
Upgrading TRINAT Control System and
Optimizing Temperature

G. E. Claire Preston

Work Term Period: May 2015-August 2015
Program: Honours Physics Co-op, McMaster University

Project: TRINAT (TRIUMF’s Neutral Atom Trap)
Supervisor: Dr. John Behr

Supervisor Signature:
Location: TRIUMF, 4004 Wesbrook Mall, Vancouver British Columbia

Date Report: August 21, 2015

1



Contents

1 TRINAT Introduction 2
1.1 Optical Molasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Magneto-optical Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Beta Decay Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 New Trap Control System 4
2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Summary of Previous Work Done . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Experiment Control from Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Camera Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 (Almost) Real-Time Trap Display with Physica . . . . . . . . . . . . . . . . . . . 8

3 Temperature Measurements and Optimization 9
3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Doppler Cooling Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Temperature Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Number Of Atoms in Trap . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.4 Cross Section Calculation - Optical Density Effect on Temperature . . . . 12

3.2 Measurement Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Camera Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Laser Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Laser Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.4 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.5 Number of Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.6 Optical Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Temperature Optimization Results . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Optimizing Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Optimizing Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Optimizing Cooling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.4 AC MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 Achieving Minimum Temperature . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Future Plans 22

2



1 TRINAT Introduction

TRINAT, TRIUMF’s Neutral Atom Trap, is one of the research projects at TRIUMF, Canada’s
national nuclear and particle physics laboratory. TRINAT operates a magneto-optical trap,
which uses high-power lasers and a magnetic field to trap clouds of alkali metal atoms in a region
of approximately a cubic millimeter in volume, at temperatures of down to a few hundred µK.
Many different types of experiments can then be performed on these atoms.

1.1 Optical Molasses

The optical molasses method is used to cool the atoms down to sub-mK temperatures. As
described in [1], atoms will absorb photons from laser beams shining upon them, and each
absorbed photon will impart its momentum to the atom in the form of a scattering force,
kicking it in the direction of the photon’s motion. If one laser beam shines at the atom from
each side, forces will be imparted on the atom from two opposite directions along a single axis.
Atoms preferably absorb photons whose frequencies are closer to an atomic resonance frequency,
corresponding to the energy needed for a specific electron energy level transition in the atom. If
the original light is detuned to below the atomic resonance frequency for a particular transition,
motion of an atom towards the light source will Doppler shift the frequency higher towards
the blue, closer to the atomic resonance, such that the more photons from this beam will be
absorbed. Meanwhile, the beam shining on the atom from the other direction will become
red-shifted to a lower frequency since the atom is moving away from that source. This creates
a larger damping force on the atom from the ‘bluer’ side since more scattering force is provided
from that direction, slowing down the atom until the scattering forces are balanced when it
absorbs equal numbers of photons from both directions because the frequency is no longer
Doppler-shifted when it has stopped moving.

If three pairs of inward-shining laser beams are positioned such that they aim at a central
group of atoms along three Cartesian axes, slowing in three dimensions can be achieved. As
temperature is directly related to the speed of the atoms, this can achieve very low temperatures.
It is almost like the atoms are moving in a molasses-like liquid, rapidly slowing them down due
to a damping force. In certain atoms with more complicated electron energy level structures,
other cooling mechanisms can also have an effect [1].

1.2 Magneto-optical Trap

Figure 1.1: Magneto-optical trap

When the optical molasses technique causes accumulation of atoms within the laser beam
intersection region due to cooling, this can be made into to a trap by choosing suitable light
polarizations and adding a magnetic field gradient. Two metal coils with currents running
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through them in opposite directions produce a quadrupole magnetic field as in Figure 1.1.
We can consider the simple case of a total angular momentum J=0 to J=1 transition in an
atom, which is similar to the J=1/2 to J=3/2 transition in the potassium atoms we use. At
the center of the quadrupole field, B=0. The J=1 level has three sublevels, whose positions
vary linearly with the atom’s displacement close to this origin due to the Zeeman effect in
presence of a magnetic field. The Zeeman shift of the resonance frequency corresponding to the
transition causes preferential absorption of photons from the direction in which the atom has
been displaced from the center origin. These photons are absorbed and the atom gets pushed
back by the forces to the center, zero magnetic field region [1].

The TRINAT MOT is formed by first trapping atoms from either a dispenser or radioactive
beam in the first trap, and then transferring them over to a second trap for the experiments.

1.3 Beta Decay Experiments

One of the major focuses of the TRINAT project has been on studying decays of unstable
atoms to search for physics beyond the Standard Model of particle physics. The most recent
experiments were run observing the decay of Potassium-37. A Potassium-37 atom decays into
an Argon-37 recoiling nucleus, a positron and a neutrino.

37K → 37Ar + β+ + ν

According to the Standard Model, only left-handed spin (a component of the angular momentum)
neutrinos can be emitted from beta decay, so the neutrino would have to be left-handed, in that
it has a ‘left’ direction of spin with respect to its momentum. TRINAT has been searching in
recent years for evidence of right-handed neutrinos, which would spin in the opposite direction,
to provide evidence for new physics.

2 New Trap Control System

2.1 System Overview

In short, a Raspberry Pi computer controls electronics to operate the atom trap, with new
connections to a LabJack board and AB Electronics DAC-ADC Pi, as well as all the other old
system components that are still used. It is connected to a new Point Grey Flea3 camera as
well, such that it can digitally trigger it and detect the camera’s signal when it has taken a
picture. The camera images are read off and stored by a laptop, which also displays the images
and their projection profiles as the images are captured so the trap status can be monitored,
using Physica. The camera and trap control programs are written in C++, and shell scripts
are used to coordinate the running of all the programs simultaneously.

2.2 Summary of Previous Work Done

My January-April term was spent on testing the capabilities of the new Point Grey Flea3
13Y3M-C camera for the replacement trap control system, and configuring and testing the
hardware control capabilities of the Raspberry Pi B+ and Pi 2 running Real-Time Linux. For
detailed info, refer to my previous work term report. A summary of important points is provided
below.

The camera running Point Grey’s experimental firmware to try and reduce the exposure
time was found to have a minimum true exposure time, or a ‘Frame Overhead Time’ of 80
microseconds when the exposure time was set to 0 microseconds. This camera was found to
be able to trigger continuously at intervals as low as 1.25 ms per image for small image sizes
(around 200x200 pixels), though it is not well known if it can transfer the images this fast.
Saving an image in memory takes a couple of milliseconds depending on the image size, and
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saving to hard disk also only takes a couple of milliseconds. Programs have been written to
capture images from software triggering, continuous image capture, and external triggering, and
all work.

The optimized final system settled on was the Raspberry Pi 2 running a 3.18 real-time kernel
compiled by Emlid developers for their Navio systems, which was freely available on the web.
Running programs at highest priority on the real-time SCHED FIFO schedule on this system,
hardware GPIO digital signals are found to have an average latency per instruction of between
10-15µs, a delay that is small enough to be acceptable for our trap operation. Programming
and timing tests for the GPIO pins and the AB DAC-ADC Pi were performed as well. Some
research was done into the benefit of dedicating an entire CPU to the program operation, but
when this was tested with the system under heavy load, it was found to not impact the latency
of the high-priority tasks, but if benefit was proven this might be useful in the future.

2.3 Experiment Control from Raspberry Pi

The main control system components that required programming include a Raspberry Pi 2, a
laptop, the Flea3 13Y3M-C camera, a LabJack U3-HV board, and an AB Electronics DAC-ADC
Pi board. Already in place is the Nuclear Acquisition system, and other electronic devices
including lasers, acoustic-optical-modulators (AOM’s), and other digital-to-analog converters
(DAC’s).

For operation, see Figure 2.1 for an overview of the new trap operation scheme, as I currently
have made it to work, illustrating the coordination of the separate devices in the trap sequence
and image capture. To start a trap sequence, one starts a shell script on the Pi
(StartSequenceDC.sh). This shell script remotely connects to the laptop trinatlt2 and starts
another script that will run the camera program and Physica real-time trap image and projection
display. The script on the Pi then waits a few seconds and starts the trap sequence program,
which operates external hardware connected to the Pi. Some of the signals go directly to Nuclear
Acquisition to indicate what is occurring in the trap at different times. Others go into precision
amplifiers made at TRIUMF, which are able to amplify voltage signals and provide current to
operate various other devices for trap control, since the Pi’s output current is limited to 16 mA
per GPIO pin and 50 mA for all the pins together. Other signals go to DAC’s and the camera.

On the laptop, the initialized script utilizes the Linux screen program to run two programs
at the same time. The shell script creates one screen, or background terminal, on which it runs
the camera program, cp5AsyncTriggerEx. It opens another that runs another script, which
runs a Physica display window and displays images sequentially as they are saved in the folder
after capture, giving an almost real-time display capability.

Reasons for setting the system up this way include that the Pi does not have enough power
or memory to reliably run the camera in addition to everything else, and trying to do so may
have incurred further latencies in the Pi system, throwing off timing in the operation. Using
shell scripts and the screen program was seen at the time to be the best way to coordinate the
operation of the 3 programs on the 2 different computers, but there may be better ways to do
this.
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(a) Software control between systems (b) Layout of hardware system

Figure 2.1: Hardware and Software Control Overview

2.3.1 Hardware

The GPIO pins on the Raspberry Pi can be controlled with a variety of different libraries and
native functions - we are using the bcm2835 library due to good real-time performace. Root
user privileges are required to access the GPIO pins. Functions were written to simplify and
clarify use - see Appendix A.

Currently free Raspberry Pi GPIO pins or those that are not really being used include 3 pins.
Pins 3 and 5 are for the I2C bus, but this is not currently in use so these pins could be used.
Pin 10 is not in use.

The LabJack board is a LabJack U3-HV and connects to the Pi via USB, controlled using
the downloaded LabJack library. Functions were written to simplify the operation of the DAC’s
and analog-to-digital converters (ADC’s) as outlined in Appendix A. The signals take a few
milliseconds to respond to changes, so this is useful for slow control aspects of the trap. These
are connected to the ports on the precision amplifiers with more filtering, since they are slower
signals. The normal DAC’s on the board can output voltages between 0-5V, while the extra
connected Tick-DAC’s have ranges of -10 to +10V.

