MIDAS Query Last Status	Electronic Logbook			Experiment "trinat"
Query result between September 1 2020 and Sep	otember 15 2020			
Date Run	Author	Туре	System	Subject
Tue Sep 1 16:05:50 2020 2594 2594	AG@trinatdaq.triumf.ca	Routine	General	buddy log, repair of eMCP
Read what Lames and John left in Elog. Plan: 1. check voltages in the crate with 428F with fans in-out 2. chech offsets og WSZ pulses at the scope inputs				
3. check pulse height of WSA 4. try to set eMCP signals to QDC 15:15				
go for 1: all bin voltage are OK. from LeCroy 428F manual: Wo. of Outputs: 4 per channel; reverse-terminated; direct-cou				
Wo of outputs: a per channet; reverse-terminated; direct-coupy optimum outputs shape, three outputs must be terminated into 5 oroper operation, at least 2 outputs must be terminated on ea used. Added to WSZ outputs of 428F loads to have all 4 outputs of e	0 ohm. For ich channel			
being terminated into 500. Biasing detector to check offsets. Amesh =-20V				
/femcp = 0V /ge=Vwsa=Vbemcp+100V				
found following offsets /bemcp lbeMCP (W;S;Z) offsets (V) [µA] [¤V] 500 14.7 -10.3;-18.5; -8.2				
980 1.0.3; 18.5; -8.2 It looks like offse 980 25.0 -10.5; 18.3; -8.6 depend on eMCP bias 9100 25.0 -10.5; 18.3; -8.6 opend on eMCP bias 9100 25.0 -10.6; 18.3; -8.6 opend on eMCP bias 9100 25.0 -10.6; 18.4; -8.3 quite different from 9100 41.6 -10.6; 18.5; -8.3 WSZ-(-10; -5; -5) MV 9100 47.8 -10.6; 18.6; -8.3 WSZ-(-10; -5; -5) MV 9100 47.8 -90.6% -90.6% -90.6% 9100 57.8 -60.4% -90.5% -90.6% -90.6%	voltage. But ar found being m James' set without source			
Ypical pulse traces are attached (200901_175459_emcp-2100V_n 17:40 dijusting offsets to what James decided WSZ=(-10;-5;-5)mV uise traces are attached (200901_181146_emcp-2100V_no-alpha ne shape of the pulses became much better compare to that wi	20V-mesh_WSZ-10-5-5-offsets.png) ti initial			
offsets. It looks Strip pulses have slightly higher amplitude Wedge ones. Wedge pulses have some overshoot. Shall check is not -10mV offset for Wedge fot big pulses from source.	compare to			
18:20 source is IN => 2800Hz count rate on visual scaler. It looks like -10mV offset is enough for Wedge (file 200901_183140_emcp-2100V_alpha_20V-mesh_wedge_right-off	sets.png)			
Taking some data: Rum #2595 Start: Tue Sep 1 18:34:27 2020, 1673.9 events/s Stop: Tue Sep 1 18:53:02 2020, about 1.8M events.				
Attachment: emcp-2100V_no-alpha_20V-mesh_W	Cursor Function Off			
Ch3 20.0mV GE2 20.0mV M 100ns A Ch1	H Bars H Bars H Bars Bars Bars Bars Bars Cursor To carbot Forcen Cursor Son Bring Both Cursors on			
Function Mode V Bar H Bar Units Units Off Ind Seconds Base	Screen			
Attachment: emcp-2100V_no-alpha_20V-mesh_W	Cursor			
2 Wedge Strip	Off			
	H Bars			
	V Bars V Bars Selected Cursor To Center Screen			
Ch3 20.0mV Ch2 20.0mV M 100ns A Ch1 Ch3 20.0mV Ch3 20.0mV Ti 19,40 % Function Mode V Bar Units Off Ind Second Base				
Off Ind Seconds Base Attachment: emcp-2100V_alpha_20V-mesh_wedg	je_right-offsets.png			

