Optics and Detector Improvements for TRINAT's Time-Reversal Experiment

Michelle Khoo Co-op 2020S

Supervisor: John Behr, TRINAT

Contents

- Overview of time-reversal experiment:
 - Methods, apparatus, and measurements
- Optics upgrades:
 - 355nm laser replacement
 - Fiber optic selection
- Gamma and positron detection improvements:
 - Energy resolution for varying scintillators and bias voltage
 - Temperature effects on SiPM readout
 - Lightguide geometry optimization
 - Additional considerations (Teflon wrapping, electrical noise, etc.)

Experiment Overview

Magneto-Optical Trap

- TRINAT: "TRIUMF's Neutral Atom Trap"
- Atoms are confined using a magnetooptical trap (MOT)
 - Three pairs of orthogonal laser beams
 - Quadrupole magnetic field produced by coils

Figure 1: MOT setup (Atomic Physics, Foot)

Magneto-Optical Trap (cont'd)

- Orthogonal laser beams are frequency detuned (off-resonance)
 - Moving atoms are Doppler shifted → laser frequency shifted closer to resonance
 - Energy absorption (ie. force) increases as frequency approaches resonance
 - Known as "optical molasses" technique
- Magnetic field produces Zeeman shift
 - Spatially dependent shift in resonant frequency
 - Captures atoms with higher velocities than optical molasses

Figure 1: MOT setup (Atomic Physics, Foot)

Optical Pumping and Beta Decay

- Trapped atoms are optically pumped by 770nm beam
- Probe polarization by photoionization with 355nm
- Beta-plus decay¹ from ground state of nucleus: $37K \rightarrow 37Ar + e^+ + \nu_e$
- Decay products detected by scintillators with SiPM² readouts (Figure 2)

¹ Beta-minus decay used for test runs: $45K \rightarrow 45Ca + e^- + \bar{v}_e$ ² SiPM: Silicon photomultiplier

Figure 2: Detector configuration (TRINAT group)

Time-Reversal Measurements

- Probe for time-reversal symmetry violation
 - Scalar triple product of momenta (p1 \cdot p2 \times p3) always flips sign with time
 - Non-zero average scalar value indicates time-reversal asymmetry
- Three-momentum states always average to zero by momentum conservation
 - Solution: Use a four-momentum state
 - Radiative beta decay has momenta p_{recoil} , p_{β} , p_{ν} , p_{γ}
- Measure beta-neutrino-gamma coincidences: $p_{\beta} \cdot p_{\nu} \times p_{\gamma}$

Optics Upgrades

355nm Laser

- Current setup blocks GAGG detector port
- New setup: CryLaS 355nm laser
 - Couple into polarization-maintaining (PM) single-mode fiber to vacuum chamber
 - Pulse duration (FWHM): 1.00 ns
 - Peak power: 3.5 kW
 → high power risks fiber optic damage
- Benefits of new setup:
 - Doesn't block GAGG port
 - 3x greater power
 - Manual triggering
 - Better mode quality

Figure 3: Current optical pumping setup (TRINAT group)

Fiber Optic Constraints

- Power density: Expected power density > laser-induced damage thresholds (LIDT)
 - Single-mode PM fibers have small typical MFD² (2.3 um from <u>Thorlabs</u>) \rightarrow require high LIDT
 - Short pulse duration (1.00 ns) and short wavelength further reduce LIDT

• Adjusted Thorlabs LIDT:
$$5\frac{GW}{cm^2} * \sqrt{\frac{pulse\ duration}{10\ ns}} * \sqrt{\frac{wavelength}{550\ nm}} \approx 0.25\frac{GW}{cm^2}$$

• Expected peak power density: $3.5\ kW \div \frac{\pi * (2.3\ um)^2}{4} \approx 210\frac{GW}{cm^2}$

- centers form within fiber
 Epoxy connectors: At UV wavelengths,
- epoxy burns and deposits residue (Figure 4)

³ MFD: Mode field diameter

Fiber Optic Constraints (cont'd)

- Solution:
 - Large-mode area fiber: Increased area reduces power density
 - UV solarization resistant
 - Custom connectors: Minimize epoxy, so that residue is not produced
- Custom fiber is expensive and slow (~3 month lead time)
 - \rightarrow test non-PM fibers
 - Determine impact on mode quality
 - E.g. <u>Newport 320-430 nm single-mode patch cord</u>