The AB Electronics DAC-ADC Pi is controlled through the SPI (Serial Peripheral Interface)
bus on the Raspberry Pi 2, using native Linux drivers. I have written functions to do this as
well. Currently, on the two available SPI channels for the Pi, the two DAC’s are in use, capable
of changing voltage between 0V and 3.3V within a few microseconds, and connected to the
ports on the precision amplifiers with less filtering to get a faster response.

Cables were ordered and made after planning GPIO pin layout as in Figure 2.2. Each labelled
pin connects to a different control aspect, some through the precision amplifier, some directly
to TTL boxes, some to the camera.

The Pi is set to back up to two bootable micro SD cards via USB every day using crontab.
In the event of the card failure, either of these cards can be used as a replacement. Backups to
other servers are also recommended. Details about the backing up is also located in Appendix
A.
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Figure 2.2: Layout of Pi GPIO pins setup

2.3.2 Software

The program for trap operation on the new system was rewritten from the original D90DC.C
script on the old DOS computer system. For more detailed information see code documentation
(Appendix A).

The main program is TrapSeq cp3 DC for the DC trap. It reads parameters from a params.txt
file on the Pi, providing values including pulse length, and space between pulses. This runs fine
by itself when executed with sudo to allow access to real-time scheduling policies and usage of the
GPIO pins, and can be run in conjunction with the camera by running StartSequenceDC.sh,
which also runs the camera and Physica display programs on trinatlt2.

The pin and DAC names and functions, as well as various other definitions, are provided
in the testseq definitions2.h file. The functions for hardware operation are provided in
testseq functions2.cpp, and their declarations in the header file testseq functions.h.

For the temperature measurements, three different versions of the code were made to vary
the power, frequency, and length of cooling time. Another version was made for the AC
magneto-optical trap.

2.4 Camera Control

Many weeks were spent during my January-April term implementating dynamic memory allocation
and other requirements into adaptations of the included example C++ programs in the FlyCapture
Software Development Kit provided by Point Grey, in order to control the camera. A lot of
time in the second term was spent tailoring the programs to fit the functions as desired for trap
operation.

2.4.1 Hardware

The camera is a Point Grey 1.3 Mega Pixel Flea3 13Y3M-C. It can be triggered via the GPIO
0 (I0) opto-isolated input connection with a Pi digital ‘on’ output pin signal and connecting
to ground to opto-isolated ground (OPTO GND). It can strobe after it has taken a picture,
releasing a digital output signal that can be detected by a Pi input pin, via GPIO 1 (O1)
opto-isolated output via a connected pull-up resistor.

The optimal value of this resistor was carefully tested to ensure that the ‘high’ voltage value
falls above the input ‘high’ value for the Pi GPIO pins, 2.31 V, and the ‘low’ value falls below
the input ‘low’ value for the Pi GPIO pins, 0.54 V [2], and settled to be 1kΩ. This gives a ‘high’
of 2.4 V and a ‘low’ of 0.5 V with a rise time of 70µs which is fine if the strobe length is set
to above 100µs. The maximum rate at which I have been able to get the camera to capture
images is about 1 image per 1.25 ms so this is fine.
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The fact that the circuits are both opto-isolated means they do not connect directly to any
electronic circuits within the camera, but complete a circuit connected to an internal LED that
then shines onto a photodiode that is connected to the camera electronics. This makes the
camera safer against over-current or voltage connections and avoids ground loops.

In front of the camera there is a 1” 40mm lens 40mm from the sensor, and a 2” 630mm lens
approximately 4” from that. In front of that there is a long-pass coloured glass filter that blocks
room lights and only lets long wavelengths through, with a half-transmission point at 695nm.
It is 92% efficient at the trap wavelength of 767nm. The camera was refocused in July and the
scale measured, and is expressed later in the temperature section. The current total field of
view of the camera at the position of the trap is approximately 9x7.5cm.

2.4.2 Software

For detailed programming information see Appendix A.
The camera connects to the laptop trinatlt2 via USB. When the trap sequence program is

started via a StartSequenceDC.sh shell script on the Pi, this communicates with trinatlt2
over the TRIUMF network to initiate a shell script named runCamandPhysica.sh that runs the
camera program as well as the Physica display of images as they are taken. The camera program
is called cp5AsyncTriggerEx, based on Point Grey’s AsyncTriggerEx example. This program
is set up to read image settings from the params.txt file in the program folder, including gain,
exposure time, and length of strobe, and then wait for a trigger signal from GPIO 0 before
taking a picture.

One of the parameter options that can be set is saveAfter. If this is set to ‘1’ the images
will be stored dynamically in memory and then all written out at the end of program execution.
This is useful if images must be taken in very rapid sequence. If it is set to ‘0’ the images will
each be written out after they are captured.

Actually storing the pictures in the hard drive vs memory only takes around 1-3 extra
milliseconds depending on image size, with dynamic memory storage of the image also taking
1-3 ms depending on the image size. The images are stored in memory and written out as
arrays. The program can be quit at any time by pressing the ‘q’ key if the camera has been
properly set by the program into asynchronous trigger mode rather than continuous capture
mode. The images are stored in the same folder as the program that is executing, and so they
must be moved into a folder after the program is run or they will be overwritten in the next
run.

The usage of the Linux screen program was utilized in order to be able to remotely start and
run both the camera and Physica programs at the same time from the Pi computer. The screen
program basically creates terminal windows for each new ‘screen’ that you assign a name to, and
you can attach or detach from these terminals to monitor progress. If the runCamandPhysica.sh
script is running, if one is in a trinatlt2 terminal window, they can enter the camera screen
window by typing screen -r camerawin, reattaching to the ‘camerawin’ screen. To detach
from a screen, either type Ctrl-a d, or into that respective terminal type screen -d.

2.5 (Almost) Real-Time Trap Display with Physica

Having a real-time monitoring system for the trap’s status is important for the trap operation.
My first attempt to produce this was with Physica, but this so far does not work very well and
can definitely use improvement. Upon starting the StartSequenceDC.sh script from the Pi, a
Physica window should appear on the screen of the computer from which you are ssh-ing, and
begin displaying images as they are captured. For more detailed information about the script,
see code documentation in Appendix A.

The Physica display script is initialized by the runCamandPhysica.sh script, and creates
a new screen called physicawin, for the Physica window. In this window runs the script
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physicaImageDisplay.sh, which detects if new images have appeared in the folder, and sends
the commands for displaying them to Physica if they exist. Physica itself is run in another
instance of screen called physicascreen. The screen physicawin delivers commands from
four .pcm files to update the pictures.

The program displays a diffusion plot according to the image intensity values. From these
values, the program attempts background subtraction using a background image taken cp0.out

initially by the Pi program. On the top left is a projection of the vertical after background
subtraction, and on the bottom right is a projection of the horizontal after background subtraction.
These often seem to not be subtracted properly - the first suspicion may be if the trap light
settings are not the same during the background picture as they are for later pictures.

The physicaImageDisplay.sh executes some .pcm files straight out but for others it reads
in the commands one at a time. The reason for doing this was that I found when I tried to
have it repetitively execute a script it would stop around the 70th cycle, claiming there were no
more unopened units. This leads me to believe that the executed files are somehow remaining
open after execution, which I could not manage to find a fix for. As a result, currently I am
having the script read in lines individually from the .pcm files that update with each loop, with
a delay between each command. This causes the physicascreen to often freeze, but it allows
displays of images beyond the 70th.

If the Physica graphic window freezes, one must attach to the physicascreen by entering
screen -r physicascreen and press Ctrl-c in order for the code to progress and keep showing
pictures. One can then detach from the screen again by typing Ctrl-a d.

This display method works ok, but as stated above it often freezes, and when pictures are
taken in rapid succession it cannot keep up with the rate of image capture and falls behind.
Main suggestions for improvement of the Physica display operation include finding a way to
close files after execution such that one can continuously execute a .pcm file instead of reading
in individual lines from it, as well as not displaying every image, but only displaying the most
recent image. Also displaying a total sum of images rather than each individual image might
be more useful for experiments where parameters are not being varied.

My feeling is that it might be better to move away from Physica for this display purpose
altogether as it seems very slow to handle the real-time display demand. Suggestions include
writing a C/C++ other program using the OpenCV libraries to display images or if there is
someone more advanced working on this, figuring out a way to piggy-back on Point Grey’s
FlyCap demo program in their real-time display capability using OpenGL.

3 Temperature Measurements and Optimization

Two key properties of the trap to be minimized are the temperature and the size. This is
important for the momentum reconstruction to find that of the neutrino using the decay
products. The location and initial momenta of the unstable atoms must be known as accurately
as possible in order to obtain an accurate reconstruction.

3.1 Theory

3.1.1 Doppler Cooling Limit

Doppler cooling using lasers achieves an optical molasses state. For laser beams shining at a
cloud of atoms from opposite directions, an atom at rest is equally likely to absorb photons from
either direction, so the absorption is random, and each spontaneously emitted photon also goes
in a random direction with respect to other emitted photons. The rate of increase of kinetic
energy due to diffusion from absorption and spontaneous emission can be equated to the rate
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of decrease in kinetic energy due to friction, such that the steady-state equation is

2Er(2Rscatt) = α < v2 >

Where Rscatt is the scattering rate for each of the absorption and emission, Er, the recoil energy,
α is the frictional damping coefficient, and < v2 > is the time averaged square of the velocity.
Since there is only one degree of freedom, Er = m<v2>

2 = kBT
2 , where m is the mass, and T is

the temperature. From Foot’s derivations, we know expressions for Rscatt and α [1].
Putting these together, for Doppler limited cooling in one dimension, Phillips [3] gives us an

expression for temperature

kBT = −~Γ

4

1 + I/Isat +
(

2δ
Γ

)2
2δ
Γ

(3.1)

Where Γ is the natural linewidth in Hz, I/Isat is the intensity relative to the saturation intensity,
and δ is the detuning from the resonance frequency of the particular transition.

