Measure polarization in
potassium isotopes
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Potassium 37 beta decay asymmetry experiment

Beta decay is known to violate parity symmetry, having a chirality
dependance and a bias for left handedness. Our experiment
polarized the parent atom and measures beta emission direction.

Right-handed: Left-handed:

= NG

Onm



Frequency (MHz)

Zeeman effect at medium magnetic fields

Polarization measurement = Sor oo mmmr s

In the presence of a magnetic field energies will shift allowing us to probe individual polarizations.
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H=AIl-J- (I‘Nglf+l‘Bg.Iti) -B

Recall the | F, mp) basis is conventional for hyperfine states but the Hamiltonian
is described in |mjy,my). For J = %, each hyperfine |F,mg) is a linear com-
bination of two states in the |my,m ) basis, leading to a two state degenerate
perturbation problem for each |F,mp) state.

Defining the basis as |+) = |m,], :I:%, my=mpg F %), through ladder opera-
tions we get

=T 4 pungrmepB + 5 (Amp + upgr — Bungr) %A\/(I - %)2 —m%
1A\/(I 1 m% ——‘2— + pungrmpB — %(Amp + pnpgr — Bungr)

H =

The positive eigenenergy is defined as F' = 2 while the negative F' = 1
AEfp_3 = —% + pungrmpB + AV1 4+ mpx + 22

AEp_1 = —2 + ungimpB — AVI + mpz + 22

B(pgs—iingr)
2A g

Where 2 =



Eigenstates found are then
|F=2,mp)=al|+)+3]|-)
|F=1,mp)=08|+)+al|-)

where
SR § Amp+Bupupgs—Bungi
B G T
{3 — p A1n[~'+BIIBQJ—B£L_NQ[
2 AAV1+mpx+x2

Notice we recover the Clebsch-Gordan Coefficients atB = () and that at
B — oo we reach pure states, namely |F' =2, mp) = |+) and |F = 1,mp) = |-).

For mr = £2,where the states are already pure at B = (), the Hamiltonian
reduces to single state solutions where
AEp_5 =22 + ungimpB

-

AEp_) = —% + pungrmrB



size of the F=2 |+> state versus magnetic field
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Figure 2: plot of the coefficient « from |F' = 2, mp) = a|4+)+ 3 |—) as a function
of magnetic field. Note that 3 =1 — a.



t means up/down regardless
of beam direction.
< means left/right regardless
of beam direction.
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Hyperfine structure splitting varies by isotope

K37 1.23s half life Hyps = A1
K39 93%
K41 7% K37 A4_51/2 = 240.3MHz

K39 Ays,,, = 461.7MHz
K41 Ays,,, = 254.0MHz

How do we lock the trap to K39 spectra but
scan K377



Isotope frequency shift is corrected |
by Acousto-Optical Modulator T
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Acousto-Optical Modulator physics
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Beam polarization

1 means up/down regardless
of beam direction.
«— means left/right regardless
of beam direction.
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K cell sat spectroscopy

We know the cell will absorb light at transitions frequencies, how do
we arrive at the actual absorption signal?
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Hyperfine structure frequencies for K39
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Doppler shift broadened absorption
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Pump beam hole burning

Now that our absorptions are Doppler smeared, we use the pump
beam to select atoms with zero velocity.
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Crossover effect

Every pair of peaks has a composite peak halfway in between from the

doppler shifts of the two side peaks.
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Enhanced absorption

Increasing power (decreasing
absorption)
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Enhanced absorption

Increasing power

(decreasing absorption)
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Increasing frequency

Because the two Doppler
crossed frequencies start from
different hyperfine ground
states the pump does not steal
from the probe.

Instead, the pump beam states
randomly decay towards the

opposing hyperfine, increasing
the population the probe sees.



Enhanced absorption

Increasing power

(decreasing absorption)
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Increasing frequency

Atoms moving towards the probe
beam absorb the pump beam in the
1->1 transition, which randomly
decays, populating the F=2 ground
state for the probe beam which is
absorbed in the 2->1 transition.

Atoms moving away from the probe
beam absorb the pump beam in the
2->1 transition, which randomly
decays, populating the F=1 ground
state for the probe beam which is
absorbed in the 1->2 transition.
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Locking the laser frequency using absorption
peaks

Using a solenoid and the Zeeman effect to produce slight high-frequency
energy oscillations in the cell, correlating absorption peaks to our magnetic
scan we can produce a cleaner signal and lock to the peak with a
Proportional Integral Derivative control loop.
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Very early data

K41 2->1 and 2->2 absorptions

K41 1->1 and 1->2 absorptions
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Thank you!
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of beam direction

<« means left/right regardless
of beam direction
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