Function Mode V Bar H Bars Ind Seconds Base			10	eMCP		
Wed Sep 2 15:04:46 2020 3:00pm James in lab	2595 JM@trinat-usb-eth4.triumf.ca		Routine	emce	buddy log, tests of eMCP	
Vacuum: 4.6kV, 12uA, <le-8 td="" torr<=""><td></td><td></td><td></td><td></td><td></td><td></td></le-8>						
Vector 0 VFetCP 0 VGetVPSA-VEB#CP-200V VBetCP 101 VB 101						
Without source: 540Hz on scalar. With source: 8.2kHz on scalar. Biasing Mesh: VMesh = -20V gives 2.8kHz and supre	ession of the fraction of					
events with low pulse height near 15mV in pulse- After John's fix for the linear fan yesterday the better. The pulses were nominally 200mV on the WS Z channel.	eight amplitude. 2 pulse-heights look much					
So I split the output of the linear fan imendiat from the preamp, with only one 50ohn terminator : channels of the linear fan. I then feed a second through roughly 250ns of cable delay into the scc terminated at 50ohn along with the scope. I adjus to reduce the positive overshoot of the eMCP puly dDC. The maximum negative DC offset I can got DC. The maximum negative DC offset I can got hith is bad.	emaining on the output Linear fan with output ope. The Linear fan was ted the Linear fan to try ie so we can send it to the hough is 25w. Even with					
Intead we took one of the outputs from the eMCP the Ortca emplifier with integration capabilities and remove the positive overshoot. The minimum is chosen and output taken from the uniplate output positive pulses and BC offset. Here is a built that has some adjust ability, but too large an of that has some adjust ability, but too large an of fluctuations compared to the integrated pulse di was to send these signals to an attenuater first, inverter. However, the crate containing the lines upper yor block channel and integrated MCP channe planning to move the linear frams to the above cor- and is close to the corresponding -lines delay of for simplicity. I placed the delay opposite to th	to smooth out the pulse tegration time of JOBns was terminal which yields in DC offset adjustment fract did distort the output luce the DC level fram with tribution. The intention them a linear fram with fram say have a posping fram as was evident in the fram as was evident in the el woltage. John was te tomorrow. Is set up part 12 ns } to a T for the scope he K&A channels to the ODC					
hoops. 8:22pm Leaving						
Th 05:30 JB Crate above, on back, says it can supply +6V 10A, -6V 10A, total +.6V possible is 12 A. +12V 3A, 12V 3A, total +.12V possible is 4 A. +24V 1.5A, -24V 1.5A, total +.24V possible is 2A.						
428F: Power Requirements: 80 mA at +24 V, 80 mA at -24 I.e. two of these is 640 mA total +-12, 16% of bi						
I moved both 428F fan-in/outs, and a Lecroy LRS22 (Replaced LRS222 top channel start LEMO cable, ff (I moved the research pulser, which does not use bad bin.) All bin voltages are fine.	d from NIMIO output 15, which supplies the gamma-ray QDC NIM crate power, to the	gate.)				
Sat Sep 5 13:38:01 2020	2595 AG, JB@trinat-usb-eth4.triumf.ca		Routine	eMCP	buddy log, tests of eMCP	
13:01 AG is IN. In ODB set channel 1 on ADC1 for eMCP. Pressure 1e-8 Torr Biasing eMCP Vmesh=0 Vge=Vusa=Vbemcp+100V						
No a-source VBeNCP IBeNCP VBENCP IBENCP 100 101 102 104 105 104 106 107 106 107 106 107 106 107 107 107 107 107 107 107 107	one to adjust delays. Put					
attenuator x0.2 after 428F. Adjusted offsets WS2- reason they were about as twice as high. Scope tr (200905_170635_emcp-2100V_no-alpha-20V-mesh_ws+sh Again I cannot properly attach image. But I have	(10;5;5)mv. For some aces are attached haped-emcp.png).					

of eMCP shaped pulse is not stable at all and is jumping withi 10mV trinatdaq:/home/trinat/iaeg/emcp-2100V_no-alpha-20V-mesh_ws+shaped-emcp.jpg MAKE THE TITLE SHORTER inserting source: pulses are much bigger. Make attenuator x0.1 Count rate 2.5kHz. As the base line of eMCP signal is not stable, do not expect good spectrum for eMCP. taking data Run #2596 Start: Sat Sep 5 17:10:30 2020, 1670 events/s Stopped because forgot to put eMCP to ADC => connected. Run #2597 Start: Sat Sep 5 17:19:32 2020, 1700 events/s Stop: Sat Sep 5 17:24:51 2020, taken about 500k events in QDC folder QDC_eMCP histogram has counts in channels 95-99. Sat Sep 5 17:41:33 2020: All is OFF, leaving. Sun Sep 6 000 JB * 10-pin header was plugged into wrong ODC (unused chamels of ADC0, the scintillator ODC.) See Sunday Aug 16 elog for a picture of the true configuration. I have restored this 10-pin header to the correct slots on ADC1. We have 1 of ADC1). ** The Ortec 450 has many useful options on front-panel knobs: *You can set the Unipolar output to be negative instead of positive, (maybe skipping the Fan-in/out to invert); *You can pick its maximum amplitude to be 3 y rather than 100; *There's a "BLA" (Baseline Restore) knob, set now at "Medium." This might be better set to 'Out' for a unipolar signal. *I guess I'm surprised you find the best setting to be 0 integration, relying on the inherent time constants to average out that ringing. Is this deliberate? -2100V.jp Δ: 10.0mV M 100ns A Ch1 1-14.4mV Ch1 20.0mV Ch3 20.0mV Ch2 Ch4 10.00 % H Bar Units V Bar Units Function Mode H Bars Ind Mon Sep 7 13:51:10 2020 2597 JM@d108-172-196-211.bchsia.telus.net Routine General buddy log, tests of eMCP 1:50pm James in lab Vacuum: 11uA, 4.7kV, ~1e-8 torr Vmesh = 0 VFeMCP = 0 VGe=VWSA=VBeMCP+200V $\begin{array}{c} \text{VUCEWARVERN}\\ \hline\\ \text{VEMPC} & \text{IBeMCP}\\ [V] & [\mu A]\\ 200 & 4,9\\ 400 & 9,8\\ 600 & 14,9\\ 800 & 20,0\\ 1000 & 25,2\\ 1200 & 30,6\\ 1400 & 36,3\\ 1600 & 42,2\\ 1800 & 48,4\\ 2000 & 51,1\\ 2100 & 59,1\\ \end{array}$ [V] 200 400 600 800 1000 1200 1400 1600 1800 2000 2100 Plan for today will be to: 1) Tune attemuator such that eMCP gdc does not saturate QDC 2) Look at QDCeMP vs. WSZ Sum to see if the correlated distribution widens depending on the VWe-VBeMCP bias. 3) Re-look at if VWe-VBeMCP sugnificantly influences the mask visibility Set output unipolar signal at -10V scale. Adjusting the BLR from MED to H seemed to reduce the fluctuations in the DC level. Wit BLR at LOW fluctuations were probably BMU, while on Hf Iluctuations were probably half that around dmV. Reseting the scale at -3V output also seemed to reduce the DC fluctuations on the output, but also the signal amplitude. I reduced the DC fluctuations on the output, but also the signal amplitude. I reduced the delay would be helpful, but I think the Ortec amplifier internal delay is the main limitation now. I had to increase the QOC gate length from 400 to 550ms to integrate over the entire alpha eMCP pulse. With source (VMesh = 0 -> -20V: 10kHz -> 2.8kHz)
 With source (WHesh = 0 -> -20%: 10kHz -> 2.8kHz)