Varying frequencies and powers can be entered into calculations accordingly to obtain predictions
of temperature according to Doppler-limited cooling. It is important that this is only valid when
I/Isat is much less than 1. This is because at low intensity, successive absorptions are assumed
to be unrelated, such that the Doppler shift due to the recoil velocity does not much affect the
absorption probability. At high intensities, the absorption statistics are not Poissonian, so the
variance in the amount of photons absorbed does not equal the mean, so certain assumptions
made to obtain the above no longer apply [1] [3].

The natural linewidth was derived from the excitation lifetime τ = 26.34(5)ns [5], according
to Γ = τ−1 = 37.986MHz. The saturation intensity was obtained according to Isat = π

3
hc
λ3τ

=
1.75mW/cm2 [1].

3.1.2 Temperature Calculation

Dan Melconian, a previous PhD student in the group, did a few temperature measurements
of the trap. From his doctoral thesis [4] we can derive the following calculation of the trap
temperature. The trap ensemble approximately ballistically expands as a 3D Gaussian. The
normal distribution width is therefore expected to grow according to

~σ2(t) = ~σ0
2 +

1

2
~v2t2

Where σ is the standard deviation of the fluorescence profile projection, v is the velocity, and
t is the change in time. We can approximate the most probable speed as the average speed,
where M is the atomic mass.

v0 = |~v| =
√

2kBT

M

In one dimension (along measurement axis)

T =
M

kB

σ2 − σ2
0

t2

σ2(t)− σ2
0(t)

t2
=

∆(σ2)

∆(t2)
=
d(σ2)

d(t2)

T =
M

kB

d(σ2)

d(t2)
(3.2)

This follows the same assumptions as the equation derivation summarized in the previous
section, but here we make a measurement of the speed and can compare it to the Doppler-limited
cooling prediction.
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3.1.3 Number Of Atoms in Trap

An attempt to make a rough estimate of the number of atoms in the trap was made based
on the camera info and the setup. This was done partially to investigate possible effects of
different numbers of atoms on the temperature and trap size. This can be done with both the
already-calibrated Electrim camera, and the Flea3, such that the two numbers can be compared.

The cameras have grey levels of 0-255. Each camera has a saturation level, the number of
electrons per pixel that gives a 255 level. We assume that the number of electrons will be equal
to the number of absorbed photons. We will call this value nγ·sat. If we divide this saturation
number by 255, we get the number of absorbed photons per grey level per pixel, nγ·gl. Where
we have a Signal grey level and a corresponding background signal grey level BGSignal, the
total number of photons that made the signal is

Nγ·det = (Signal −BGSignal)(nγ·gl)

The percent of total photons emitted by the trap that is expected to be detected is given
approximately by (

πr2

4πR2

)
(εF )(QE) = εdΩ

r is the radius of the effective lens receiving area. R is the distance of the receiving lens from the
trap. εF is the filter efficiency, and QE is the quantum efficiency at the wavelength of interest,
in this case being 767 nm. ε gives the overall efficiency and dΩ gives the fraction of the full
solid angle the photons go into. For r, each camera has two lenses in front of it. The lens closer
to the trap has a focal length equal to the distance to the trap that makes the received light
parallel, and the farther small lens of the camera focuses the rays onto the sensor. Because the
light rays are made parallel by the first lens, one can approximate the effective lens receiving
area as that of the farther small lens at the distance of the first lens from the trap, for large
distances from the trap.

To find the number of atoms, we must take into account the number of photons each atom
emits per second nγ , and the amount of time we have been collecting photons t, in addition to
the efficiency. At any given time only half the atoms are in the excited state at saturation levels,
meaning the number of photons emitted per second per atom is half of the decay frequency,
which is the inverse of the lifetime, nγ = Γ

2 = 1
2τ = 1

2(26.34(5)ns) = 1.898 · 107/s. Therefore, the
number of detected photons is related to the number of atoms Na by

Nγ·det = (εdΩ)(Na)(nγ)(t)

Na =
(Signal −BGSignal)(nγ·gl)

(εdΩ)(nγ)(t)
(3.3)

Electrim Camera
In front of the Electrim camera is a Semrock LL01-780 filter, which allows 780nm light through
at 95% at normal incidence, with the FWHM being only 2.7nm. This has been angle-tuned to
accept 767nm light through. The best estimate of the filter efficiency was provided as around
92%, the similar to the filter in front of the Flea3, which is currently just a coloured glass filter
and not as good.

It is known roughly that the saturation level nγ·sat = 105. For 255 grey levels, this corresponds
to nγ·gl = 392 photons per grey level, ignoring the dark noise. QE ≈ 50% at 770nm. The
maximum signal after background subtraction seen in the trap for an unidentified run on August
12 was 5 · 105 for exposure time t = 50ms.

From the setup, we can determine the fraction of total photons collected to be

εdΩ =
πr2

4πR2
(εF )(QE) =

π(1.25cm)2

4π(22cm)2
(0.92)(0.5) = 3.71 · 10−4
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Therefore

Na =
(5 · 105)(392)

(3.71 · 10−4)(1.9 · 107/s)(0.05s)
= 5.6 · 105atoms

Flea3 Camera
Given in the imaging performance manual, we obtain the absolute sensitivity threshold (γ)=44.13,
which gives the minimum detectable irradiation in the mean number of photons that makes the
signal-to-noise ratio SNR=1. But the saturation capacity (well depth, e−) nγ·sat = 10226 [6].
From this, nγ·gl = nγ·sat/255 = 40, and this does not correspond to the 44.13 level. In the
EMVA 1288 standards [7] that Point Grey uses to characterize their cameras, the absolute
sensitivity threshold varies with responsivity, which depends on wavelength, so these numbers
are probably different due to different sensitivty at different wavelengths. For our purposes, we
chose to use the 40 number, but we disregarded the dark noise, as we were only looking for
a order-of-magnitude estimate of the number of atoms. For reference, the dark current value
was 26.26. At 770 nm, the quantum efficiency was about 36% [6]. Therefore, we determined
that we should be able to find the number of atoms from the following calculation according to
Equation 3.3.

εdΩ =
πr2

4πR2
(εF )(QE) =

π(1.25cm)2

4π(63cm)2
(0.92)(0.36) = 9.8 · 10−5

Na =
(Signal −BGSignal)(40)

(9.8 · 10−5)(1.9 · 107/s)(t)

3.1.4 Cross Section Calculation - Optical Density Effect on Temperature

It was thought possible that the high optical density could be causing heating through reabsorption
and rescattering of photons randomly. This would cause noticeable effects on temperature and
trap size with more atoms in the trap. The cross section is given as the intrinsic likelihood of
one of these scattering events when photons hit particles as below [1]

σs =
λ2

2π
=

(767 · 10−9m)2

2π
= 9.36 · 10−10cm2

The column density is found as ρN = Na
ACS

, where ACS is the cross-sectional trap area. The
transmission is obtained from

T = e−ρNσs ≈ 1− ρNσs
So the equation below gives the predicted number of photons that are reabsorbed. It is thought
that at levels of around 10% this could start to produce a significant heating effect that would
be seen in variation in the temperature and size for more dense vs less dense clouds.

ρNσs =
λ2

2π

Na

ACS
(3.4)

3.2 Measurement Methods

3.2.1 Camera Scale

The scale of the camera was re-determined after refocusing on July 8, 2015, by imaging a 4
mm grid at the focal point with the previously mentioned coloured-glass filter installed to only
let 767nm light through. The widths and heights of 8 boxes were averaged to find the scale to
be 0.077 ± 0.004mm/pixel. This is very close to the unfocused number given in the previous
report as 0.078mm/pixel.
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3.2.2 Laser Frequency

The frequency was determined from the frequencies of all other frequency-altering elements in
the system.

νtrap = ν899 − |ν7|+ 2|νCT | − |ν110|
In the above expression, νtrap is the frequency relative to the reference frequency of the final
cooling light. ν899 is the frequency coming out of the 899, which is equal to the locking frequency
νlock minus twice the frequency of AOM 9 ν9, where νlock is the average of the frequencies
389.88MHz and 386.50MHz, and ν9 ≈ 72MHz, and is recorded each day as slightly different
due to fluctuation. So ν899 = νlock − 2|ν9|. ν7 is frequency change of AOM 7, νCT is the
frequency change of the Crystal Tech, the value we are varying, and ν110 is the frequency of
the 110. νlock was noted to have a possible fluctuation of ±1.7MHz, because the absorption
line to which the laser was locked is a combination of several transitions from Potassium-41’s
s1/2 F=1 state to p3/2 states that are not well resolved. For the first runs on July 6, 7, 20,
measurements of the frequency at certain voltages of ABDAC0 (DAC 7) were made in a range
from 0.84-1.52V, corresponding to 60.05MHz-73.06MHz νCT , well encompassing the two ranges
in the later experiments of 1.1-1.4V and 1.25-1.55V. This relation of frequency vs voltage was
plotted and found to be solidly monotonic, such that later frequency values were interpolated
from a linear model fit to this with a small vertical shift to obtain the frequencies.

3.2.3 Laser Intensity

In order to find the theoretical Doppler-limited cooling curve (Equation 3.1), knowledge of the
laser intensity in relation to the saturation intensity was required. The attenuator had 3 bits
that could be activated for a total of 8 power levels. The bit attenuation levels were respectively
3dB, 6dB, 10dB, for the attenuator ZFAT-3610 from MiniCircuits.

We assumed the laser intensity had an approximately Gaussian profile. To measure the actual
laser intensity affecting the trap, we decided to measure the power coming out of an aperture at
varying diameters set in front of the laser beam. There was possibly hysteresis in the aperture,
so measurement was made for both increasing and decreasing the aperture size, producing the
plot in Figure 3.1b for intensity as a function of area. The intensity was chosen rather arbitrarily
to be that at 5 mm diameter because this was assumed to be letting through all the light that
would impact the trap and still be around the center of the Gaussian profile peak.

