t2)
(40)

which may be easily shown from the previous equations.
I thought it would be interesting to try to derive equations 38 and 40 from basic theory to

corroborate the simulation results. Derivation from basic theory might also give more insight into
the physics. The following is what I came up with.

6.1 The Boltzmann Equation

We shall describe an ensemble of classical particles (all of mass m) by a single density function
f(x; p; t) defined over the 6-dimensional phase space of the particles — 3 dimensions for the position
coordinates, 3 for the momentum components — at each point in time. Suppose we select a particle
at random. The probability that our selected particle lies between positions x = (x, y, z) and
(x+ dx, y + dy, z + dz) with momentum between p = (px, py, pz) and (px + dpx, py + dpy, pz + dpz)
at time t is:

f(x, y, z; px, py, pz; t)dxdydzdpxdpydpz (41)

The Boltzmann equation describes the evolution in time of this density function when the
particles are subjected to an external force field K (this could be an applied electric field, for
example). Here is a sketch of the derivation for one spatial dimension with f = f(x; px; t). The
underlying ideas are quite simple, making the resultant equation all the more elegant.

Consider the particles which exist at a certain point in phase space, with position x and momenta
px. To where in the phase space do the particles move after a time δt? Assume there are no collisions
(the particles do not interact).

Because of their momenta, the position of the particles will be changed to:

x+
px
m
δt (42)
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(using the Newtonian definition of momentum px = mvx). Because of the external force field, the
momenta of the particles will be changed to:

px +Kδt. (43)

In the context of our density function:

f(x; px; t) = f(x+
px
m
δt; px +Kδt; t+ δt) (44)

The density which at time t existed at (x; px) may be found at time t+ δt at (x+ px
m
δt; px +Kδt).

We expand the right-hand side in a Taylor series:

f(x; px; t) = f(x; px; t) +
∂f

∂x

px
m
δt+ . . .+

∂f

∂px
Kδt+ . . .+

∂f

∂t
δt+ . . . (45)

The ellipses denote the higher-order terms in the series (all containing terms of (δt)2 or higher).
We cancel the term f(x; px; t) on both sides, divide by δt, and take the limit as δt→ 0. The result
is the collision-less Boltzmann equation in one dimension.

∂f

∂t
+
px
m

∂f

∂x
+K

∂f

∂px
= 0 (46)

This generalizes naturally to 3 spatial dimensions:

∂f

∂t
+

p

m
· ∇xf + K · ∇pf = 0 (47)

The effect of collisions is to add a forcing term to the right-hand side of the equation. We are only
interested in ballistic expansion here (no collisions), so I will consider this term to be zero4.

6.2 Ballistic Expansion

We now apply the Boltzmann equation and density function to describe the ballistic expansion of
a cloud of particles with no external force field present. We assume the particles have a known
initial density. Since we assume no external forces, the last term in equation 47 drops out. We are
left with:

∂f

∂t
+

p

m
· ∇xf = 0. (48)

Since we do not need to consider forces, let us use velocity instead of momentum so that f =
f(x; v; t), and the preceding equation becomes:

∂f

∂t
+ v · ∇xf = 0. (49)

4An interesting aside: you can show that this term is zero for point particles which interact under elastic collisions,
since the only effect of a collision is to swap the velocities. Swapping velocities is equivalent to the particles passing
right through each other for our density function f , which only measures the number of particles at a given point
in phase space. So a group of elastically-colliding point particles is the same as a group of non-interacting point
particles.
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Let the expansion begin at time t = 0. Suppose we have initial conditions f(x; v; 0) = φ(x; v).
Since there are no forces and no collisions to change a particle’s velocity, the density will not change
in the velocity coordinates over time. Additionally, a particle which is located at x0 at t = 0 will
be located at x0 + vt at time t. The general solution to equation 49 is thus:

f(x; v; t) = φ(x− vt; v). (50)

This satisfies the initial conditions and the differential equation, since

∂f

∂t
=

∂

∂t
φ(x− vt; v) = −v · ∇xf (51)

and
f(x; v; 0) = φ(x; v). (52)

In the lab, we are often not interested in f per se, since we generally measure position density
only and not velocity density. That being the case, we wish to determine the marginal density of
f with respect to the position variables of x — I will call this marginal density g(x; t). This is
done by integrating over the velocity variables. It turns out this integration takes on a simple and
illuminating form if we use Cartesian coordinates and make the assumption that the initial density
is separable in every variable. That is, we assume we may write the initial density like so:

φ(x; v; t) = X(x)Y (y)Z(z)Vx(vx)Vy(vy)Vz(vz) (53)

(you will see that this is a good assumption for our purposes). Let this be the case, and integrate
out the velocity variables from the solution of f to obtain g (the limits of integration are (−∞,∞)).

g(x, y, z; t) =

∫
φ(x− vt; v) d3v (54)

=

∫ ∫ ∫
X(x− vxt)Y (y − vyt)Z(z − vzt)Vx(vx)Vy(vy)Vz(vz) dvxdvydvz (55)

=

∫
X(x− vxt)Vx(vx) dvx

∫
Y (y − vyt)Vy(vy) dvy

∫
Z(z − vzt)Vz(vz) dvz (56)

Each of these separated integrals has the same form, so consider just the one in x. Make the
substitution u = vxt. ∫

X(x− vxt)Vx(vx) dvx =
1

t

∫
X(x− u)Vx

(u
t

)
du (57)

The right-hand side of this equation is a convolution integral! Recall that the convolution of two
functions f(x) and g(x) is defined by:

f(x) ∗ g(x) =

∫
f(x− u)g(u) du (58)

The integral in equation 57 is simply:

1

t
X(x) ∗ Vx

(x
t

)
(59)

And therefore, the marginal density g(x, y, z; t) is given by:

g(x, y, z; t) =
1

t3

(
X(x) ∗ Vx

(x
t

))(
Y (y) ∗ Vy

(y
t

))(
Z(z) ∗ Vz

(z
t

))
(60)
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6.3 Expansion of the Atom Cloud

With equation 60, we are suitably equipped to tackle the original problem: to determine the relation
between the width of the atom cloud as a function of time and the temperature of the atoms. We
just need to know the initial conditions and we are set to calculate.