 Run# Yuesh V6eMCP VGe-WKSA Scalar Events Note

 2601 -20% 2100% 2300% 2.8kHz 200K.

 -00C_2 is now -delta func Y777?

 2603 -20% 2100% 2300% 2.8kHz 210K.

 -00C_2 is now -delta func Y777?

 2603 -20% 2100% 2300% 2.8kHz 210K.

 -00C_5 is now -delta func Y777?

 2606 -20% 2100% 2300% 2.8kHz 210K.

 -00C_6 - 50% 2100% 2300% 2.8kHz 50K.

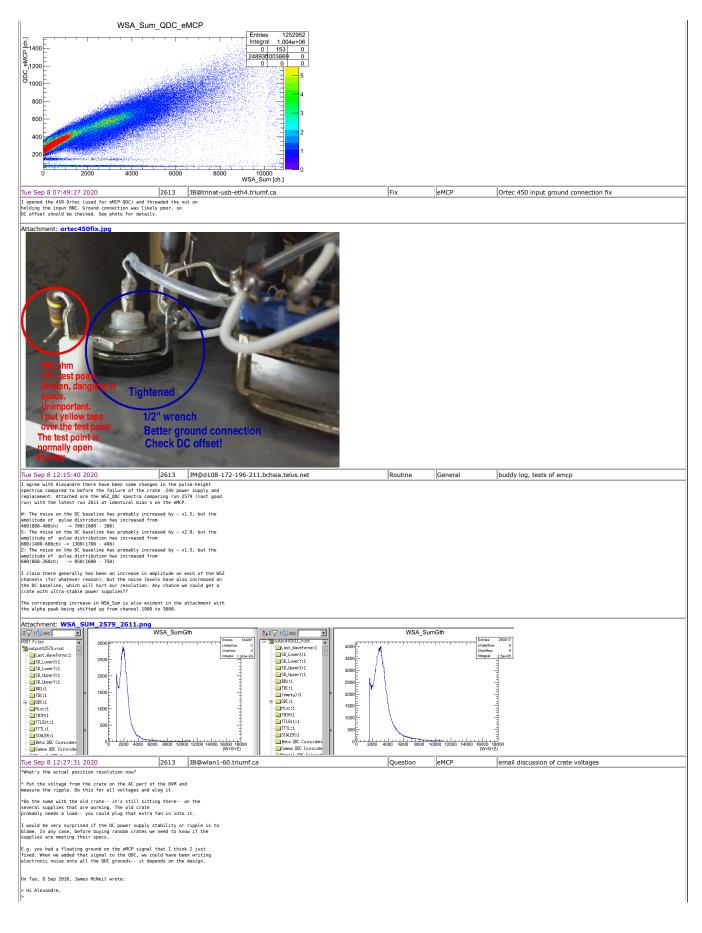
 -00C_6 - 50% 2100% 2300% 2.8kHz 50K.

 -00C_6 - 60% 200% 2.8kHz 50K.

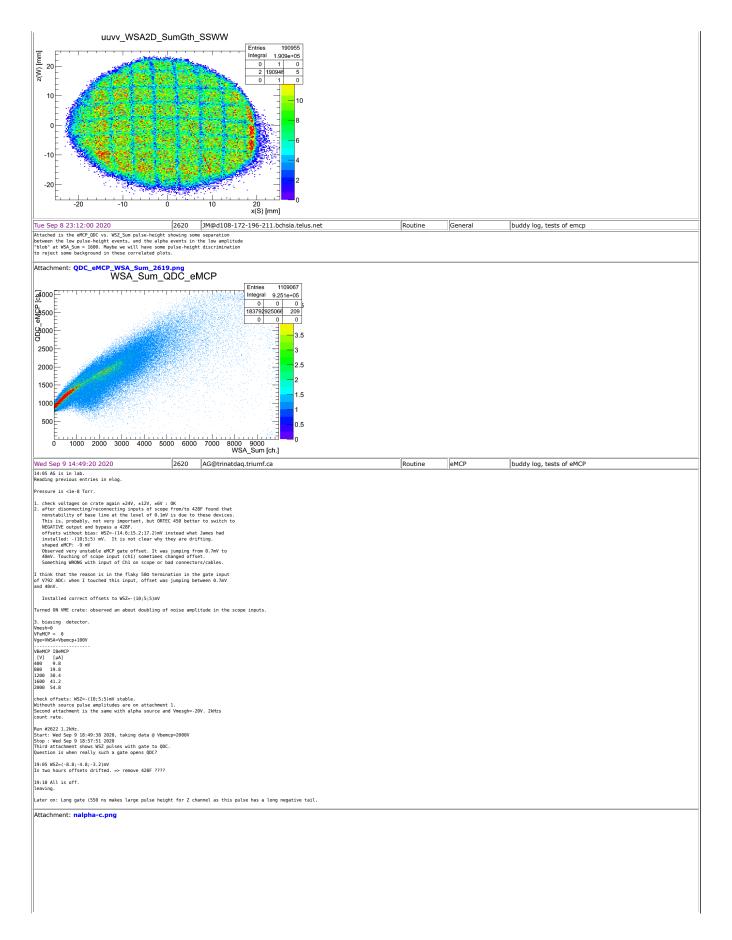
 -00C_6 - 20% 2100% 2300% 2.8kHz 50K.