(a) (b)

This means that the power levels are as follows with respect to percent of full power and
saturation intensity Isat = 1.75mW/cm2.
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3.2.4 Temperature

To determine the temperature, it is necessary to know the expansion rate with the trapping
mechanism turned off. First the trap was established and cooled under different conditions
of frequency, power, or cooling time, and then the trapping light was turned off and the trap
allowed to expand. The light was turned on again to the same power and frequency setting as
that for an initial background picture to take a picture after waiting a specified delay time.

For each step of the varying parameter, images were captured after 0, 1, 2, 3, and 4 ms of
trap expansion. The duty cycle started with a background picture, then 8 or 16 steps varying
frequency, power, or cooling time, imaging after 0 ms expansion with the trap light off, then 8
or 16 steps varying one of those parameters, imaging after 1 ms expansion with the trap light
off, and so on. 21 or 22 images of each step were captured and summed, with the background
image subtracted off of each one, to obtain a summed image of what the trap looked like at
each step, as in Figure 3.2a. Each column was summed to create a horizontal projection of the
fluorescence profile as in Figure 3.2b, to which a Gaussian could then be fitted. We chose to fit
a 4-parameter Gaussian, adding a parameter for a vertical shift, such that the parameters are
a, b, c, d.

y = ae−
(x−b)2

2c2 + d

(a) Summed images at 0 ms expansion, 144 MHz,
10% Power for Frequency Run 2 on July 20

(b) Gaussian fit to horizontal sum projection

Figure 3.2

We can take the standard deviations of the Gaussian fits to the horizontal projections, and
use the rates of expansion to determine the temperature as in Equation 3.2. Below is given an

example fit of the d(σ2)
d(t2)

term for the expansion of the trap at 144 MHz and 10% power. We can

obtain the standard error of the slope and use this as the relative uncertainty in our temperature
calculation. This calculation can be repeated while varying different experimental conditions to
find out how to minimize temperature, which is illustrated in the following section.

These fitting operations were carried out in MATLAB as this was my preferred platform.
The Gaussian was an unweighted fit with a NonLinearModel, and the linear fit was done with
a weighted fit (weighted according to the reciprocals of the variances of the standard deviation
parameter c from the Gaussian fits) LinearModel.

This calculation, was checked in Physica to ensure that the slope values and standard error
values were the same. Indeed the values were found to be consistent and the standard errors
equal to the E2 parameter from Physica. The example code is located at
trinat@trcomp:/home/trinat/cpreston/analysis/july20 tempPowerFreq2/power/

temp july20 2015 POWER/

rwprocp.pcm and physicafindtempcp.pcm are the files used.
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Figure 3.3: fitting ∆(σ2) against ∆(t2) for 0-4 ms expansion for 144 MHz at 10% power

3.2.5 Number of Atoms

To determine the number of atoms, we follow Equation 3.3. For comparison, we used the
data from the runs that had occurred around a similar time to when the Electrim camera
measurement was made, but we are unsure as to which run it corresponds with.

For the background-subtracted and 4 gaussian-parameter-fit projections, it was found that
the baseline parameter d was not consistently 0, but varied between about -600 to 600 grey-level
units between different runs, but more relatively consistent within each run. It is possible that
some settings of the trap were not entirely the same between the different runs, changing the
background level between the trapping and background image capture. It has been proposed
that the laser power may have fluctuated over the hours in which the runs were done. Another
possibility is that the trap light was not on for the entire duration of the image capture. A value
of the average d vertical translation parameter was taken for each step at 0ms expansion for
each run, multiplied by 152 pixels, and added to the overall sum of grey level units in attempt
to adjust the tail of the Gaussian projections to actual zero, before calculating the number of
atoms. If this was not done, for fewer numbers of atoms, often negative numbers of atoms were
obtained from the calculation. The answers were only changed by approximately on average
20000 atoms, and as this was only an order of magnitude estimate, this seemed like a reasonable
quick fix to better approximate the true background-subtracted signal. It would be better to
scale the background image subtraction according to what is needed to make a zero background
level, to accommodate for non-uniform intensity of the background, but there was unfortunately
not enough time to perform this. The adjusted background-subtracted numbers for the signal
strength for the trials in the same day as the Electrim camera observation were on average
1 · 106, 5 · 105, 1 · 105, 4 · 105, 2 · 105 (3 runs). These were all from summing together 22 images.

Na =
(Signal −BGSignal)(40)

(9.8 · 10−5)(1.9 · 107/s)(0.001s)(22images)

These return numbers that range from 9.8 · 104 to 9.8 · 105, in the range of the 5.6 · 105 atoms
attained from the Electrim camera. These are used to express the temperature results in the
charts below, where the number of atoms is taken only for the first data point, when the trap
is still at its smallest size and has not yet expanded.

3.2.6 Optical Density

We are interested in an approximate idea of whether or not the densities of the trap are
approaching levels where re-scattering of photons could be causing extra heating effects. We
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will estimate this for a large and small experimental number of atoms in the trap. These values
are also presented in the charts below.

For example, the July 31 Run 7 measure of trap temperature as a function of frequency,
there are approximately 100000 atoms in the trap and a standard deviation of 0.46± 0.01mm,
whereas Run 2 on the same day has closer to 30000 atoms, and a standard deviation of 0.42±
0.01mm. It was decided that the full width at half maximum FWHM = 2

√
2ln2σ was a better

approximation for the trap size rather than twice the standard deviation.
Going back to our optical density calculation, for the larger trap:

ρN =
Na

(2FWHM)2
=

100000

(2
√

2ln2(0.046cm))2
= 8.5 · 106atoms/cm2

ρN (σs) = 8.5 · 106/cm2(9.36 · 10−10cm2) = 0.008

This is only an order of 1% of photons that are re-scattered. Repeating the calculation for
30000 atoms gets only 0.01% re-scattering. This does not seem like a level at which it might
produce the large effects we are seeing between the large and small traps. For some of the larger
traps, on the order of 500000 atoms, effects rise to approximately 4% re-scattering, which could
possibly have more of an observable effect.

3.3 Temperature Optimization Results

3.3.1 Optimizing Power

The temperature was determined as a function of varying the intensity from 0.35−35mW/cm2.
This was one of the first tests done to observe the effect of power at the original frequency of
139.11 MHz. This was done in 8 power steps, imaging the trap after 0 ms expansion for the 8
power levels, then 8 at 1 ms, and so on, making a total of 5x8=40 steps, with 23 images per
step. Below is a chart of the lowest and highest power results. The plot contains data points
as well as the solid line Doppler-limited cooling prediction curve.

(a) (b)
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(a) (b)

Figure 3.5: Measurements Optimizing Power

In the chart above and the plots it can easily be seen that for higher powers, the temperature
is much higher, and much higher than the Doppler-limited cooling prediction for that particular
power level and frequency. As power decreases, temperature decreases. But as power decreases,
size also increases. This provides a problematic inverse relationship which is examined more in
the next measurement.

3.3.2 Optimizing Frequency

The temperature was determined as a function of frequency by varying it within two ranges.
The first two runs were done in a range of 132-142 MHz, and the others between 136-146 MHz.
In a similar style to the previous, this was done by stepping through 16 frequencies after 0 ms
expansion, then stepping through 16 frequencies at 1 ms expansion, then so on, for a total of
5x16=80 steps. The plots contain data points as well as the solid line Doppler-limited cooling
prediction curve.
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Figure 3.7: Measurements Optimizing Frequency and Power

See the chart above and plots for results when the dispenser was high and low (low disp.
marks runs where the dispenser was low), at varying stepped frequencies and different power
levels of light. In the chart, the experimental minimum temperature and frequency are just
taken from picking the data point with the lowest temperature and stating its frequency and
temperature. In the right column, the predicted minimum temperature and frequency give the
predicted minimum temperature for that particular power level and at what frequency it is
expected to happen for comparison.

It is evident that overall the higher the light power, the higher the temperature. From the
plots of the standard deviations, one can gather that for lower powers, farther away from the
frequency at which the minimum temperature is predicted, the size is larger, but close to the
minimum predicted value, the sizes are all relatively small and similar.

Much difference is apparent between the runs with many (∼ 105) vs (∼ 104) fewer atoms. The
temperatures achieved with fewer atoms are much smaller and very close to their Doppler-limited
cooling predictions, and the sizes are smaller. With traps with more atoms, as the power
increases, the distance of the experimental temperature from the Doppler-limited cooling prediction
increases, as the trap evidently experiences some unknown heating effects, perhaps due to the
large intensity of the light and re-scattering of photons. We can examine the optical density for
this to estimate how much denser the trap is when there are more atoms and at higher powers,
where the trap is of smaller size this still only gives us answers of around 1% (number of atoms
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is estimated based on order of magnitude), which is not at a level expected to have a large
effect.

For the two dispenser levels, the trap sizes seem to follow similar trends around the same
value with respect to rising or falling at the same frequencies, though overall the smaller trap
sizes are relatively smaller and a lot less well-defined as can be interpreted from the large error
bars.

It is evident that the curves seem to be shifted to the left with respect to their prediction
curves. This could potentially be due to the frequency being measured incorrectly. It was
previously noted that the locking frequency could be inaccurate by up to 1.7MHz either way,
so it very well could be that the frequencies should all be shifted higher by 1.7MHz such that
they would then match better with the trends of their prediction curves.

3.3.3 Optimizing Cooling Time

There was interest in looking at trap’s temperature and size as a function of how long it was
cooled at different settings. First, to ensure the trap was small in size and that atoms were
captured well, the original cooling scheme was performed, at half power, 139.11MHz, for 20ms.
Then, the trap was cooled at a different frequency and power for varying periods of time before
an image was taken. The duty cycle scheme is the same as with the frequency variation, but
instead of varying the frequency in 16 steps, the second cooling time is varied in 16 steps, on a
logarithmic scale from 10µs to 20ms. For most of the trials, a 500ms delay after the ACMOT
section was removed, but for some trials this was added back in, and it was found that this made
the trap have fewer atoms. Measurements were taken for both situations. The plot contains
data points as well as the solid line Doppler-limited cooling prediction curve. In the legend,
entries marked with a ‘D’ are where the 500 ms delay was left in.
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Figure 3.10: Measurements Varying Second Cooling Time

It is evident that all the trap settings take a similar amount of time to adjust to the new
temperature setting. This is on the order of 2 ms, which at first seemed really long seeing as
the decay time of the atoms is 26 ns. One of the possible explanations is that the atoms must
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move in order for the Doppler cooling to take effect, and they are moving very slowly, at around
0.5m/s at these temperatures, making a delay before they are actually affected.