We shall assume the initial velocity distribution to be the Maxwell-Boltzmann distribution, the
classical velocity distribution for an ensemble of particles in thermal equilibrium. Right away, it
must be said that this might be problematic, since the Maxwell-Boltzmann distribution is derived
assuming a gas confined in a box, with no other forces present. The atoms in the MOT experience
a harmonic trapping potential. Dr. Melconian mentions the same thing in his thesis; however, it
appears to be a common procedure to simply assume a Maxwell-Boltzmann distribution, as another
paper I read on the subject does the same thing [7].

The Maxwell-Boltzmann distribution gives the probability of a particle having a velocity be-
tween (vx, vy, vz) and (vx + dvx, vy + dvy, vz + dvz) as:

Pv(vx, vy, vz)dvxdvydvz =

(
1

2πa2

)3/2

exp

(
−
v2x + v2y + v2z

2a2

)
dvxdvydvz (61)

where

a2 =
kT

m
(62)

(note that this notation is different from that used in Dr. Melconian’s thesis).
For the initial position density, we have observed that it is well-described by a three-dimensional

Gaussian. Let the principal axes lie upon x, y, and z.

Px(x, y, z)dxdydz =

(
1

(2π)3/2σ2
xσ

2
yσ

2
z

)
exp

(
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)
dxdydz (63)

Our initial condition is given by the product of Pv and Px — a 6-dimensional Gaussian expressed
along its principal axes. Notice that this initial condition is separable in all variables, as required
by our solution to the Boltzmann equation under ballistic expansion, equation 60. Let us examine
just one of the convolution integrals of equation 60 using this initial condition, the one for (x, vx),
for instance.

1

t
X(x) ∗ Vx

(x
t

)
=

1√
2πσx

exp

(
−x2

2σ2
x

)
∗ 1√

2πat
exp

(
−x2

2a2t2

)
(64)

We see we have the convolution of two Gaussians, one with a variance σ2
x and one with a variance

a2t2! It is well-known that the convolution of two Gaussians with variances σ2
1 and σ2

2 is another
Gaussian whose variance is equal to the sum σ2

1 +σ2
2 (see, for instance, [3]). Therefore, the position

density g(x, y, z; t) is given by:

g(x, y, z; t) =
exp

(
− x2

2(σ2
x+a

2t2)
− y2

2(σ2
y+a

2t2)
− z2

2(σ2
z+a

2t2)

)
(2π)3/2

√
(σ2

x + a2t2)(σ2
y + a2t2)(σ2

z + a2t2)
(65)

The cloud does indeed expand as a 3-dimensional Gaussian, with the variance vector σ2(t) as a
function of time equal to:

σ2(t) = σ2
0 + a2t2 = σ2

0 +
kBT

m
t2 (66)
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Therefore, we may choose any of the principal axes of the Gaussian (x,y,or z) and track the
expansion of the cloud along this axis as a function of time (as Claire Preston did with the x and y
projections of the IR images). From the preceding equation, the measured variance along the axis,
σ2(t), is related to the temperature like so:

T =
m

kB

d(σ2)

d(t2)
(67)

as we set out to prove.

6.4 Some Comments

Although this derivation from basic theory yields the same results as the simulations, it also gives
a little more insight into the problem. I would like to use this section to discuss some of these
insights.

We see that it is something of an accident that the cloud expands as a 3-dimensional Gaussian:
this is not a general property. This is only the case because we have assumed the initial position
density is well-described by a 3-dimensional Gaussian. The convolution of the Gaussian velocity
distribution with the Gaussian position distribution yields another Gaussian whose variance changes
in time. If the initial position density were some other function, the position density of the atoms
upon expansion would not be described by a Gaussian.

What can we say about the expanding cloud if its initial position density is not Gaussian? It is
a general theorem that variances add under convolution [3]. What I mean is this: define the mean
µ and variance σ2 of a normalized function f(x) as

µ =

∫
xf(x) dx (68)

and

σ2 =

∫
(x− µ)2f(x) dx. (69)

Let the variance of f(x) be σ2
f and that of g(x) be σ2

g . If h(x) is the convolution of f(x) with g(x),
then the variance of h(x), σ2

h, is given by:

σ2
h = σ2

f + σ2
g . (70)

Even if the initial position density (and thus the density under expansion) is not well-described
by a Gaussian, so long as that function is separable along the position coordinates, we may still
relate the variance of this function — as defined by equation 69 — along these position coordinates
to the temperature using equations 66 and 67. These expressions are more general than equation
65, and might be useful for future experiments. One could calculate the variance approximately
from a discrete data set (e.g. the projections of the IR camera images) by using

µ =
n∑
i=1

xipi (71)
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and

σ2 =
n∑
i=1

(xi − µ)2pi (72)

where pi is the normalized pixel intensity of pixel xi (normalized in the sense that the sum of all
pixel intensities is one). This would circumvent the need to fit a function to the data, handy if
there is no simple function which fits well.
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