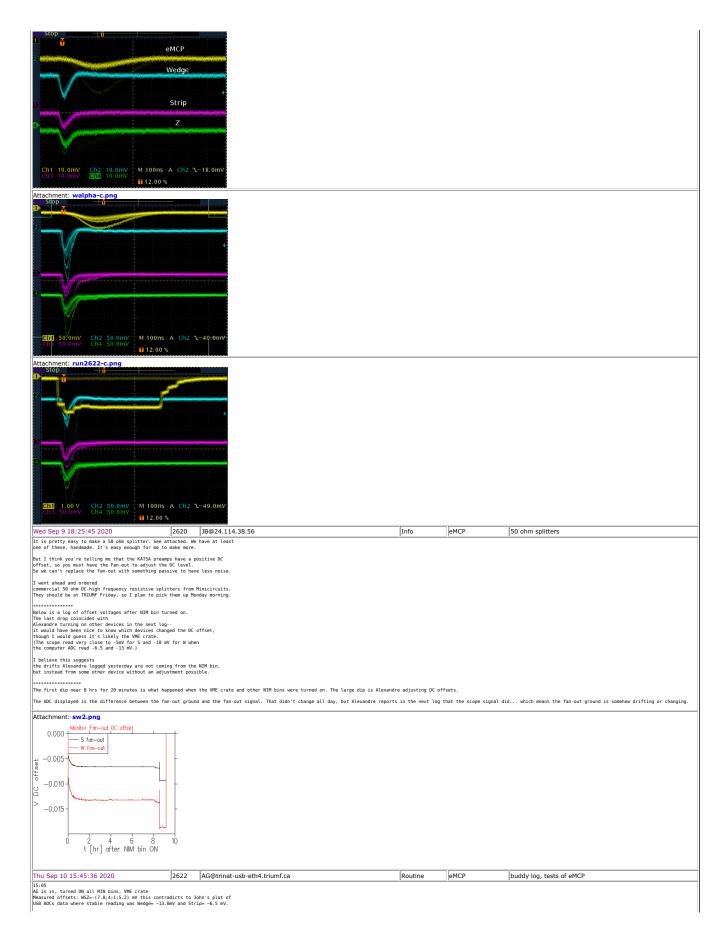
 -00C_6 - 400m 5... > 300ms.

 -10 + 10/ping the Z-channel now -Int 6/10km 5 of 00C_eMCP peak -Further inprovement in mask res.

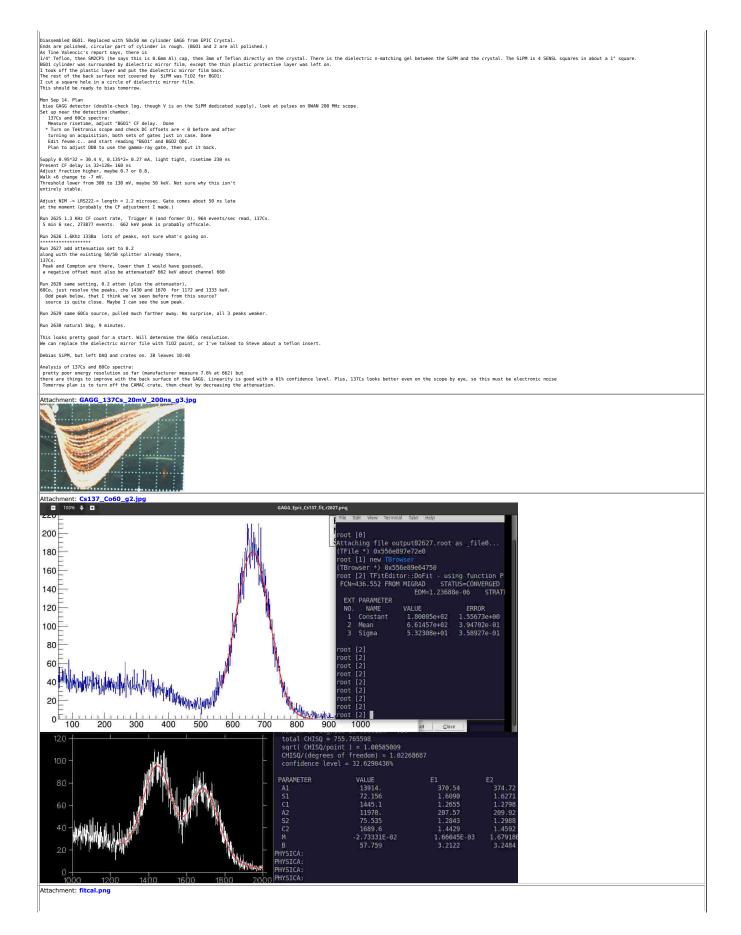

 -2618 -20% 2100% 2300% 2.8kHz 12.5M.