The 139 MHz run was intended more as a ‘control’ at the beginning to observe how the trap
appeared when the new duty cycle was introduced but the settings not changed. As expected
from the previous frequency measurements, with the lower power, as this is far away from the
predicted minimum temperature frequency, the trap size grows a lot when it adjusts to the new
power level.

The 142.8 MHz measurement was an intermediate measurement, and indeed much better
temperatures were shown here. It is observed that changing the settings for the different power
levels causes the atoms to adjust at different rates even though at a similar time, with the
1% power adjusting faster than the 5% power. I found this odd, as they are initially at the
same temperature and so should be moving at the same speed and be equally affected by the
Doppler cooling, but perhaps this has something to do with the fact that fewer photons are
being absorbed. Again, it is found that for the lower power, where the frequency is far from
the predicted minimum temperature frequency, the size grows, where the 5% power is close to
the frequency at which its minimum is predicted and so it actually stays the same size

The most interesting runs are at 144.7 MHz as these produce the lowest temperatures.
Looking at the 5% (1 Isat) runs, one can see no consistent correlation with number of atoms and
size or temperature. This is predicted to be at a frequency close to the predicted minimum for
many of these power levels, such that the sizes do not get larger as predicted by the frequency
measurements. For some of the lower power measurements it is even seen to get smaller, but
this is not universal. These findings do not refute findings from the frequency measurements,
as they also found that the sizes did not vary very much close to the frequency at which the
minimum temperature was predicted, but farther away from these predicted minima the size
can be seen to be following the same trend.

The small kinks where the temperature seems to go low then higher again after adjustment,
or high then lower again, along with the sizes, remain unexplained. One potential reason for
this is imbalance in the laser beams or slight misalignment.

3.3.4 AC MOT

All the above experiments were done with the direct-current (DC) MOT, but we also had to
test the alternating-current (AC) MOT. The AC MOT was tested using the TrapSeq cp3 AC

code. First images were taken of both the DC MOT and AC MOT to test that both were
working as expected at the original frequency and power. Then a few settings were tried at
which better temperatures had been observed in the DC MOT were tried, only imaging the AC
MOT. The exposure time of the camera was also varied. The background image was not taken
with the correct power, so other runs were done after unplugging the laser beam that pushes the
atoms into the trap to get a background from that. Displayed below are background-subtracted
images of the qualitative appearance of the AC MOT compared to the DC MOT.

Figure 3.11: DC MOT and AC MOT under original 139.11 MHz 50% power at 1 ms exposure,
sum of 626 images
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(a) AC MOT at 144.7 MHz 5% power at 100 ms
exposure, sum of 630 images

(b) AC MOT at 144.7 MHz 10% power at 200 ms
exposure, sum of 70 images

Figure 3.12

Visually, it is apparent that the different frequency and power settings did not help the AC
MOT as much as had been hoped to achieve a smaller size. The intensities cannot be compared
due to different exposure lengths and summing different numbers of images.

3.4 Discussion

3.4.1 Achieving Minimum Temperature

It is evident from the power and frequency variation measurements that smaller temperatures
and sizes can be achieved when the laser power is lower and the frequency is close to the Doppler
predicted minimum. If I were to readjust the trap I would pick a frequency of 144.7 MHz (AB
DAC 0 set to 1.45 V) and a power level of 5% (AOM power set to 6). It must be taken into
account that at lower powers the atoms fluoresce less and the signal is harder to detect, and
there wasn’t a large temperature difference between 1% and 5% power.

It was considered possible from the results that having a larger number of atoms for frequencies
farther from the predicted minimum could be making the size of the trap larger, and the
temperature larger, but closer to the predicted minimum, this was not very apparent.

The optical density is probably not high enough, based on the number of atoms predicted, to
explain why for higher powers of light the temperature is so much larger than the Doppler-limited
cooling prediction, while it is much closer to the prediction for fewer atoms.

3.4.2 Error Analysis

The background subtraction is an evident large source of error. The fact that the vertical shift
of the tail of the Gaussian projection fit varied between -600 to 600 between different runs for
sums of 22 images indicates that this is not being done properly. Due to time constraints and
the fact that this was only noticed when calculating the number of atoms near the end, this
could not be well accounted for. It is possible that the laser power could fluctuate over the 10-20
minutes a run lasts, or that the power for the background image was incorrectly set, or changed
over the course of the exposure time, but the second situation is assumed unlikely, as all images
were taken at half power and this was not changed throughout the different revisions of the
program. This could have a large effect on changing the number of atoms, as well as possibly
changing the Gaussian fits, which would affect the temperature measurements. Because the
shapes of the experimental curves were observed to follow the expected trend, it was assumed
that the temperatures could still be held to some degree of accuracy. The fact that they were
measured within the same run, for which the d vertical shift parameter was fairly consistent
indicates that within the run it might have less of an effect than comparing between runs.

Another source of error previously mentioned is that the locking frequency apparently can
vary up to 1.7 MHz either way, which could shift our Temperature vs Frequency curves closer
to their shapes as seen in the Doppler prediction curves.
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It is possible that due to other systematic errors unaccounted for and the background subtraction
issue that the error bars should be larger. However, this is still a good qualitative indication of
the relative temperatures of the trap under different settings.

4 Future Plans

The lowest temperatures were obtained with the lowest power currently available, 1% of full
power=35 mW/cm2. The theoretical Doppler cooling limit is approached as power goes lower.
Therefore, it would be potentially useful to try and obtain a lower temperature by further
attenuating the laser power.

The measurements obtained for temperature while varying frequency were done over a large
range and it would be useful to do higher resolution measurements over a smaller frequency
range around the Doppler minimum predicted values respective to the power levels.

There was concern as to whether the 1 ms exposure and laser light shining on the atoms for
capturing the image could be affecting the trap, in causing them to be retrapped during the 1
ms. It would be good to shorten the exposure time to gain a better approximation for the trap
appearance directly after the cooling. This would potentially bring in problems of getting into
the dark noise region, so must be fiddled with.

For running the AC MOT, the trap is allowed to expand first after the DC MOT for 2 ms.
It would be very useful to know how large the trap gets during this time. Instead of looking at
only the standard deviations of the projections after 0ms, it would be a good idea to average
the size over the first 2 ms and use this number in the next step calculations for the AC MOT.

References

[1] Foot C.J. Atomic Physics. Department of Physics, Oxford University. Oxford University
Press, 2005.

[2] GPIO Electrical Specifications: Raspberry Pi input and output pin voltage
and current capability. Mosaic Documentation Web. August 20, 2015.
<http://www.mosaic-industries.com/embedded-systems/microcontroller-projects/raspberry-pi/
gpio-pin-electrical-specifications>

[3] Phillips W.D. Laser Cooling and Trapping of Neutral Atoms. Laser Manipulation
of Atoms and Ions. Course CXVIII, Proceedings of the International School of

Physics <Enrico Fermi>. Italian Physical Society. Varenna on Lake Como, 1991. pp.
289-296.

[4] Melconian D.G. Measurement of the Neutrino Asymmetry in the Beta Decay of
Laser-Cooled, Polarized 37K. Simon Fraser University, 2005. pp. 103-107.

[5] Wang H. et al. Precise determination of the dipole matrix element and radiative lifetime of
the 39K 4p state by photoassociative spectroscopy. Phys. Rev. A 55(3), R1569(R). American
Physical Society, 1997. 10.1103/PhysRevA.55.R1569.

[6] Flea3 USB 3.0 Digital Camera: Imaging Performance Specification Version 2.0. Point Grey,
2014. <http://www.ptgrey.com/support/downloads/10110>

[7] EMVA Standard 1288: Standard for Characterization of Image
Sensors and Cameras 3.0. European Machine Vision Association, 2010.
<http://www.emva.org/cms/upload/Standards/Stadard 1288/EMVA1288-3.0.pdf>

23



Trap Code Documentation: Appendix A to
Work Term Report

G. E. Claire Preston

Work Term Period: May 2015-August 2015
Program: Honours Physics Co-op, McMaster University

Project: TRINAT (TRIUMF’s Neutral Atom Trap)
Supervisor: Dr. John Behr

Location: TRIUMF
Date Report: August 21, 2015

Contents

1 How to read this document 2

2 Shell Scripts 2
2.1 Brief intro to screen program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Start Trap Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 trinatlt2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3.1 Runs Camera and Physica Screens . . . . . . . . . . . . . . . . . . . . . . 3
2.3.2 Runs Physica Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Trap Sequence on Raspberry Pi 3
3.1 Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Main Trap Sequence Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Trap Hardware and Software Definitions . . . . . . . . . . . . . . . . . . . . . . . 4

3.3.1 GPIO Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3.2 LabJack Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3.3 AB Electronics DAC’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3.4 Level definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3.5 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.4 Trap Includes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5 Trap Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.5.1 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5.2 GPIO Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5.3 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5.4 LabJack Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5.5 Setting Priority and CPU Affinity . . . . . . . . . . . . . . . . . . . . . . 7
3.5.6 Quit Key Exit Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5.7 Reading and Writing Parameters File . . . . . . . . . . . . . . . . . . . . 8

1



4 Special Main Sequence Files: Temperature Measurements 8
4.1 Varying Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Varying Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Varying Cooling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Camera External Trigger Program on trinatlt2 9
5.1 Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Main camera program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3 Camera Written Classes and Functions . . . . . . . . . . . . . . . . . . . . . . . . 10

5.3.1 Data values item class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3.2 Data list class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3.3 File writing class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3.4 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Physica Scripts on trinatlt2 12
6.1 Initiate Physica Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2 Put in Initial Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.3 Read In Background Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.4 Read In and Display Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Programs to Set/Test DAC’s and GPIO Pins 13

8 Pi Backup and SD Card Cloning 13
8.1 Backing Up to SD Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.2 Cloning SD Card Using rsync . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.3 Cloning SD Card using entire Image . . . . . . . . . . . . . . . . . . . . . . . . . 14

9 Pin and DAC Diagram Reference 15

1 How to read this document

This document is an informal, more detailed reference of how my codes for trap, camera, and
Physica display operation work. There are many other codes I wrote, which can be referred to
according to last term’s report, but these ones are the ones I have worked on this term specific
to the trap operation. Each section lists the directory in which the files can be found and the
files referred to in that section. If there are many files in the same folder, the directory will
be listed under the section title and the files under the subsection titles. There will be general
notes about the specified sections of codes, as well as function names and descriptors of how
they work. If you are looking for info on the operation of a particular function, or part of a file,
have the file in front of you while consulting the description.