Detector Improvements

GAGG Scintillator

- Replaced BGO⁴ with GAGG⁵ scintillator for gamma ray detection
 - GAGG provides better energy resolution (7.6% from Epic Crystal spec. sheet)

Figure 5: 137Cs and 60Co spectrum with BGO

⁴ BGO: Bismuth Germanate

⁵ GAGG: Gadolinium Aluminium Gallium Garnet

Figure 6: 137Cs and 60Co spectrum with GAGG

Bias Voltage Effects

- Increasing overvoltage (<u>Sensl</u>):
 - Increase gain
 - Increase dark current
 - No overall impact on energy resolution (Figure 8)
- More dark current → lower DC offset (why?)

Figure 7: DC offset and gain vs. overvoltage for detector 1 (a) and 2 (b)

Figure 8: Energy resolution vs. overvoltage

Temperature Effects

- Need a map to convert between histogram channel and gamma energy
 - Plot histogram channel versus energy
 - Use known 137Cs and 60Co peaks (Figure 9)
- DC shift with varying lab temp. due to increased dark current
 - Dark current produced by thermal electrons
 - 50% dark current reduction for every 10°C drop (<u>Sensl</u>)

Positron Detector Geometry

- Selected lightguide geometry for a new positron detector, with constraints:
 - Circular face must fit mounting port: ø88 mm
 - Other face must enclose square SiPM array: 75 mm x 75 mm OR 50 mm x 50 mm

Figure 11: Expanding lightguide

- Options:
 - Expanding lightguide (Figure 11)

→ smaller circle to larger square face Narrowing lightguide (Figure 12)

- \rightarrow larger circle to smaller square face
- Cylindrical lightguide
 - \rightarrow square SiPM sits within circular face

Figure 12: Narrowing lightguide

Positron Detector Geometry (cont'd)

- Selected between geometry options using GEANT4 simulation
 - Modelled lightguide wrapped in Teflon, with a UVT scintillator
 - Counted number of photons that hit the SiPM/square face
 - 100 runs with 5 MeV positrons per geometry option
- Recommend expanding lightguide option

Teflon Wrapping

- Teflon reflectivity has notable impact on light collection, for all geometries (Figure 14)
- Reflectivity is dependent on thickness (Table 1)

Figure 14: Light collection for varying reflectivity and geometry

	article number	reflectance value	transmission value	dimensions
		(%R)	(%T)	length x width x height
	WDF-050-95	95	5	500 x 500 x 2mm
	WDF-030-95	95	5	300 x 300 x 2mm
	WDF-020-95	95	5	200 x 200 x 2mm
	WDF-050-90	90	10	500 x 500 x 1mm
	WDF-030-90	90	10	300 x 300 x 1mm
	WDF-020-90	90	10	200 x 200 x 1mm
	WDF-050-85	85	15	500 x 500 x 0,5mm
	WDF-030-85	85	15	300 x 300 x 0,5mm
	WDF-020-85	85	15	200 x 200 x 0,5mm
	WDF-050-70	70	30	500 x 500 x 0,25mm
	WDF-030-70	70	30	300 x 300 x 0,25mm
	WDF-020-70	70	30	200 x 200 x 0,25mm
	WDF-050-50	50	50	500 x 500 x 0,1mm
	WDF-030-50	50	50	300 x 300 x 0,1mm
	WDF-020-50	50	50	200 x 200 x 0,1mm

Table 1: Teflon reflectivity for various dimensions (<u>Spectralex</u>)

Additional Improvements

- Found significant 10 MHz noise in SiPM readout
- Electrical considerations:
 - Currently using standard BNCs \rightarrow replace with two-pin LEMO
 - Improve grounding scheme to reduce ground loops
- Other considerations:
 - Identify noise source and build shielding

Summary

Recent/Upcoming upgrades to TRINAT's optics include:

- Replacement 355 nm photoionizing beam
- Fiber optic coupling into chamber

In order to optimize TRINAT's detectors, consider:

- Scintillator selection, lightguide geometry, and Teflon thickness significantly impact performance
- Temperature effects need to be accounted for when mapping histogram channels to gamma energy
- Improved grounding and shielding may reduce external noise pickup

These considerations are expected to improve precision measurements for beamtime in Fall/Winter 2021.