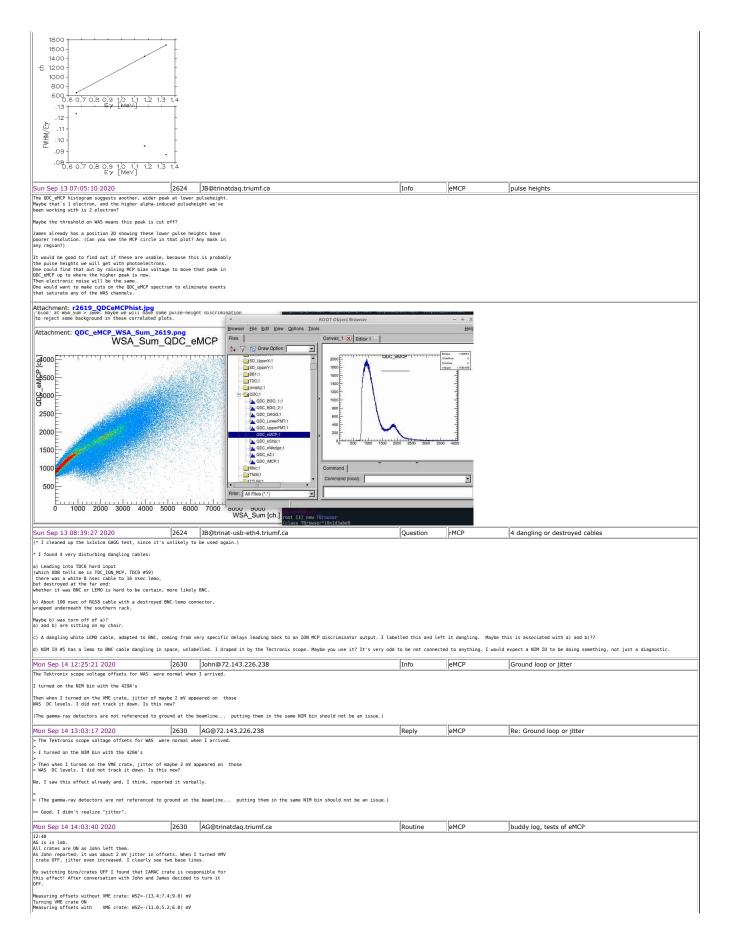
 -2618 -20% 2100% 2300% 40Hz 51.5M.

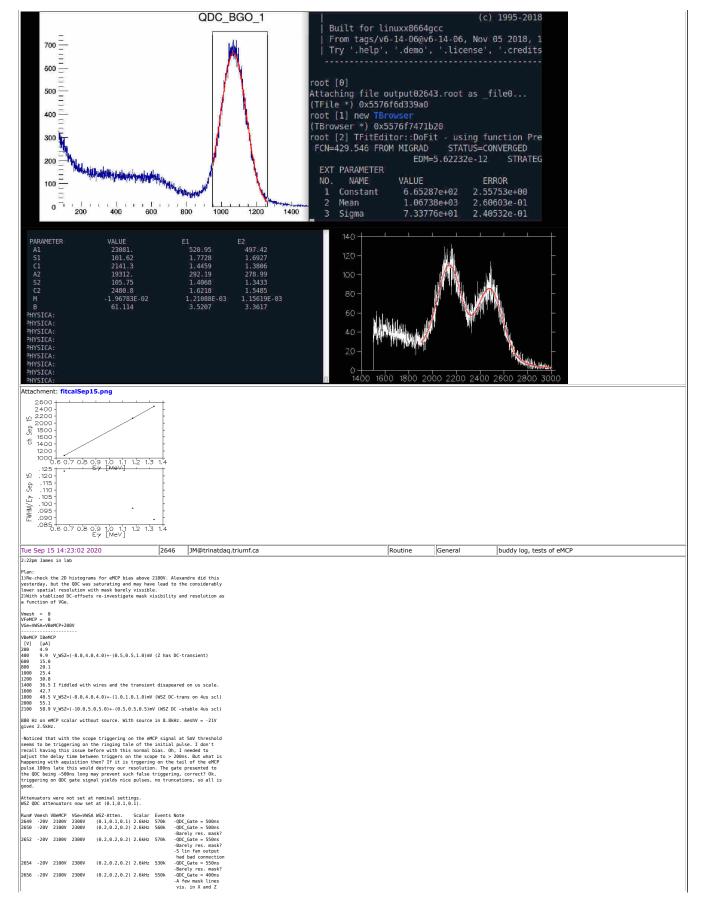

 -2618 -20% 2100% 2300% 40Hz 51.5M.


 -20% 2100% 2300% 40Hz 51.5M.