2 Shell Scripts

2.1 Brief intro to screen program

The four different programs (Pi Trap Sequence, Camera, Physica) are run simultaneously on
different computers by using the command-line program screen. If this is not installed it can be
obtained through sudo apt-get install screen. It basically opens an instance of a terminal
window with a name you provide, and using this name identification you can connect to or
disconnect from this terminal instance window while a program is running in it. You can send
commands to different screens. Important commands to know include:
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screen -ls lists all active screens running on the system
screen -r ‘insertscreennamehere’ ‘attaches’ to a screen with the identified name, or con-
nects to it so it is active in your window
screen -d or Ctrl-a d ‘detaches’ from a screen so it is still running in the background but you
are not monitoring it from your window
screen -S ‘insertscreennamehere’ creates a new screen with indicated name and you are
attached or connected to it immediately
exit or Ctrl-a k terminates the screen you are in
For more info, type man screen.

2.2 Pi

pi@trinatrpi2:/home/pi/RunTrapSequence cp/

2.2.1 Start Trap Sequence

StartSequence.sh

This starts the whole trap system operation including the scripts to run the camera and Physica
on trinatlt2. It utilizes the screen program on both the pi and trinatlt2. A screen is created
to connect with trinatlt2, to which it makes an ssh connection, and then it starts the script
runCamAndPhysica.sh on the other computer. It allows 6 seconds for this to start and then
starts the local trap sequence program.

2.3 trinatlt2

trinat@trinatlt2:/home/trinat/flycapture/flycapcode/src/cpAsyncTriggerEx/

2.3.1 Runs Camera and Physica Screens

runCamandPhysica.sh

This closes previously running screen and program instances, then starts a camerawin screen,
on which it runs the cp5AsyncTriggerEx program. It creates a physicawin screen on which it
runs physicaImageDisplay.sh.

2.3.2 Runs Physica Display

physicaImageDisplay.sh

This manages the running of Physica and its updating as new images are written to the folder
for the display. It creates a new screen instance on which Physica itself is run, physicascreen.
It retrieves the x and y dimensions and binning number of the image from params.txt. It
tells Physica on physicascreen to run the physica defaults.pcm script, and then sends it
the width and height values, then runs the physica initvalues.pcm script. It checks in a loop
to see if a background image exists, and if so, executes the commands on the other screen in
physica bgpic.pcm to read in and display the background image. It then checks in a loop
for the image of the next index to see if it exists, and if it does it reads the commands in
physica displayspics.pcm into the physicascreen separated by a delay of 10 ms each. This
is to try and keep Physica from freezing, though it still often does, in which case one must attach
to the physicascreen and press Ctrl-C. After, it increments its index and looks for the next
image to appear before updating again.

3 Trap Sequence on Raspberry Pi

pi@trinatrpi2:/home/pi/RunTrapSequence cp/
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3.1 Makefile

Makefile

The name of the program desired to be compiled can be put in the EXEC variable, and then make

should compile it.

3.2 Main Trap Sequence Files

TrapSeq cp3 DC(.cpp) TrapSeq cp3 AC(.cpp)

These are the main trapping sequences. They run the hardware with real-time scheduling
priorities. They utilize the bcm2835 library to operate the GPIO pins and SPI bus for the
AB Electronics DAC-ADC Pi. They read certain labelled parameters from the params.txt file
located in the same folder to set certain system parameters.

3.3 Trap Hardware and Software Definitions

testseq definitions2.h

This is an important file outlining the given names for referral of hardware including names
and reference of GPIO pins, LabJack DAC’s and ADC’s, and AB Electronics DAC’s. Most of
these values are just names assigned to numbers, such that in the code, the name can be passed
to functions, but really it just passes a corresponding number. The reason the numbers are in
CAPITALS is that they are absolute constants across the program and this is important to keep
track of.

3.3.1 GPIO Addresses

The first items define the GPIO pin address numbers. The numbers the pins are assigned to such
as PIN26 is defined as RPI V2 GPIO P1 26, come from definitions in the bcm2835 library, which
is used to operate them. These pin numbers correspond to their layout on the pin diagram,
numbered in order from 1-40. Further down in the definitions file, the new pin definitions are
given names according to their function, such as AOM BIT0 is defined as PIN37, and these can be
changed fairly easily and it is clear to see which pin corresponds to what function.

3.3.2 LabJack Definitions

The LabJack DAC’s are given numbers for referral, assigned to their names, such as LJDAC0 is
defined as 0, such that LabJack functions can be passed this name and end up with actually
just a number reference. This is intended for better clarity in reading and changing the code.
The file also defines LabJack values such as the number of AIN (Analog Input) channels, and
whether quick sampling and long settling time should be set for the AIN’s.

3.3.3 AB Electronics DAC’s

In the same way, numbers for the AB DAC’s are given for referral. Constants relevant to the
AB DAC’s are also set.

3.3.4 Level definitions

The file defines the numbers (1 or 0) for the ‘high’ and ‘low’ states of the GPIO pins, as well as
‘on’ and ‘off’, and the polarization sigma states of ‘plus’ and ‘minus’. These are expressed as
binary values, but can be passed to functions and used in comparison with their definition names
to clarify the code when reading and changing. Different power levels to the AOM for power of
light attenuation for the cooling are also given as AOMPOWERLEVEL0 to AOMPOWERLEVEL7, which
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can be passed to the function setAOMPower(int) to set the power level according to the three
bits. See function for more info.

3.3.5 Other

There are a few values relevant to setting the priority of the program that should remain constant.
There are a few initial state definitions of what the polarization state should start as. There
are numbers used to define the line numbers of the elements in params.txt. To change this,
you can add more definitions on the bottom of the enum list and they will take on the next
sequential number indices. These values are used in conjunction with readParam(...), so see
that function for more info.

3.4 Trap Includes

testseq includes.h

This file just includes all the necessary headers for compiling the programs.

3.5 Trap Functions

testseq functions.h testseq functions2.cpp

These files contain functions that are used in the trap sequence. These include functions for
implementing real-time scheduling policies, timing pauses, running GPIO’s, running LabJack
DAC’s and ADC’s and running AB Electronics DAC’s.

3.5.1 Timing

Uses clock nanosleep and the CLOCK MONOTONIC to make a delay of a passed integer num-
ber of microseconds. This is known as a relatively high accuracy timing method to use in software.

void msPause(int msToPause)

Uses clock nanosleep and the CLOCK MONOTONIC to make a delay of a passed integer number
of milliseconds. This is known as a relatively high accuracy timing method to use in software.

double getTimems(struct timespec* pclockVal)

Accepts a pointer to a timespec struct that has been used with a clock nanosleep delay
function and returns the time in milliseconds.

3.5.2 GPIO Pins

bool setGPIOOutputs()

This uses the bcm2835 library functions to set up required pins as outputs.

bool setGPIOInputs()

Uses the bcm2835 library function to set up required pins as inputs.

bool out(short pinNum, short outType)

Sets the state of the specified pin to either HIGH or LOW, which represent values 1 and 0 as
specified in the definitions file, testseq definitions2.h

void setDAC BITS(unsigned int dacVoltage)

Sets GPIO output pins DAC BIT0 to DAC BIT2 to bitwise number to be sent to nuclear acquisition.
The integer number entered is translated bitwise into the 3 bits being on or off (ie. sending
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number 4 turns on DAC BIT1 and turns off the other two bits)

void setSIGMA(short sigmaPM)

Sets polarization state to PLUS or MINUS as numerically defined as ‘high’ or ‘low’ in the
definitions file testseq definitions2.h. This controls two pins, the SIGMAPM pin and the
SIGMAPM TO NUCLEAR pin. This sends a signal to nuclear acquisition as well as flipping the
polarization.

void setAOMPower(short AOMPowerLevel)

Sets attenuation level of AOM controlling laser cooling light by controlling 3 GPIO pins corre-
sponding to the three bits of attenuation. This can be passed previously defined levels in the
testseq definitions2.h file, from numerically defined AOMPOWERLEVEL0 to AOMPOWERLEVEL7,
corresponding to activating bits 0-2 for the attenuation, corresponding respectively to 3dB, 6dB,
and 10dB to change the power level.

bool in(short pinNum, bool inType)

Can be used to test state of an input pin, between ‘high’ or ’low’. Pass it the pin name,
corresponding to a number, and the HIGH or LOW value you would like to test for. It returns
’true’ if the state and the testing state match.

3.5.3 SPI

void setupSPI()

Sets up the SPI bus with the bcm 2835 library for use of the AB Electronics DAC-ADC Pi. For
accessing different SPI channels, chip, or different SPI clock speeds (it is currently set to the
max 20 MHz that the AB Electronics chip can read), this function should be edited. To change
any of this refer to the bcm2835 library files and documentation. Here, it selects the first SPI
chip, CS1, corresponding to the DAC’s, but one could also select CS0 instead, which would
activate the ADC’s. There are only 2 SPI channels at a time available on the Pi.

bool outABDAC(short dacNum,float dacVoltage)

Sets either ABDAC0 or ABDAC1 to the float voltage as prescribed, between 0 to 3.3 V. It is a 12
bit DAC, and requires a 16 bit signal to set the voltage. In the testseq definitions2.h file
the gain on the AB DAC chip is set to 0, but it can also be set to 1, but one has to be careful as
the chip should not be made to output more than 3.3 V. This function attempts to safe-check
that it is not set higher than this. Some bitwise operations are performed on the voltage passed
to this function before it is sent to the chip via the SPI bus.

void closeSPI()

Closes the SPI bus and frees up the pins.