</tabusepting to t The poer the log tail of the VSC channels. Dist -UCC_Gate = 250ms, SOURCE OUT It appears that fluctuations in the long tails of the WSC channels, particularly the ringing on the S channel may have been liniting our spatial resolution in the timing output. The cost however has been integrating less of the 00C_WFC. Due to the internal delay of the Ortca amplifier if one could delay the gate to the 00C, along with the WSC channels say by 60ms them more of the 00C_WFC could be integrated with these smaller 00C_Gate lengths. 8:00pm Leaving Attachment: QDC_eMCP_WSA_Sum_2611.png




<pre>image of the image of the</pre>	W: The noise on the DC baseline has probably increased by \sim x1.5, but the				
	700(1000 - 300)				
	amplitude of pulse distribution has increased from 800(1400-600ch) -> 130(1700 - 40) 2: The noise on the DC baseline has probably increased by - x1.5, but the amplitude of pulse distribution has increased from 600(600-520ch) ->				
	So I claim there generally has been an increase in amplitude on each of the MS2 channels (for whatever reason), but the noise levels have also increased on the DC baseline, which will hurt our resolution. Any chance we could get				
Note base to the first of the f					
		Routine	General	buddy log, tests of emcp	
	03115) and all voltages +24,+12,+6,-6,-12,-24V read amplitudes of ximally 5mV. I used the LeCroy Linear fan on the desk as the load on the d crate. When I checked the present crate (#10436) containing r Linear fans for WSZ and eMCP QOC's I measure for ~24,+12,+6,-6,-12,-24V s amplitudes of 25,5,5,5,5mV. The DC coupled readings on the new crate				
	MCP,W,S,Z). See attachment. There is a good chance that such periodic				
	eMCP = 0 eMCA-VBeCKP-200V eMCA-VBeCKP-200V eMCA-VBeCKP-200V 1				
<pre>b schi en liser fee. Liser fee. Liser fee. School liser is sky of the school liser press when it was to reveau school liser is sky of the school liser press when it was to reveau school liser is sky of the school liser is sky of the school liser is school liser press when it was to reveau school liser is sky of the school liser is school liser school liser is school liser is</pre>	sconnecting the eMCP Ortec amplifier did not change the fluctuations on e baseline of WSZ and eMCP signal. Also reducing the number of terminators each of the linear fans to 3 (two on input, one on output) thad no effect. anging the W Linear fan to the adjacent box also had no effect. I Checked e above crate (MB379) and all its DC coupled voltages are correct, and AC				
	insert our linear fans. Linear fans were successfully integrated into ate (#03379) and there is no sign of the noise present when in the crate				
	s needed from large pulse tale which sometimes went positive at -5 V DC iginally on this channel. The DC level on the eMCP signal from the Ortec plifier is quite stable, but not sure if it has improved since the				
bit 2 view 2 uiew 2 view 2 view 2 view 2 view 5 view 4					
<pre>content the set of the set o</pre>	15 -20V 2108V 2308V 2.8kHz 550k -00C_Gate = 250ms 17 -20V 2108V 2308V 2.8kHz 550k -00C_Gate = 550ms -Integrate over entire eMCP pulse -Some saturation of 5 channel 18 -20V 2108V 2308V 2.8kHz 590k -00C_Gate = 550ms -WSZ atten. set at (0.1,0.1,0.1)				
Historie Leving tataction: Scope MCPC W. S. Z. noise.png	-HSZ atten. set at (0.1,0.1,0.1) 20 -20V 2100V 2300V 60Hz 54k -QOC_Gate = 550ns -HSZ atten. set at (0.1,0.1,0.1)				
Auto Auto					
<pre></pre>	ttachinent. Scope_encr_w_S_z_noise.png				
tested is corrected 20 histogram for run 2610. I claim whave effectively covered our results from before we began having rotems with crate power upulses. Although the vertical mask lines have good contrast (-590), the orionat lines are still not we began having rotems with rate power upulses. Although the vertical mask lines have good contrast (-590), the orionat lines are still not we have find the source of the sourc					
Definition of the set	Ch1				
CH	Ch2				
The Sep 8 23:01:49 2020 2620 3620 3620 3620 3620 3620 3620	chs				
Ch3 10.0mV Ch4 10.0mV <td>ch4</td> <td></td> <td></td> <td></td> <td></td>	ch4				
Clinity Clinity Clinity Clinity Clinity Clinity Tues Sep 8 23:01:49 2020 2620 JM@d108:172-196-211.bc/bia.telus.net Routine General buddy log, tests of emcp					
<pre>tttached is corrected 20 histogram for run 2619. I claim we have effectively ecovered our results from before we began having problems with crate power upplies. Although the vertical mask lines have good contrast (-560), the orizontal lines are still not well resolved, particularly for z-d mm (M- hamel). This may be related to the slight possibilitie overshoot on M-channel on it's tail who's magnitude seems to be correlated with large pulse height. This outd have the effect of both reducing the withment pulse height. This outd have the effect of both reducing the withment pulse height and introducing noise which may be spoiling the channel vertical resolution. If uch fluctuations are our limitation, there may only be marginal improvements n mask contrast by adjusting VGe.</pre>	Ch3 10.0mV Ch4 10.0mVΩ.	Routine	General	buddy log, tests of emcp	
Ittachment: WSA_2D_sumWSA_G1600_2619.png	tached is corrected 2D histogram for run 2619. I claim we have effectively covered our results from before we began having problems with crate power pplies. Although the vertical mask lines have good contrast (-560), the rizontal lines are still not well resolved, particularly for z-d0 mm (W- anel). This may be related to the slipht positive overshoot on W-channel on 's tail who's magnitude seems to be correlated with large pulse height. This ould have the effect of both reducing the W channel pulse height and troducing noise which may be spoiling the channel vertical resolution. If c fluctuations are our limitation, there may only be marginal improvements		11	<u>, , , , , , , , , , , , , , , , , , , </u>	



Put correction to WSZ offset ⇒ WSZ=-(10.0;5.0;5.0) mV Note: To more accurately adjust offsets, use Cursors and set scope to								
highest intensity. In this case the cursor line is well visible.								
Plan: Rising Vbemcp try to resolve single electron peak from pedestal. Saturation of CATSA can be removed in analysis.								
To take data shall set the QOC gate width to 500ns. Blasing detector to 2100 V VFeMCP = 0 VFeMCP = 0 Vge-WCA-VVEmeptP200V VFeMCP IDeMCP								
[V] [µA] 2100 58.9								
without source 60Hz on visual scaler QDC gate set to 500 ns								
Rum #2632 Vencp=2100W, Jencp=58.9µA Start: Mon Sep 14 15:00:12 0200, 2.7WHz/1670ev/s Stop: Mon Sep 14 15:00:33 2020, 700K events raw ODC Wedge max1=450 max2=1100 eMCP max1= 900 max2=1950								
Num #033 Vemcp=2150V, Temcp=62 lµA Start: Non Sep 14 51:31:32 2020. 2. 04Hz/1730ev/s, some satur. in CATSA Stop: Mon Sep 14 15:21:32 2020. 7.60K events raw QOC: Wedge max1=150 max2-1300. eMCP max1=1150 max2-2300								
Rum #2634 Vemcp-2200V, Temcp-64 2µA Start: Mon Sep 14 16:03:21 2020, 2. 94Hz/1708ev/s, some satur. in CATSA Stop: Mon Sep 14 16:10:24 2020, 724K events raw Q0C: Wedge max1=650 max2-2010 eWP max1=400 max2=2700 15 there a pedestal in channel 66?								
Rum #285 Vemcp-2250V, Temcp-66 2µA Start: Mon Sap 14 16:86:76 20200, 3. 0H/z/1800ev/s, some satur. in CATSA Stop: Mon Sap 14 16:81:12 2820, 825K events raw QUC: Wedge max1=800 max2-2580 eVEP max1=100 max2-2800								
Rum #2636 Vemcp-2300/, Temcp-68.4uA Start: Mon Sep 14 56:47-13 2000, 3.1HHz/1800ew/s, some satur. in CATSA Stop: Mon Sep 14 16:54:30 729K events raw QUC: Wedge max1=1055 max2-2700 ew2 max1=100 max2=2700 max2 is almost gone								
Set Vemcp=1900V to record traces of E-out pules of CATSA Attachment shows traces of MSZ E-out of CATSA Pulese reach maximum at about 200ms but have very long tails about 1.8µs. In my opinion they are unusable directly with our DAQ.								
check DC offsets: WSZ=-(10;5;5) mV with WME crate ON. All is OFF. leaving at 17:55								
Stop A: 102nV Stop A: 102nV Stop B: 102nV Ch3 Coupling R: Impedance DC AC へ GND/n								
$\Omega = \frac{1}{2} \frac{1}{100 \text{ mV}} = \frac{1}{100 \text{ mV}} =$								
Image: Che information of the informatio of the information of the information of the information of the	Info	DAQ	CAMAC logic conversion					
(Int 100mV Ch4 100mV Ω T 10.60 % INT 50	Info	DAQ	CAMAC logic conversion					
CDE 100mV Ch4 100mV 100mV 100mV <	1	<u>, </u>	CAMAC logic conversion					
Image: Construction of the second s	: 2d in the data strea	<u>, </u>	CAMAC logic conversion					
CDB DOMV Ch4 DOMV TUE Sep 15 06:31:15 2020 2636 JB@trinat-usb-eth4.triumf.ca LCS178 Level Convert Nin-ECL: Lemo cables to them: Rightmost module: "NaI diagnostics: NaI diagnostics: Nai uspatemanne these are just scalers. These first 3 are used for NEB tuning diagnostics. The first 3 are used for NEB tuning diagnostics. The uptema one has a direct connection to an EPICS scaler and is casually used as a monitor that beam is in the room: it is not needed for setup.on of for data taking. "*Lemo cables 8 and 9 and connected to NIMIO 3 and 9 of the top of that module. These are likely vital. The sit first let left of what I usually call "WIMIO". There are certainly trap logic inputs going to this, which are critical for event	: 2d in the data strea	<u>, </u>	CAMAC logic conversion					
CDB 100mV Ch4 100mVC: U10.60% U10.60% U10.60% U2636 JB@drinat-usb-eth4.triumf.ca LCS/70 Level Convert Nim-ECL: Lemo cables to them: Rightnost module: "Mal Giagnostics: Nal Coincidence, Nal 1, Nal upstream these are just scalers. These first 3 are used for NBE tuning diagnostics. The upsteam one has a direct connection to an EPICS scaler and is casually used as a monitor that beam is in the room: it is not needed It's likely these are only needed for setup. on for data taing. **Lemo cables 8 and 9 and connected to NIMIO 3 and 9 of the top of that module. These are likely vital. The ifists to the laft of what I usually call "MUMO". There are certainly trap logic inputs going to this, which are critical for event This is likely eg, what determines our Optical Pumping times, along with our atpm transfer times. Text NUM-to-ECL unit, 2nd from right:	: 2d in the data strea	<u>, </u>	CAMAC logic conversion					
Image: Construction Image: Construction Tue Sep 156:31:15 2020 2636 JB@trinat-usb-eth4.triumf.ca LC5170 Level Convert Nun-ECL: Less cables to them: Rightmost module: ************************************	: 2d in the data strea	<u>, </u>	CAMAC logic conversion					
The Second Sec	: 2d in the data strea	<u>, </u>	GAGG tests, EPIC 2nd day					