3.5.4 LabJack Board

These functions all use the LabJack library, and code is largely copied and adapted from the
LabJack U3-HV example programs. For further documentation, see the LabJack documentation
and example code provided with the library.

bool setupLJ(HANDLE* phDevice,u3CalibrationInfo* pcaliInfo,int* isDAC1Enabled)

Sets up the LabJack board using the first found LabJack. If multiple LabJack boards are used,
this will have to be changed. It then gets the calibration info for the board, then configures all
inputs and outputs, and sets up a writemask for the various devices.
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int configAllIO(HANDLE hDevice, int *isDAC1Enabled)

Configures all inputs and outputs on LabJack board, requiring sending and receiving 12 bytes.
This configuration sets DAC 1 as enabled, and sets FIOAnalog and EIOAnalog so that they can
work with the Tick DAC’s. The command is sent and the response is read back and checked for
errors, as is the case for all other LabJack commands as well.

int setupWriteMaskLJ(HANDLE LJBoard, u3CalibrationInfo* caliInfo,int isDAC1Enabled)

Sets up the writemask for writing to the different bits corresponding to ports of the LabJack
board. Sets writemask (devices to write to) of FIO, EIO, CIO, receives and checks response.

int outLJDAC(HANDLE LJBoard,u3CalibrationInfo *caliInfo,int isDAC1Enabled, int dacNum,

float dacVoltage)

Used to set voltage value to LabJack DAC (one of two on the board itself, not the Tick DAC’s).
The function must be passed the board ID, calibration info, whether DAC 1 is enabled, which
DAC to select, and the float voltage value to set it to, between 0-5 V. Again, it sends a series of
bytes and receives a series of bytes that it checks for errors.

int checkI2CErrorcode(uint8 errorcode)

Checks I2C bus error code for communication of LabJack board with attached Tick DAC’s.

int inLJADC(HANDLE LJBoard,u3CalibrationInfo *caliInfo,int isDAC1Enabled, int adcNum,

double* pADCVal)

Reads LabJack ADC value, depending on input of board ID, calibration info, whether or not
DAC 1 is enabled, the number of the ADC to check, and a pointer to a double in which to store
the read-off ADC value. In a similar way to the output, a string of bytes is sent and received
and checked for errors. The double voltage reading is stored in the double pointer.

int outLJTDAC(HANDLE LJBoard, u3TdacCalibrationInfo* pTdacCaliInfo,int dacNum,float

dacVoltage)

Used to set LJTDAC to a float value between -10 V and +10 V. It must be passed the board ID,
a pointer to the calibration info for the particular Tick DAC, the number of the Tick DAC, and
the desired float voltage value. This function has been written in a way that seemed convenient
in which before each command is passed, the calibration info is read and set again, intended to be
more flexible for changing the configuration of the Tick DAC’s plugged into different sockets. So
first the calibration info is obtained and then the actual command is sent to the correct Tick DAC.

void closeLJ(HANDLE LJBoard)

Closes the USB connection to the passed LabJack board.

3.5.5 Setting Priority and CPU Affinity

void stack prefault(void)

Sets the size of the stack in memory to avoid the stack getting full and having to reset in the
middle of the program operation, incurring latency.

int setupPriority()

Sets up the real-time SCHED FIFO scheduling priority for the program so that it executes above
all other user tasks at a set priority. Then it locks program into memory to avoid it being
switched out to swap area on hard disk, incurring latency. Then it pre-faults the stack using the
previous function.
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3.5.6 Quit Key Exit Loop

int isQuitPressed()

As Pi seems to not wait for user prompt when looking at input keypresses by default, this was
the only function needed to check if ‘q’ and ‘Enter’ had been pressed during program execution,
indicating a quit. If it detects that yes ‘q’ and ‘Enter’ have been pressed, it will return 1,
otherwise it will return 0 or -1 for error.

3.5.7 Reading and Writing Parameters File

void readParam(std::ifstream*,unsigned int*, unsigned int)

Reads an input parameter from the params.txt file, as an input file stream, according to its set
line number, which is defined in testseq definitions2.h. It stores the value using the passed
pValue pointer.

void readParam(std::ifstream*,double*, unsigned int)

Same as previous function but for reading a double from the file (overloaded function).

void writeOutParam(std::ifstream*,std::ofstream*)

Writes out parameters with date and time of run to the log file to keep track of what parameters
were on each run. Is passed a pointer to the input file stream params.txt, as well as an output
file stream, the log file that it is written into along with the date and time.

char* getDtTm(char*)

Retrieves date and time to be written to log file.

4 Special Main Sequence Files: Temperature Measurements

pitrinatrpi2:/home/pi/RunTrapSequence cp/Temperature JulyAug2015/

4.1 Varying Frequency

StartSequence SweepFreq.sh

Starts the frequency varying program and camera and Physica remotely on trinatlt2.

TrapSeq cp3 temperature sweepFreq(.cpp)

This is the same as the main sequence file except that it is set to vary the frequency with each
step, as well as vary the expansion time with the trap light off with each step. Hardware wise,
DAC BIT0=PIN15 has been switched to control the absolute on/off power of the trapping light in
order to be able to fully turn it off to allow expansion. All the setDAC BITS() instances have been
commented out. There are a total of 80 steps, with 16 frequency steps, and 5 expansion time steps.
The frequencies are set as 16 steps between ABDAC0SweepMin, ABDAC0SweepMax, incrementing
with each step. The expansion time delays are read out from a file named trapTempDelay.txt,
with 80 entries, determined by the set number TempIntervals, which are read from 1-80 and
then back to the beginning again. The power is determined during the cooling and can be
changed and recompiled. I set this up so that it varies the frequency with each image, but keeps
the expansion delay the same, so it takes images at the 16 different frequency steps at 0 ms
expansion, then 16 images at 1 ms and so on.

4.2 Varying Power

StartSequence SweepPower.sh

Starts power varying program and camera and Physica programs remotely on trinatlt2.
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TrapSeq cp3 temperature sweepPower(.cpp)

This is the same as the above file except there are only 8 power levels instead of 16 frequency
steps, making a total of 40 steps, and they vary from 0-7.

4.3 Varying Cooling Time

StartSequence SweepCoolTime.sh

Starts cooling time varying program and camera and Physica programs remotely on trinatlt2.

TrapSeq cp3 temperature sweepCoolTime(.cpp)

This is the same as the frequency varying program but instead of varying the frequency, it varies
a second cooling time. The atoms are still cooled at the original half power and frequency for the
20 ms, and then cooled at another variant amount of time at a different frequency and power.
Like the expansion delay, the cooling time is read from a file called trapTempCoolDelay.txt

sequentially in a loop.

5 Camera External Trigger Program on trinatlt2

trinat@trinatlt2:/home/trinat/flycapture/flycapcode/src/cpAsyncTriggerEx/

This program uses an external trigger and strobe of the camera in conjunction with the Raspberry
Pi to capture, dynamically store in memory, and save images. It utilizes a few parameters for the
camera from params.txt. It uses the FlyCapture library included in their software development
kit as well as functions I wrote into my own cp1ImageMethods.h and .cpp files.

5.1 Makefile

Makefile

Typing make should suffice to recompile the program.

5.2 Main camera program

cp5AsyncTriggerEx(.cpp)

This controls the entire camera operation and sequence. One can press ’q’ to exit at any time
during capture process. It reads camera parameters including strobe length, exposure time,
and width and height, binning factor, from a params.txt file, with line numbers for each
variable defined in the enum paramLineNums enumeration in the program file, with names such
as STROBELENGTH LINENUM, in a similar way to how the parameters file is read for the Pi trapping
program, using a function called readParam(...). *Note that you can read the README.txt

file in this folder for more info on the restrictions on the parameters. that It writes out the
parameters, the date and time, into a log file. It tests to make sure it can write files in the
folder, and then sets up the camera, connects to it, and gets its information. Then it sets the
camera settings desired, including mode, format, image sie, exposure time, and gain. It puts
the camera in trigger mode, and sets the time it will wait for an image to 500 ms. It creates a
Actual data listcp item to store the image objects dynamically in memory in a linked list, as
well as a datavalues itemcp called currentitem to store each temporary image before putting
it in the list. It creates a Point Grey Image object to store the captured image in. It then sets
the terminal termios settings so that it will not wait for a user prompt (Enter), but will continue
looping, when it checks if ’q’ for quit has been entered. This means that it can continue to take
pictures and check for a keypress without the user having to press Enter. A few preliminary
images are captured and not saved to ensure that the new camera settings fully take effect (ie
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new exposure time etc.). Then the real images are taken in a loop waiting for external trigger
signals or ’q’ to be pressed. The image is stored in the data values item, and then either saved
or stored in the data list. At the end of the cycle, the camera is disconnected.

5.3 Camera Written Classes and Functions

cp1ImageCaptureMethods.h cp1ImageCaptureMethods.cpp

5.3.1 Data values item class

class datavalues itemcp

This class participates in the dynamic memory allocation process for obtaining images from the
camera Image workingImage object and stores it in an object with required info that I have
designed to store temporarily in memory before either being added to a data list in memory as
a Actual data listcp item, or written out to file. One important member of this class is the
datavalues itemcp* nextcp, which points to the next datavalue array item in the list when
this object is added to the data list for dynamic memory allocation. This is an element of a
linked list - allowing us to know what element is the next image in the list.

datavalues itemcp(const datavalues itemcp&)

Copy constructor to create a copy of an object, and is private to prevent this being done to
protect the proper structure of the object and ensuring it is initialized and destroyed in memory
properly.

datavalues itemcp(unsigned int datasize cp,int addBin,int width, int height)

Constructor for datavalues item. Creates new item according to number of entries datasize cp,
number of pixels each in x and y to bin into 1 pixel add Bin, and width and height of image.
Assigns new array of provided size to actualdata array, a member of this class of object.

∼datavalues itemcp()

Destructor for object, should be called when object is destroyed to ensure memory is properly
freed.

void setActualData(datavalues itemcp*)

Used to copy data from temporary currentitem to new item in memory. Copies from array
member of current item to new item.

void createActualData(unsigned char*)

Directly copies data from Image workingImage object into new datavalues itemcp object. Per-
forms the binning according to binning parameter set in params.txt file. Receives character
pointer array and stores each calculated value in the object array.

unsigned short* getActualData()

Gives pointer to first item of data array of shorts for an object.

void writeOutDirect(int)

This is not an essential function and was mainly created for testing. It writes out a file of the
image array as a single line of numbers directly from the currentitem object to file without
storing dynamically in memory. This may be marginally faster than storing in memory then
writing to disk by a couple of milliseconds. It also performs binning prior to saving. It numbers
the file according to the provided number iloop.
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5.3.2 Data list class

class Actual data listcp

This class participates in the dynamic memory allocation process for storing pictures in memory.
An image is created as a datavalues itemcp, and then stored dynamically as a member of the data
list. The data list contains members including, importantly, pointers to the first and last items
in the list, datavalues itemcp* firstcp, lastcp. These work in conjunction with the list
item datavalues itemcp* nextcp to coordinate the linked list structure for dynamica memory
allocation, such that each item in the list points to the next item, and the list itself knows its
first and last items. These are very important for the proper functioning of the dynamic memory
allocation and should be edited with great care. The list object also knows the number of items
it contains, the number of pixels in each array for each object, and the max number of images it
can have.

Actual data listcp(const Actual data listcp& Add):maxnumitemscp(0)

Copy constructor for copying a data list. This is private to ensure that the user does not
attempt to copy the list using this as this would mess up the structure and not ensure all the
variables are initialized properly.

Actual data listcp(unsigned int,unsigned short)

Constructor for the data list. It must be passed the number of entries in the arrays for its item
objects, as well as the maximum number of items it can hold. The pointers to the first and
last items in the list, firstcp and lastcp are initialized to null, and number of items in list
initialized to 0.

∼Actual data listcp()

Destructor for the data list. This goes down the linked list using the pointers to items firstcp,
lastcp, nextcp and deletes each item, freeing up the memory each item is taking, properly, to
ensure there are no memory leaks.

int getNumDatavaluesItems()

Returns number of items in the list.

bool addDatavaluesItem(datavalues itemcp* currentitemAdd)

Adds a datavalues itemcp object to the data list by copying the info from the temporary current
item. It performs operations necessary to add it to the linked list structure and ensure all the
member variables and pointers are set correctly in the new list item and the list itself.

bool removeDatavaluesItem(datavalues itemcp* currentitemAdd)

Frees memory of the first item in the list and deletes the array of data, ensuring that the memory
is freed properly and there are no memory leaks. This ensures the proper reassignment of pointers.

datavalues itemcp* getFirst()

Returns a pointer to the first item in the data list.

int getDatavalues sizecp()

Returns the number of elements in the array for each item in the data list.

5.3.3 File writing class

class FILE item listcp

Contains all structures and functions necessary to write out data from datavalues itemcp to
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file as an array or matrix. This class takes datavalues itemcp* currentDataItem in the list
pointed to by Actual data listcp* pdataList and writes it to file.

FILE item listcp(Actual data listcp* pdatalist)

Constructor for the file item list, all it needs is the address, a pointer to, a data list item
Actual data listcp, to which it initializes its own member variable pointer to a data list.

∼FILE item listcp()

Destructor for the file item list.

unsigned short getNumFileItems()

Returns number of file items for the file item list, a number which increases every time another
file is written.

bool write FILE itemcp()

Writes array in datavalues itemcp, the first item in the data list, to file. It numbers the file
according to its place in the list.

bool write FILE itemcp(int k width)

Writes array in datavalues itemcp, the first item in the data list, to file as a matrix with width
k width. It numbers the file according to its place in the list.

bool write FILE itemcp(int k width,int filenum)

Writes array in datavalues itemcp, the first item in the data list, to file as a matrix with width
k width. It numbers the file according to the number provided as filenum.

5.3.4 Other

void writeDirectFromImage(unsigned char* datavalues,int addBin, int width, int height,

int iloop)

Writes array directly from a pointer to data in Image workingImage to file. This is intended
mostly for testing purposes and not essential. It may be marginally faster than going through the
dynamic memory allocation process. It performs binning as well. It numbers the file according
to the number iloop passed to the function.

6 Physica Scripts on trinatlt2

trinat@trinatlt2:/home/trinat/flycapture/flycapcode/src/cpAsyncTriggerEx/

6.1 Initiate Physica Defaults

physica defaults.pcm

Initiates defaults for Physica.

6.2 Put in Initial Values

physica initvalues.pcm

Initializes values including file name prefixes and suffixes, index of image.
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6.3 Read In Background Picture

physica bgpic.pcm

Reads in background image cp0.out, plots it as a density plot, along with the projections, and
creates projections that it can use later for background subtraction.

6.4 Read In and Display Picture

physica displaypics.pcm

Reads in respective image according to value of index ind, displays, and displays background-
subtracted projections, as well as overall intensity sum over past 20 or so images.

7 Programs to Set/Test DAC’s and GPIO Pins

pi@trinatrpi2:/home/pi/RunTrapSequence cp

Briefly, here is a list of programs that can be used to test the DAC’s and GPIO Pins.

setDACoutputs(.cpp)

This allows you to set any of the DAC’s to a test value in a loop. Must be executed with sudo.

testAOMAttenLevel(.cpp)

Allows you to set the level of the AOM Crystal Tech in a loop. Must be executed with sudo.

testGPIOs(.cpp)

Unfortunately I did not have time to develop a simple program to test each individual GPIO pin
in a loop, though this would be fairly easy. This program requires you to manually edit which
pins go on and off, but you can test them that way and recompile.

testInputLevel(.cpp)

This was used to test the input level of the Pi by hooking up a voltage from the LabJack board
to an input pin. If using this again, you must be very careful not to cause over-current or voltage
damage.

testCAM(.cpp)

This was created to test the trigger and strobe capabilities of the camera.

8 Pi Backup and SD Card Cloning

8.1 Backing Up to SD Cards

pi@trinatrpi2:/home/pi/BackupLog/

Backups of the Pi are set up as crontab jobs. The document explaining this is in the directory
indicated, but will be briefly reiterated below.
We have two scripts that are set to back up to each of the SD cards. Each is recognized by a
unique UUID that is different for each storage device and if different SD cards are ever used,
this value will have to be found. Specific instructions are in the shell scripts for finding this.
The full backup command in the shell script for the main ext4 partition is sudo rsync -av

--delete-during --exclude-from=/home/pi/BackupLog/rsync-exclude.txt

--log-file=/home/pi/BackupLog/rsync/$(date +%Y%m%d) rsync main.log / /mnt/rpibackup1/

The other command for backing up the boot partition is very similar. sudo is necessary to
preserve root ownership. --delete-during ensures that the correct files are deleted to ensure
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proper synchronization, --exclude-from tells us which files to not copy, since some only exist
during system run time and are not needed to boot and run the pi, though the files still must
exist, --log-file keeps a log of the backup.
To add the task to the crontab such that we can have it backup every day at a specified time,
we type crontab -e. It instructs you to enter your command as
m h dom mon dow command

this means ’minute hour day month day-of-week command’. So if we enter
30 01 * * * /home/pi/BACKUPSCRIPTNAME.sh

into the crontab editing file, it will backup our script every day at 1:30am.
They use sudo rsync -av to back up to each drive. the sudo is necessary to preserve root
ownership of necessary files - without this, the resulting system will not boot.

8.2 Cloning SD Card Using rsync

trinat@trinatlt2:/home/trinat/RPi/RPi2 CompleteBackupFiles/RPi2 B6 clonebackup june16 2015

trinat@trinatlt3:/home/trinat/RPi/RPi2 CompleteBackupFiles/RPi2 B6 clonebackup june16 2015

Files are located in the above directories that can be used to create a bootable identical real-time
system with the necessary libraries and the majority of the programs necessary to run the trap
on the Pi, though not the most updated versions, as this was cloned in June 2015. There are
text files in these directories instructing the user what to do to backup or clone the Pi, but it
will be reiterated below.
The rsync method is preferred for cloning the card from an external laptop, as it is deemed safer
than the dd method in the next section.
Assuming you have system files in boot and folders for which root ownership has been
preserved for the relevant files (true for the files in the listed directories), insert an SD card into
the card reader (you will need an adapter for the micro-SD cards). Use gparted to partition
the new card, in sequence with 4MB unallocated space, a 56MB FAT16 partition (labelled
/boot), then the rest of the space make an ext4 partition (labelled /). Use sudo rsync -av to
transfer files respectively to each partition from each of the respective backup folders. the sudo

is necessary to preserve the root ownership of necessary files - the system won’t boot if this is
not done properly.
The most updated programs for the trap can be copied to the user directory pi from the
latest backup, or failing that, from trinat@trcomp:/home/cpreston/RPi/RPi2 Backup B2/...

picking the most recent backup.

8.3 Cloning SD Card using entire Image

trinat@trinatlt3:/home/trinat/RPi/RPi Images/emlid-raspberrypi2-raspbian-rt-20150327.img

trinat@trinatlt2:/home/trinat/RPi/RPi Images/emlid-raspberrypi2-raspbian-rt-20150327.img

This is the less preferable method, but also works, for cloning an SD card image. The files
indicated above are both real-time Raspbian images from Emlid. Note that these do not contain
the bcm2835 library or the labjack library, and so these would have to be reinstalled from
scratch, so do not use this method if you can do the previous one.
If the system and all the backups really have failed miserably, then proveed as follows. Using
the sudo dd command with bs=4M, write the entire image to the new card. Make sure you look
up the dd command as this is dangerous and you can write over your entire hard drive if you
use this unwisely. If the target card is smaller than the original card used to write the image,
this will not work as dd will run out of space.
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9 Pin and DAC Diagram Reference
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