Image: Construction Image: Construction Tue Sep 15 06:31:15 2020 2636 DB@trinat-usb-eth4.triumf.ca LCS170 Level Convert Nim-ECL: Lexel Convert Nim-ECL: Lexel Convert Nim-ECL: Lexel Convert Nim-ECL: Rightmost module: "Nal Gagonzitas." Nal Calgonzita Lexel Convert Nim-ECL: Lexel Convert Nim-ECL: Lexel Convert Nim-ECL: Image: Convert Nim-ECL: Lexel Convert Nim-ECL: Nal Calgonzitas. Nal Calgonzitas. Nal Calgonzitas. Nal Calgonzitas. Mark Converted Name Convertion to an PEPICS scalar and is casually used as a monitor that beam is in the room: it is not needed It's likely these are only needed for setup, not for data taking. "*"Lemo cables 6 and 9 and connected to NIND 3 and 9 of the top of that module. These are likely vital. The picthano regore to the Hier/hand WELDica codule. This is to the left of what I usually call "NIND". There are cartainly trap legic inputs going to this, which are critical for event This is likely e.g. what determines our Optical Pumping times, along with our atpm transfer times. mext NIM-to-ECL unit, 2nd from right: no leam inputs, so it seems doubtrut this unit is doing anything. Ribbon cable out goes to the 2nd NIMID logic module. I think I should look for a single NIM-powered WIM-to-ECL converter, for a straight swa	nd in the data stree	n.						
The set of	nd in the data stree	n.						
INIDE INIDE In	nd in the data stree	n.						
The Sep 100mv Ch4 100mv Thus Sep 15 06:31:15 2020 2636 JB@btrinat-usb-eth4.triumf.ca LCS170 Level Convert Nim-ECL: Lead cables to them: Nightmost module: Mind Giagnostical I.1. Nal upstream these are just scalers. The upsteam one has a direct connection to an EPICS scaler and is casually used as a monitor that beam is in the room: it is not needed It's likely these are only needed for setup, not for data taking. **Lemo cables 8 and 9 and connected to NIHIO 3 and 9 of the top of that module. These are likely vital. The ribbon cable from this one goes to the Hert-hand WE logic module. This is to the left of what I usually call "NIHO". There are certainly trap logic inputs going to this, which are critical for event mext NIM-to-ECL unit; 2nd from right: no lemo inputs, so it seems doubtiot this unit is doing anything. Ribbon cable out goes to the 2nd NIMIO logic module. I think I should loak for a single NIM-powered NIM-to-ECL converter, for a straight swap? LeCroy 4616 Cor rawpie guist of due out how to put in the ECL standard? CMAC vrs: DC fine. At shows 4 w, but with CMMA craste on or off. Tue Sep 1506:45:58 2020 2637 JB@24.114.38.6 CMAC crast off. So dm splitter and 0.4 atten. Sep 1506:45:58 2020 2637 JB@24.114.38.6 <	nd in the data stree	n.						
These is the second control of the second	nd in the data stree	n.						
The Spin Boomy Ch4 100mVS III 10.60 % IIII 10 The Spin Discretion in the second state of the state state of	nd in the data strea timing.	n.	GAGG tests, EPIC 2nd day					
Construction Construction Tue Sep 15 06:31:15 2020 2636 DB@trinat-usb-eth4.triumf.ca LCS170 Level Convert Nun-ECL: Less calles to them: Rightmost module: "Nail diagnostics: Nail diagnostics: Nail version Immerstrains pare us dirt convertion to an EPICS scalar and is casually used as a monitor that beam is in the room: it is not needs It's likely these are only needed for setup, not for data taking. ""Lemo cables 8 and 9 and connected to NUMU 3 and 9 of the top of that module. These are likely vital. The ribbon cable from this one goes to the left-hand WE logic module. This is to the left of what I usualty call "WIMO". There are cartainly trap logic inputs going to this, which are critical for event This is to the left of what I usualty call "WIMO". There are cartainly trap logic inputs going to this, which are critical for event This is to the left of what I usualty call "WIMO". There are cartainly trap logic inputs going to this, which are critical for event This is to the left of what I usualty call "WIMO". There are cartainly trap logic inputs going to this, which are critical for event This is to the left of what I usualty call "WIMO". There are cartainly trap logic inputs going to this, which are critical for event The silkely e.g. what determines our Optical Pupping time; Allow are straight swap? LeCroy 4616 Or maybe just figure out how to put in the EC	nd in the data strea timing.	n.	GAGG tests, EPIC 2nd day					

2658	-20V	2100V	2300V	(0.2,0.2,0.2) 2	2.6kHz	550k	-QDC_Gate = 300ns -Highly distorted 2D hist for emcp ODC < 1500?
2660	-20V	2100V	2300V	(0.2,0.2,0.2) 2	2.6kHz	670k	-QDC_Gate = 600ns -Barely res, mask?
2662	- 20V	2158V	2350V	(0.2.0.2.0.2) 2	2 01-11-	550k	-ODC Gate = 550ns
2663	-20V	2200V	2400V	(0.2.0.2.0.2) 2		550k	-ODC_Gate = 550ns
2664	- 20V	2258V	2450V	(0.2.0.2.0.2) 2		2.5M	-ODC Gate = 550ns
2665	-20V	2300V	2500V	(0.2,0.2,0.2)		560M	-QDC_Gate = 550ns
	thing m leav						